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The abstract of a scientific paper, typically, consists of sentences describing the background and
objective of the study as well as its experimental methods results and conclusions.

There has been an increasing interest in recent years in identifying such structural roles, with
particular motivations from the information retrieval point of view. In previous research done
with respect to MEDLINE abstract classification, various sentence feature combinations were used
in order to achieve successful performance, but one important issue has not yet been addressed:
the unrepresentativeness of the major part of learning data, as the learning set samples tend
to originate from different sources baring many differences while the application data source
distribution does not necessarily obey that of the learning set.

In this paper we solve this issue by applying “example source” sensitive costs in the training
process.

1 Introduction a scientific abstract can typically be divided into
five groups: BACKGROUND, OBJECTIVE, METH-
ODS,RESULTS and CONCLUSIONS.

In our study, we focus on sentence role identifica-
tion in MEDLINE[5] abstracts. MEDLINE, having

over 14 million records of thousands of publications,

Identifying sentences functional roles in text is es-
sential for proper retrieval of information. With the
rapidly increasing amounts of scientific literature, in
particular in the field of medicine, it is becoming
imperative that sentences within scientific abstracts

. . constitutes one of the largest electronic collections of
are classified into several relevant groups, to allow

. K . . life science and biomedical information, hence pro-
efficient retrieval for user queries. Sentences within



viding highly challenging settings for information re-
trieval.

The MEDLINE abstract collection consists of
mainly two groups of abstracts, structured abstracts
and unstructured abstracts. Structured abstracts are
abstracts which are divided into sections reflecting
the structure of the abstract. Each section in such
abstract is explicitly marked with a heading indi-
cating the structural role of the sentences to follow.
Unstructured sentences (outnumbering structured ex-
ceedingly), are plain abstracts with no further addi-
tions.

The structured and manually annotated unstruc-
tured sentences differ in several points: (1) Chronol-
ogy of information. In structured abstracts sentence
of same role are more likely to appear together in the
same “chunk”, rather than in different separated loca-
tions in the abstract. (2) Grammar. Having written
a title over a sentence, authors often continue with a
non-grammatical sentence. For instance: “OBJEC-
TIVE: To assess the efficiency...”, where the heading
“OBJECTIVE” is followed by an infinitive. (3) Re-
liability. An author forced to title chunks of his ab-
stract is more inclined to have a sentence of one class
appear among sentences of a different class without
the proper title. This often happens with CONCLU-
SIONS and RESULT'S sentence.

2 Learning from Data of Vary-
ing Quality

Seeing as unstructured annotated sentences are ex-
pensive to acquire, and structured abstracts, while
widely available, sometimes fail to represent properly
the application data (as shown in Yamasaki et al.[6]),
we wish to introduce a method that will allow the mu-
tual contribution of both types of training data with
preference to the more representative and trustwor-
thy samples (i.e., unstructured abstracts).

In order to increase influence of better representing

learning samples, we propose to allow “cheaper” vio-

lations of unrepresentative samples by the classifier.

2.1 SVM

Our choice of classifier is the SVM [7] 1. From
a given set {(x;,v:)}X, of training data, where z;
is the input feature vector of the i-th example and
v € {+1,—1} its label, the SVM learns a decision
function

f(z) = sgn(w -z — b)

Where z is the input vector and f produces the class
label +1 (positive) or —1 (negative) for each z. Gen-
erally, there can be infinitely many such decision func-
tions that can correctly classify all training data, i.e.,
f(z;) = y; for all 1 < ¢ < N. Among these, SVM
chooses the one that maximizes the “margin” between
the two classes. We demand that correct output of
f for a positive example is over +1 and correct out-
put for a negative example is lower than —1, hence
defining two hyperplanes, H_; and H,1 such that:

Hy:w-z—-5b=1,

H_I:ww—b:—l.

The margin is then defined as the distance between
these two hyperplanes and can be expressed by:

lw-z—b 2
Tl ~Twl

The task of maximizing the margin is then equivalent
to the task of minimizing the value of || w ||. If we
allow a soft margin with violation slack & for each

training vector, the task can be rewritten as
R 1 5
minimize  Sw w + C(Z &)
?

st yi(w -z —b) > 1§, M

& > 0.

Where &; is a violation slack and C is a constant set

for punishing the violation.

1For our experiment in Section 4 we use libSVM by Lin[2]



2.2 SVM for Data of Varying Quality

In order to promote representative examples over
unrepresentative examples, we introduce a new vio-
lation punishing scheme. Instead of using a constant
C equal through all example as used by plain SVMs,

we shell assign an example dependent value to C
C({):N—R.

Where:

C(representative sample) > C(unrepresentative sample)

Where i is the examples index instead of C(z;). Let
us rewrite (1) using the newly defined C:
1
minimize EwTw + ; C(i)&;
2
st.  y(w-z;—b)>1-¢, @
§&2>0.
By introducing Lagrangian multipliers oy, u; > 0
to (2) we obtain the following primal Lagrangian:
1 .
L(w, b0 p) =5 | w |2+ C0)
i
- Zai[y,(w cxi+b)+ & — 1]

- Z wii-
(3)

The solution is given at he saddle point of L, at which
the derivatives with respect to w,b and £ vanish. Sub-
stituting these constraints into (3) yeilds the following
Wolfe dual problem that should be maximized with

respect to o

LD (Oz) = Z (273
1
-3 Z QY Y T T4 (4)
%J
st 0< o <C(1).

Since C does not actually depend on the example it-
self but only of its source (a structured or an unstruc-

tured abstract) we have

C, if z; € unstructured abstracts,
c@y={ " ’ (5)

Cs if xz; € structured abstracts.

with C, > C;

When C; = 0 the problem is reduced to that of a plain
soft-margin SVM using only representative (unstruc-

tured) examples with C = C,.

3 Related Work

In previous research (Yamasaki et al. 2005)[6], the
effect of intra-sentential features on quality of clas-
sification was studied. In this study, features such
as words and word bi-grams were used, as well as
some tense information. In this work, mainly struc-
tured abstracts were used to train a support vector
machine, which was then tested on both structured
and unstructured abstracts. Yamasaki et al. show
that, although some intra-sentential information can
contribute to the task, the accuracy is significantly
lower when testing the machine on unstructured ab-
stracts rather than structured. This is the motivation

for our work.

Abe et al.[1] have suggested using cost-sensitive
learning by manipulating the violation slack constant
C. Their work however, only associated varying costs
with different types of mis-classification hence manip-
ulating the violation punishment depending on the
class associated with the input and its correlation to

the hypothesis output.

Geibel et al.[3] have proposed a theoretical frame-
work for example dependent costs. In their work a
similar approach to the one introduced in this paper
is proposed, claiming that the violation slack punish-
ment should be used for resolving the problem unrep-
resenatative data in training set. They suggest a gen-
eral definition of both class and example dependent



violation cost function. However, the training data
used in their experiment is artificially constructed and

contains a small dimensional feature space.

4 Experiment

4.1 Experiment Settings

Our training data consisted of 3342 annotated sen-
tences, 2787 of which are from structured abstracts.
The test data however will always be composed of un-

structured abstracts only.

entences frol
unstructured

Sentences from

Sent f unstructured
entences from abstracts
structured o

100%
abstracts

Figure 1: The container on the left shows distribution
of data sources in training set. The container on the
right shows distribution of data sources in application

set.

Each of these sentences is classified into one of the
following 5 classes: BACKGROUND , OBJECTIVE,
METHOD, RESULT and CONCLUSION. Distribu-

tion of these roles is shown in Table 1

To learn classification of these sentences we used
the following features:
(1) surface words
(2) base words (lemmas)?
(3) part of speech information
(4)(5)(6)(7) all possible combinations of the previous
three features

(8) bi-grams.

2For lemmatization and part of speech information we used
GENIA Tagger[4] a part of speech tagger for biomedical text.

In this experiment we evaluate both the pair-
wise and the multi-class performance of the proposed
method. From a total of 103813 abstract from the
year 2002 we chose 4000 sentences belonging to fully
annotated abstract only. We then randomly chose
20% from those sentences for testing data. From the
chosen testing data we removed all sentences belong-
ing to structured abstracts and were left with a test

set of 126 sentences.

4.2 Baseline Construction

Since in our experiment we use different sets of
data than those used in the previous study of MED-
LINE sentence role identification, we start by repro-
ducing two essential baselines, to prove addition of
large quantities of somewhat noisy learning samples
to a small amount of high quality samples can im-
prove performance:

(1) plain SVM trained only on unstructured (i.e.
representative) samples. This implies Cs = 0 since
all structured examples are to be ignored.

(2) plain SVM trained on both representative and
unrepresentative examples without discriminating be-
tween them. This implies C, = C;.

We have tested both of these baselines with dif-
ferent C values and for the optimal choice of C for
each pairwise problem we have composed a multi-

class model for each baseline. In the final multi-class

Table 2: multi-class accuracy %, representative only

vs all
plain SVM with plain SVM with
structured+unstructured structured
Cy, =C only (Cs = 0)
Accuracy% 64.3 67.5

test, models using representative training data only,
outperform the models trained on all data, as shown
in Table 2. However, in the in pairwise tests (Figure

2} we witness that in 3 of the 10 pairwise tests, mod-



Table 1: Frequency of individual roles in structured and unstructured abstracts of training data.
BACKGROUND OBJECTIVE METHOD RESULT CONCLUSION

source

11.5%
structured 13.3%
all 13.0%

7.9%
10.0%
9.6%

18.9%
24.5%
23.5%

47.7%
35%
37.5%

13.8%
16.6%
16.1%

unstructured
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Figure 2: Pairwise Baselines. B=BACKGROUND, O=0BJECTIVE, M=METHOD, R=RESULTS and
C=CONCLUSIONS. The dotted line plots the maximal accuracy achieved with unstructured sentences only.

The broken line plots maximal accuracy achieved with equal C for all data.
els trained on all data, outperform models trained on

4.3 Establishing C

representative data only (see Table 3).
P v ( ) Since in our training set samples come from ex-

pairwise case all  unstructured
data only
BACKGROUNDvsRESULT 85.5 84.3
OBJECTIVEvsRESULT 95.8 94.5
METHODvsCONCLUSION  75.7 72.7

Table 3: pairwise cases where models trained on all

data C, = Cs outperform models trained on repre-

sentative data only Cs =0

actly two sources, we set for each pairwise classifica-
tion model two penalty constants, C; for samples of
structured abstracts and C, for samples of unstruc-
tured abstracts. In our experiment we would like to
establish the optimal (C,, C;s) combinations for each
pairwise model and test them against the previously
mentioned baselines, both in the pairwise problem
and in the multi-class problem.

To establish C values, we tested for each pair of
classes, a penalty constant C,,, for unstructured ex-
amples that ranges between 10710 and 10'°. For each
C,, we then traversed over all structured penalty con-
stants Cs, that will result in a 10° to 10° deviation

from C,.



For the case of METHODS vs OBJECTIVE for in-
stance the maximal performance was chosen out of

the values shown in figure 3

100 _Accuracy%

90 1
0] 76.0  80.7

704
60
50
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30
20
104
0 T T
0 1 2

Figure 3: Methods vs Objectives C-search. The x

axis stands for the logip(ratio) value ratio = Cy,/Cs.

88.4

Each column in the graph shows the maximal accu-
racy value for the given ratio. The C,, yielding accu-
racy 88.4 will be chosen. C; of the maximal accuracy

is hence C, /ratio

Having found the performance for each of the stated
C combinations for each pair, we choose the values
that amount to the highest performance.

4.4 Testing Found Cs

In Table 4 we show that in the pairwise case our
models can outperform both of the baselines defined
earlier. In 3 out of the 10 cases our models outperform
both baselines, in 6 of the left 7 cases, we repeat the
accuracy of models trained on unstructured abstracts
only, in 2 of those 7 cases we repeat the accuracy
of the models trained with C; = C,. In 2 of the
earlier mentioned 7 tie cases we use Cy = 0 in the
source sensitive models since no higher Cs repeats (or
exceeds) the performance of the “unstructured only”

models.

4.5 Multi-Class Classification

To insure our implementation does indeed exceed

the performance of both baselines, we performed a

simple pairwise multi-class classification using the
In the

multi-class case, yet again, (as figure 4 shows) mod-

pairwise models we have already trained.

els trained with optimal, source sensitive C's seem to
outdo, both the models trained on all data with equal
(and optimal) C, and Cs, as well as models trained
exclusively on representative samples, unstructured

data, also with optimal C values for each pair.

100 _Accuracy%

904
804
704 64.2
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504
40+
304 /
204
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0

67.4 69.8

Figure 4: Multi-Class Accuracy %. In this figure
the 1st column shows the optimal accuracy of models
trained with C, = C,;. The 2nd column shows the
optimal accuracy of models trained only on unstruc-
tured abstracts (i.e. Cs = 0). The last column shows
the maximum accuracy achieved by models trained

with origin sensitive C's.

5 Conclusions and Future Work

We have shown that using source sensitive viola-
tion costs is beneficial for both the pairwise problem
and the multi-class problem. In future work, we will
try extending this sensitivity to class dependent val-
ues as well. We also consider combining source sen-
sitive violation costs with context dependent classi-
fication techniques, seeing as previous research (Ya-
masaki et al. [6]) shows that in sentence role identi-
fication task, context is important for achieving opti-

mal performance.

75‘7



Table 4: Pairwise Accuracy %. The bold rates are the highest rates for the given pairwise problem

Pairwise Problem plain SVM with plain SVM with  source sensitive C
structured+unstructured unstructured only
(Cs = Cu) (Cs = 0)
BACKGROUND vs OBJECTIVES 80.7 83.7 83.7
BACKGROUND vs METHODS 80.7 88.4 88.4
BACKGROUND vs RESULTS 85.5 84.3 86.7
BACKGROUND vs CONCLUSIONS 81.0 83.7 83.7
OBJECTIVES vs METHODS 76.9 84.3 88.4
OBJECTIVES vs RESULTS 95.8 94.5 97.2
OBJECTIVES vs CONCLUSIONS 77.7 85.5 85.5
METHODS vs RESULTS 86.7 89.8 89.8
METHODS vs CONCLUSIONS 75.7 72.7 75.7
RESULTS vs CONCLUSIONS 85.5 85.5 85.5
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