mBEA v —Fv b 45

(2002. 7. 26)

It

IVEBIERERICE D WET OF Y - Fyv Yy T OEBRINITE
QusaiAbueint R by
T FRETHH T 316-8511 FORIR H AL R aRIRES 4-12-1

E-mail: j{abucing,sibusawa}@cis.ibaraki.ac.jp

HHEL AVI—RY BT —EAOLIY RA—¥H5DERE, VIFUIEKESBEDTEL DTWEELZEED
TH, 2-TREVWGERFELY., ZORXTE, 75472 MAERLEFT — X2 22T S TICOIER &%
5FF7ANTYZLICOVWTEBELTWS, ZO7ND U XL TREREETOICHEREISL T T Yz M
FryvalTBY, ¥ n—FREORELA TVl b EFvyial, BEOIISRVAT VY h ey
valew, ZhiCk-T, 75472 bORFBREPBPOTESZ L2 HZRL TWE, £k, 7547 MAER
UEF =3 2R BMEDIBELFEREOEHEEL LIRS, By hBENA b ey FEEHERT 27V
UXLEBALTWS, OV 77 ANEANWTELDO7INT Y XLIKODWTERLTWS,

X—J—k JOFY - Feyry, BETNVI VXA, EEERRE, v bE

An Experimental Proxy-Caching Study Based on Response Delay Times

Qusai ABUEIN' and Shibusawa SUSUMU*

 Faculty of Enginccring, Department of Computer and Information Sciences, Hitachi, Nakanarusawa
4-12-1, Tbaraki, 3168511 Japan
E-mail: {{abucing,sibusawa}@cis.ibaraki.ac.jp

Abstract Each Internet data request from the end-user can lead to large and variable delays, such slow response
times make Internet use undesirable and impractical for the end-users. In this paper we consider an algorithm to
reduce the time that clients wait to receive their requested data. Caching by this algorithm is in accord with the time
needed for a request to be answered, that is, objects that take more time to download are cached while those objects
where downloading takes less time are replaced. We show that caching according to the length of object-download
time reduces waiting time at clients. We also introduce an algorithm that achieves a high hit ratio and byte ratio as
well as reducing the amounts of time clients have to wait to receive their requested data. Experiments for several
algorithms were carried out with a variety of log files.

Key words proxy caching, replacement algorithm, response-delay time, hit ratio

A proxy server provides documents from its local disk

1. Introduction L .
cache, eliminating the need to connect with the remote hosts

The explosive growth of the World Wide Web in recent
vears has led to huge increases in the amounts of network
traffic that flows in response to HI'TP requests, such that
schemes to reduce the amount of network traffic have become
necessary. Web caching is a popular way of achieving such
reductions, and it is widely applied in web servers. Requests
for data from popular servers frequently exceed the server’s
capacity to supply data; this leads to poor network latencies.
Proxy servers are applied as intermediaries between browser
processes and web servers on the Internet to mitigate this

problem [13].

that hold the documents, using the proxy server as a cache
for web objects that would otherwise have long network la-
tencies is an effective approach [1],[6]. Once an object has
been transferred to the proxy, subsequent requests are han-
dled by the proxy, so this approach achieves the following
advantages :

o Reduced network traffic

e Reduced loads on Internet servers

e Reduced latency, clients notice the improved response
times

o Reduced network costs[4].

Since the amount of storage space on a proxy is limited
and clients continually request data, the cache of the proxy
becomes full from time to time. The proxy’s effectiveness is
then maintained by removing objects from the cache to make
space for new coming ones. An algorithm for control of this
operation is known as a replacement algorithm or sometimes
as a removal algorithm [2],[7].

The operation of most of the algorithms that are intro-
duced to date has been based on measurements of the hit
rates and byte-hit rates (the ratio of the number of bytes
for objects that were hit to the total number of requested
bytes), since their main aim is to reduce loads on the server
and amount of network traffic, more information [5]. A few
algorithms that are intended to reduce the length of time
that clients have to wait to receive requested data have been
proposed [9].

Users do not like to wait for web pages to load into
browsers, and a few seconds may sometimes be too long wait
for the client. Algorithms that take the length of the time
taken to download data from their original locations into ac-
count in the saving of the objects in the cache are applicable
to reducing the time that clients spend waiting to have their
requested files. Saving objects according to the length of
fetching time alone only leads to low waiting time for clients,
but not to high hit ratios and byte-hit ratios. A further algo-
rithm in which the multiples of the number of requests and
the length of download time for objects is considered leads to
an increase in the hit ratio and byte-hit ratio while still low-
ering the waiting time for clients. In this paper we introduce
an algorithm that is intended to reduce the length of time
that clients have to wait until they receive all of the data
they have requested. kor each requested object, we measure
the time needed to fetch that object from its location, then
cache those objects for which the times are long to reduce
the client-waiting times. We also measure the hit ratio and
byte-hit ratio. We then perform several experiments with
another algorithm which considers the multiple of the num-
ber of requests and the download time for each object. The
results of the new algorithms are compared to those of such
other algorithms as LRU, FIFO, LFU, and SIZE.

The organization of this paper is as follows: the next sec-
tion is a description of our preliminary studies; this is fol-
lowed by a description of two response-delay-time algorithms.
The next three sections report on our experimental environ-
ment, experiments and results, respectively. This is followed
by discussion and analysis our results, and we give a brief
summary of this work and our future intentions in the con-

clusion.

2. Preliminaries

Whether the goal of the caching and replacement algo-
rithm is to increase the hit ratio or byte ratio or to reduce
the response time, the size of the requested message plays
the main role in achieving the goal, since large messages take
more space in the memory and longer time to be downloaded.

2.1 Service Time and Message Size

The response time is measured as the time the message
or tequest leaves the client until the response comes back, it
passes through several networks and routers. Response time
depends on the message size, the overhead and the band-
width of the networks[12]. We can notice that the message
size is variable and it differs from request to request.

As a consequence, the service time Tyervice, Which is the
time between a message leaving the client and the arrival of
the corresponding response, is directly proportional to mes-

sage size G:
Teervice = bG +d (1)

Where b and d are constants.

With caching, the equivalent measure is the total response
delay time T, which is the total time the clients have 1o wait
before receiving their requested data, and the message is re-
ferred to as an object; T is also direct proportional to the

size S of the object:
T=aS+c¢ (2)

Where o and ¢ are constants. Therefore, the message size is
one variable that affects the total response-delay time. We
will show by experiments that there is a relation between
the response-delay time, the number of messages, and the
hit ratio.

2.2 Hit ratio and Byte-Hit Ratio

The efficiency of a caching algorithm is often measured by
the hit ratio or byte-hit ratio (byte ratio) of the cache. The
hit ratio is the number of cache hits divided by the total
number of requests for objects. The following equation gives
the hit ratio:

number of requesls served from the cache

(3)

The byte ratic is the number of bytes transfered over the

hit ratio =
tolal number of requests

number of byte requested, that is, it represents how much
bandwidth the cache is saving. The usual way to compute
the byte ratio is as follows:

total size of objecls serwviced via cuche Ml,(4)

byte ratio = - -
4 tolal size of requesied objecls

3. Response-Delay-Time Algorithms

3.1 The Basic Algorithm

The time a client has to wait to receive its requested data is

called the response-delay time. With a response-delay-based
caching algorithm, objects are saved in the cache according
to the time taken to fetch the objects from their original lo-
cations to the client browsers. The object with the longest
such time is saved at the top of the cache, while that with
‘the shortest time is saved at the bottom of the cache; re-
placement occurs from the bottom of the cache. We call this
caching algorithm the basic response-delay-time-based algo-
rithm.

3.2 Accumulative Algorithm

We may also consider the number of object requests in ad-
dition to the response-delay time of the object in either of
two ways. One way is to consider the number of requests as
a second criterion, while the other is to multiply the number
of requests by the length of response-delay time and then use
the resulting value to judge whether or not the objects should
be saved. The reason for this is explained in the following
discussion: ‘

The efficiency of the algorithm is measured by the total
time that clients have to wait to receive responses. The total
response-delay time is computed for each request and ap-
plied so that those objects with large response-delay times
are cached, while those with short response-delay times are
replaced, to be fetched again when they are requested. Tak-
ing the number of requests for each object into consideration
increases the efficiency of the algorithm. Consider the fol-
lowing example:

Example: Table 1 shows requests over a period of time:

1 Some requests over a period of time(all values are time in

sec)
Object No. Response-Délhjp. of Re- | Accumulative R¢sponse-
Time (t) quests (n) | Delay {txn)

0, 20 5 100

(e 10 17 70

03 8 9 72

04 7 . 20 140

05 4 5 20

06 2 35 70

An object will be placed in the cache until it is full; sup-
pose the entry of O fills the cache. At that time, the objects
will have been placed in the cache in order of response-delay
time, that is, Oy, 02,03, 04, and Os, in that order, are in
the cache.

When Og is requested it will not be placed in the cache
because its response-delay time is shorter; it will thus be
fetched every time it is requested. Table 1 also contains the
accumulative response-delay times, which are the multiples
of the number of requests and the response-delay times for

the respective objects. Note that, with the accumulative

response-delay (1 n) as the criterion, Os will be replaced by
Og and the total response-delay time will be reduced by the
difference between the total time needed to fetch Og and the
total time needed to fetch Os, that is, 70 — 20 = 30 seconds.

Taking the number of requests for each object into account
thus keeps the total response-delay time reduced, that is, it
increases the efficiency of the algorithm; this approach also
leads to increased hit and byte ratios, because objects that
are more frequently requested are more likely to be kept in
the cache.

This scheme assigns a field that contains the multiple of
the number of requests and the response-delay time for each
object in the cache. This field is updated each time the ob-
ject is requested, and the sorting of objects in the cache is
according to the values in this field. The object with the
largest accumulative value will be at the top of the cache
while that with the smallest value will be at the bottom,
and will be replaced first. We call this caching algorithm the
accumulative algorithm.

Algorithm(Accumulative algorithm)

While there is a request, the algorithm checks whether the
requested object is placed in the cache. If it is placed at
the cache then it increases the number of requests, conducts
the multiple of the number of requests by the fetching time.
Then add the result to the total response time, and it resorts
the objects in the cache according to the descending order
of the calues. But if the requested object is not in the cache
then it adds the fetching time to the total response time and
checks whether to cache the object. If it is to be cached then
it checks for enough space, otherwise it replaces the object,
and (last) resort the cache.

Inpnt: objects O; from clients.
Output: object fetching time /;, the number of requests
n;, the multiple p; of {; by n;, total response time 7. The
cache contains objects sorted in the descending order of the
multiple p;.
0. T=0
While { there is O;){
1. if O: is in the cache then
n; ++,
P = 0% g,
T+ =pi,
resort according to p;;
2. if O, is not in the cache
T+ =1,
if »;# 4 > n L of last object in the cache then
if space is enough then
cache O;
else

replace O;;

resort according to ps;

end.
4. The Experimental Environment

The log files of today’s proxy servers, such as the Squid
and Netscape systems, indicate the time spent on each re-
quest [3]. This is, of course, useful in terms of finding out
how long clients are waiting to receive the data they have
requested. Our study and experiments carried out on a Pen-
tium 3 PC, running version 4.4 of the freeBSD operating
system, using a Squid[8] proxy server to generate log files,
and algorithms implemented in the C language. We needed
to generate a log file instead of using an existing one, such as
the Berkeley log flé¥Y | or the log file of the DEC research
center®? is that those log files, for security reasons, do not
include the complete requested URLs. We need the com-
plete URLs to, generate lists that include the response-delay
time for each request in a specific period of time for reference
when requests are received.

We chose Squid software because it is free software, works
under the Unix operating system, is high-speed, and logs the
time needed to fetch each request. Squid acts as an agent,
accepting requests from clients such as browsers and passing
them to appropriate Internet servers [11].

We thus downloaded squid 2.4 [10], installed and config-
ured it on our PC, and connected the computers of our lab-
oratory to the resulting Squid-based server. We used a pro-
gram called client, the execution of which with Squid soft-
ware is supported, to fetch requests for access reissue them,
thus &enerating requests for repeated access.

The creation and use of the log file were according to the
following steps.

Step 1: Installing the Squid software on the PC and con-
necting an other computer, which runs the browser iCab, to
the PC. This is shown in Figure 1.

Step 2: Extracting a file that contains unique URLs and the
download times for the information at those locations from
the log files generated by squid, as is shown in Figure 2.
Step 3:
the generated log file and read the corresponding download

The replacement algorithms read the requests from
times from the extracted file when the object is not in the
cache, as is shown in Figure 3.

5. Experiments and Results

The log file of URLs accessed we generated over one month

contains 459452 requests, the total size of the objects is

(¥#1) : http://www.cs berkeley.edu/logs /http/
(32) : ftp:/ /ftp. digital.com/pub/DEC /traces/proxy/

e

squid

proxy nternet
server

Log file

1 Creating the log file (step 1).

icab, Lynx
Browsers

Extracted
log file
extract unique URL,
Log file download
requests with time

download times

2 Creating the log file (step 2).

(Log file }__.l Algorithm }___.(Cache)

Extracted
log file

[3 Creating the log file (step 3).

3880998 Kbytes. Figure 4 shows the number of objects which
are in set intervals of object size in the range np to 32 Kbytes,
with the rightmost nnmber indicating all objects in the range

greater than 32 Kbytes.

<8000 Number o objocts o 5o inlervals ——

160000

140000

120000

100000

80000

Number of objocts

80000 4

40000

20000 /

15 2
Object sizelKEyls

Bl 4 The numbers of downloaded objects in intervals of object

size.

5.1 The whole Log File

In this experiment, we used the gemerated log file, and
compare the resnlts of onr algorithms that cache according
to response-delay time with the results for SIZE, LFU, T.RU,
and FIFO.

The results of this experiment show that the algorithm
that raches according to response-delay time alone achieves
the best result of any of the algorithms for total response-
delay time (see Figure 5). We note that in Figure 5 the cache
size affects the total response-delay time, that is, when the
cache size is increased the total response-delay time falls.

We also condncted experiments on the hit and byte ratios.

The response-delay-based caching algorithm achieved a very

300000

250000 ;- _

200000

Time{sec)

50000

0 50 80 100 120 140
cache size/Mbyte

B 5 Comparing the total response-delay time for all algorithms

on different cache sizes.

poor result for hit ratio, while the accnmulative algorithm
achieved both high hit ratios and low response-delay times.

The results for hit ratio are given in Figure 6.

‘ccmutaion ——
sze
09k iy 4

fifo
response.fime done

Hi Ratio

4 60 80 100 120 140 160 180 200
cache szelvbyla

Bl6é Comparing the hit ratio for all algorithms on different cache

sizes.

Figure 7 shows the resnlts for normalized response-delay
time T/RN with different cache sizes, where T is the
response-delay time, R is the hit ratio, and N is the total
number of requests. Figure 8 is the inverse of Figure 7, that
is, the results for inverse of the normalized response-delay

time across cache size.

pu—

accumuidy

E]

rasponse_time a;

a0 €0 80 160 120 140 160 180 200
cachs szabyte

Bl 7 Thenormalized response-delay time for all algorithms using
the whole file.

5.2 Objects between 0 and 4 Khytes
In this experiment, we extracted the log entries for ob-

jects of size between (0 and 4 Kbytes to a separate file, and

Bocumulation
Size

i
I

ffo
response_time alone

RNIT (tsec)

0 0 80 100 120 140 160 8 200
cache sizeMbyle

& 8 The inverse normalized response-delay time for all algo-

rithms using the whole file.

then carried out the same experiments on this file as were
done for all of the data in the previous section, 5.1. Fignre
9 shows the total response-delay time for each of the algo-
rithms, this resnlt is the same whether the cache size is equal
to or greater than 60 Mbytes, becanse of the smallness of the
objects. When cache size is 40 Mbytes, however, the algo-
rithm that caches only according to the response-delay time

still achieves the best results. The results for hit ratio are

Taocumulafion —+—
Size —-

15500 %

15000

Time(sac)

14500 4

14000 L i
0 60 60 100 126 140 150 180 200

cache szeMbyte

B 9 Comparing the total response-delay times for objects with
sizes between 0 and 4 Kbytes.

shown in Figure 10.

‘accumulation —+—
Sze

o -
response_fime alone -

hitratio

0 60) 100 120 140 160 180 200
cache sizeiMbyte

X 10 Comparing the hit ratios for objects with sizes between 0
and 4 Kbytes.

The normalized response-delay times T/RN for caches

with various sizes are shown in Figure 11.

aocumulation
size

[
I

097

i
fesponse_tims dons -5

TRN (sec)

4 50 80 100 140 160 180 200

120
cache sizeMbye

BJ 11 The normalized response-delay times for objects with sizes
between 0 and 4 Kbytes.

5.3 Objects larger than 4 Kbytes

We extracted the log entries for objects that are larger
than 4 Kbytes to a separate file, and then carried out the
same experiments on this file as were done for all of the
data in Section 5.1. With any cache size, our response-
delay-based caching algorithm achieves the best result for
response-defay time in this case, with the accnmulative al-
gorithm second-best, as is shown in Figure 12. The results
for hit ratio are shown in Figure 13, where the accumulative
algorithm achieves a high hit ratio. The results for normal-
ized response-delay times T/ RN for different cache sizes are
shown in Figure 14, and Figure 15 is the graph for inverse
time.

In Figure 12, we see that when the cache size increases
the total response-delay time decrveases. In Figure 14, we
see that the normalized response-delay time decreases as the
cache size increases. Fignre 14 shows that the normalized
response-delay time of the accnmulation algorithm is best
when the cache size is equal to or greater than 80 Mbytes.
The accumnlative algorithm is better than the LFU and I.RU
by 18% and 20%, respectively, when the cache size is 200

Mbytes.

‘accumulation —r—
180000 |7 sz

i
i

fif
respanse_time dons

140000

Timefsec)

120000

100000

80000

w E) B0 00 20 140 760 80 200
cache sizeMbyle

Comparing the total response-delay times for large objects

with all algorithms and across various cache sizes.

Bocumiation
size

iy
i -
i

[
Qg | response_ima alor

i ralio

0 0 80 100 40 160 80 200

P
o czomye
& 13

Comparing the hit ratio using large objects for all algo-

rithms on different cache sizes.

TRN (sec)

4) 80 100 120 140 160 180 200
cache sizaMoyte

B 14 The normalized response-delay time for large objects.

ccumuation ——
Size

o
g

o =
fesponse_time alona o«

RN (1f500)

))) 100 120 140 160 80 200
cache sizeMbyle

X5

The inverse normalized response-delay time using large ob-

jects.

6. Discussion and Analysis

Consider the following symbols:

e T total response-delay time

o C: cache size

e V' available cache size

m: mumber of ohjects in the cache
A: a set of the objects in the cache
o M: number of requested objects
N: number of all requests

O;: object 1

s n;: number of requests for object 2

o t;: download time for object 1

e S;: size of object 1
e R: hit ratio
o let O1,0,..

Since the total size of the objects in the cache is less than or

., Oy, be objects in the cache

equal to the cache size, we can write:

"

Zs,- <c (5)

Tet the initial values for A «— {¢}, V «— C and m — 0,
every time a new object O;, where m+1 < 7 < M, is placed

in the cache, the following equations hold:
Ve—V-35 (6)
memil, V2,)

A—A+{0;} (8)

When an existing object O; leaves the cache, the following

eqnations hold:

V—V4+5; (9)
me—m-—1, V<5; (10)
A A— {0} (1)

The objects in the cache for the basic algorithm Apasic are
sorted such that:

2t 1Si<m—1 (12)

When a new object O; is requested, if V < S; and t; > ¢,
then O, leaves the cache until V' = S;, at that time O; is
placed in the cache.

While the objects in the cache for accnmulative algerithm

Aace are sorted such that:

ting 2 tiganiga, 151 m—1 (13)

When a new object O, is requested, if V < §; and
t;ni > tyny, then Oy, leaves the cache until V2 5;, at
that time Oj is placed in the cache.

We can see that the set Apqasic of objects in the cache for
the basic algorithm differs from the set A for the accnmn-
lative algorithm from equations (12) and (13), respectively,
which leads to the difference in the total response delay times
and the hit ratio for both algorithms.

The following formula represent the total response delay
times for objects not placed in the cache, i,e., they must be

fetched each time they are requested:

1%
T= Zt” O; ¢ cache

i=1

An ohject O; with large ¢; is placed in the cache and when
requested again its fetching time is not added to T, so T is
a summation of small #; which leads to small 7.

Since nsers do not like to wait for slow objects, then ob-
jects with large ¢; are not requested so many times and they
are not almost served from the cache. Recall the computa-
tion of the hit ratio from equation (3}, if n; is small, then
the hit ratio is low. If objects with large n; are placed in the
cache then the hit ratio is increased.

For the basic algorithm, objects with long ¢; and small n;
are placed in the cache, that achieves low total response delay
times and low hit ratio. While for accumulative algorithm,
objects with long t; and large n; are placed in the cache be-
cause of the consideration of i;n;, which achieves low total
response delay times and high hit ratio.

The following equations compute the total response-delay
times for all requested objects, when the basic and accumn-

lative algorithms, respectively:

M Mpasic

Thasic = Z nit; + Z ti+ a3 (14)
=1

= rnpasict
where 8y 28 2 ... 2ty i 2 bl 2 .02 2 Eurs

M Mgec

Tace = Z niti + Z ti + a2 (15)
=1

i=rrigoet1

2

TMace =

naty = ... 2

where m1ty =2 Mrrig oot
Nsngeotlbmaeetl = --- 2 numin, and oy, az are the initial

download time deviation.
7. Conclusion

In this study, we have taken the time that users have to
wait to receive the data they request into account in a scheme
for caching where objects are replaced on the basis of ob-
ject response-delay time to shorten the user waits as short as
possible. Experimental results show that the response-delay-
based caching algorithm is the best algorithm for reducing
the waiting times, that is, it shortens the times clients have to
wait to receive the data they request by as much as possible.
The factor we consider in the accumulative algorithm is the
multiple of the number of requests and the response-delay
times for the respective objects, and the results show that
using this multiple improves on the efficiency of onr basic al-
gorithm. The accnmulative algorithm which we introduced
increases the hit and byte ratios above the valunes for the
basic algorithm and better results than any algorithm other
than the basic algorithm for total response-delay time.

We intend to look for another factor or factors that can
achieve hetter results further, shortening response-delay time

in addition to achieving higher hit and byte ratios. We need

further experiments and study to prove the effect of the oh-
Jject size on the total response-delay time and find the cor-
responding relation. We are also going to analyze the total
response-delay times Thasie and Ty for Equations (14), (15),

respectively:

Acknowledgment,
We wonld like to thank Professor Yasnhiro Ohtaki and
Shusuke Okamoto of Ibaraki University for their opinions,

and for the ideas and help they gave nsing this study.

X m

[1]. A. Chankhunthod and P. B. Danzing, “A Hierarchal Inter-
net Object Cache,” Hervest Cache Project, Nov. 1995.

2] S. Williams, M. Abrams, C. R. Standridge, G. Abdulla,
and E. A. Fox, “Removal Policies in Network Cache for
World-Wide Web Documents,” Computer Communication
Review, ACM SIGCOMM, vol.26, No.4, Oct. 1996.

[3] A. TLuotonen, Web Proxy Server, Prentice-Holl, 1998.

[4] P. Cao, S. Irani, “Cost-Aware WWW Proxy Caching Al-
gorithms,” Proc. of the USENIX Symposium on Internet
Technologies and Systems, Dec. 1997.

[5] D. Wessels, Web Caching, O’Reilly, 2001.

[6] A.Toutonen and K. Altis, “World-wide web proxies.” Pre-
liminary Proc. of the First Int'l World Wide Web Conf.,
Apr. 1994.

[7] M. Abrams, C. R. Standridge, G. Abdulla, S. Williams, E.
A. Fox, “Caching Proxies: T.imitations and Potentials” at
http://ei.cs.vt.edu/ succeed/www4 /www4.html

[8] “Squid: A User’s Guide” at http:// squid-docs.sourceforge net /latest /html/c23. htm

[9] R. P. Wooster, Marc Abrams, “Proxy Caching That Esti-
mates Page-Toad Delays,” Proc. of 6th Int’l World Wide
Web Conf., April, 1997.

[0} http://www.squid-cache.org/ Versions /v2/2.4/

[11] http://squid-docs.sourceforge net /latest /html/

[12] D. A. Menasce, V. A. F. Almeida, Capacity Planning for
Web Performance, Metrics, Models, and Methods, Prentice
Hall, 1998.

[13] D. E. Commer, Internetworking with TCP/IP, Prentice-
Hall, 2000.

