thEEA ERAEES BIREwE
IPSJ SIG Technical Report

2003-QA I -8 (9
200377

DoS WEIZxid % DNS H—/\OEIRHE R
HE R CEREREY R R B TR Hal

DNS (RAALVEYRAT L) RHENIC DoS (U—Y AESE) HBOWNKICKE->TWVWS, DNS F7—4%
NR— AR LEERODDELDIC UDP %> T3 7z8, DNS ¥—/3% UDP /3y MEREZE DR L TH
5C L RABICTES, RFSCTIE. 1 DoS WBICH T % DNS ¥— 17055 LOFHERNEIRIHER
FEFO., BARBEATTH— AR 0S DX S BEEERTIEIHET 5,

Resource Consumption Analysis of DNS Servers against
DoS attacks

Kenji Rikitake*, Fumiaki Sugaya*, Koji Nakao*, Hiroki Nogawa* and Shinji Shimojo*

DNS (Domain Name System) servers have persistently been a target of DoS (Denial-of-Service) attacks.
Since DNS uses UDP for the database lookup and result exchange, targeting DNS servers by repetitive UDP
packet generation is highly feasible. In this paper, we perform a computational resource consumption analysis
of DNS server software programs against simulated DoS$ attacks, and evaluate how the server and the operating
system behave under the different types of conditions.

Keywords: Internet, DNS, Security, System Performance, Denial-of-Service Attacks

1 Introduction

DNS (Domain Name System) [1, 2] is one of the
most critical subsystems of the IP (Internet Pro-
tocol) Suite. DNS defines the mapping between
the domain names and various resources includ-
ing IP addresses and MX (Mail eXchanger) host
names. Looking up the DNS is mandatory for
a Web browser to find out the IP address of the
server. Mail transfer agents find out the destina-
tion agent by looking up the DNS for the MX RRs
(Resource Records) of the destination domain.

* RBRAZREBRIEERFI AR

Graduate School of Information Science and Technology,
Osaka University
rikitake@ist.osaka-u.ac.jp

¥ (M) KDDI Bigeht

KDDI R&D Laboratories, Inc.

{kenji, fsugaya, nakao}@kddilabs. jp

* KBRS AN AT T B —

Cybermedia Center, Osaka University

{nogawa, shimojo}@cmc.osaka-u.ac.jp

DNS database lookup is mostly performed over
UDP (User Datagram Protocol) [3]. The UDP is
chosen since in most cases each query request and
reply is fit into a single packet since the size of ex-
changed data between DNS servers and clients is
small (£ 512 bytes), and to keep the server over-
head low.

Most DNS servers also support the lookup over
TCP (Transmission Control Protocol) [4]. On a
DNS lookup, however, TCP is currently only used
for exchanging larger data exceeding 512 bytes,
since it has the overhead of making and breaking
the connections and maintaining the state inside
each host.

The DNS dependency of UDP causes an ad-
ministrative issue when to manage a globally-
accessible Internet system, such as a gateway ex-
posed to the global Internet, since the system is
prone to UDP-based DoS attacks targeted at the
DNS server. When a host runs a DNS server
for providing publicly-accessible domain data, the

/* the UDP socket descriptor */
int s;
/* number of packets

between usleep()s */
int num;
/* UDP payload data content */
char *p;
/* UDP payload data length */
int size;

for () {

/* a small-time pause for
the packet rate control,
not required for flooding */

usleep(1);
/* looping for DoS */
for (i = 0; i < num; i++) {
/* sending a UDP packet */
send(s, p, size, 0);

}

}

Fig. 1 A Simple C Code of UDP DoS

TCP and UDP Port 53 must be left open for the
public access. Leaving a UDP port open to the In-
ternet means that the open port can be exploited
for a DoS (Denial-of-Service) attack, since gener-
ating a UDP packet stream is a trivial task for the
attackers.

In this paper, the authors first explain how a DoS
attack using UDP can be performed in Section 2,
and analyze the behavior of an OS (Operating Sys-
tem) on handling a large-volume UDP traffic in
Section 3. We describe the issues of UDP han-
dling on DNS servers in Section 4, and conclude
the paper in Section 5.

2 UDP DoS Attacks

DoS attacks are one of the most popular forms
of security attacks performed over Internet links.
UDP packets, as well as the ICMP (Internet Con-
trol Message Protocol) [5] packets, are popular for
DoS attacks for the following reasons:

¢ For an effective DoS attack the packets should
be generated and transferred as fast as possi-
ble. Since UDP is a connection-less protocol,
the attacker does not need to wait for the con-

Host CPU Clock | Memory
name type speed size
(MHz) | (Mbytes)
Host A Pentium 200 128
HostB Celeron 1300 512
Host C || Pentium IIT 1200 256
(Mobile)

(All hosts run FreeBSD 4.8-RELEASE)

Table 1 Specification of Hosts for The Experiments

Host Gen. | Acc.

name || rate’ | rate*
HostA || 10.9 | 184
Host B 154 114
Host C 157 123
(unit: kilopackets/sec)

fusing localhost interface
*receiving through a 100BASE-TX Ethernet switch

Table 2 Zero-Payload UDP Packet Maximum Gener-
ation and Acceptance Rates

nections to be established.

e The received UDP packets must immediately
be forwarded to the listening server program.
The server must determine the action to take
for each packet, so the processing power is al-
ways consumed for each UDP packet. Even
if the server does not exist, the UDP header
must be processed by the protocol stack to de-
termine whether to discard the payload or not.

e When performing a DDoS (Distributed DoS)
attack, coordinating the attacker hosts is the
overhead for the attacker. For UDP applica-
tions, the attacker does not need to synchro-
nize with each other, since each UDP packet
consists a complete message and instruction
for the target server.

Figure 1 is an example of simplified C code of
performing DoS for the FreeBSD OS, excerpted
from a publicly-available source code [6]. It in-
finitely repeats the send() system call, while
periodically pausing by the usleep() system
call. Thanks to the recent processing perfor-
mance improvement of computers, a recent i386-
architecture PC can generate enough traffic to par-
alyze an old PC by such a simple code.

3 0OS Handling Overhead of UDP

We performed a simple experiment to measure
the maximum UDP receiving performance of each
PC host shown in Table 1 by using the code
shown in Fig. 1. These hosts run FreeBSD 4.8-
RELEASE as the OS, and are directly connected
to a 100BASE-TX switch, so the switch is the only
device between the hosts.

Table 2 shows the results of the UDP zero-
payload (i.e., the corresponding IP packet size
= 28 bytes) packet generation using the local-
host network interface, and the maximum num-
ber of accepted packets by the kernel through a
100BASE-TX FEthernet interface. All hosts listed
in Table 2 showed the system CPU time percentage
rate of 85 ~ 90 while accepting the UDP traffics.

The number of UDP packets received were mea-
sured through the output of function badport_
bandlim() in the FreeBSD 4.8-RELEASE ker-
nel source code file /sys/netinet/ip_icmp.c,
which reports the number of ICMP-unreachable
events per second. During the experiments, the
events were caused by UDP packets sent to a UDP
port which does not have the listening process [7],
so the reported number equals to the number of
UDP packets per second accepted by the kernel.

Note that the maximum packet forward-
ing rate of the 100BASE-TX switch was
~149kpackets/sec, so the switch does not af-
fect much to the packet transfer between the
hosts. We also tested a cross-cable connection
between the Host B and C, but we only observed
the maximum packet rate from Host C to B was
~50kpackets/sec, while that from Host B to C was
~84kpackets/sec, much smaller than the rates with
the 100BASE-TX switch.

We have found that DoS attack can be performed
even by using a more complex programming lan-
guage, such as Perl. We observed that the number
of packet generated by a Perl 5 code equivalent
to that shown in Fig. 1 was about 30 ~ 35 per-
cent of that in the C code. Using the Perl code,
a DoS attack from Host B to Host A was effec-
tively performed with the tranmission packet rate
of ~45kpackets/sec.

g

T T T
log written on ATA/33 disk ——
log wrilten on memory file system -+

g

4000 E

2000 - 7

rate of processed packets (packets/sec)

0] L L 1 I3 |
0 10000 20000 30000 40000 50000 60000 70000
rate of packets sent to the host (packets/sec)

Fig. 2 Performance of tinydns against UDP DoS Packets

4 UDP Performance of A DNS Server

While the OS overhead of UDP handling is sig-
nificant on evaluating DoS effectiveness [8], pro-
filing actual DNS server under the DoS conditions
is essential to find out the weakness inside.

A DNS server program must process each UDP
packet, so the number of processed packet cor-
responds to the performance of the program.
We tested the tinydns program, a UDP non-
recursive DNS query server in a popular DNS soft-
ware djbdns [9], with the default compile option
(gcc -02).

DoS packets for the tests were generated by the
code of Fig. 1, and the packets were sent from Host
B to Host C, which the tinydns was running.

We tested in two cases, one for logging into a file
system on an ATA/33 disk, the other for logging
into an asynchronous MFS (Memory File System),
to evaluate how the storage performance affects the
overall performance.

Figure 2 shows that after reaching the perfor-
mance limit, the overall performance slightly de-
creased as the processing overhead of incoming
packets increased. We also found that the logging
file system did not affect on the processing perfor-
mance.

tinydns logs a report of each UDP request us-
ing multilog, a general-purpose logging tool of
daemontools [10]. Fig. 3 and Fig. 4 show the
CPU usage, observed from the top command re-
sults, for each program and the total of the two pro-
grams. '

Figure 3 shows that the CPU usage increased
even after it reached the processing limit.. The

70
' ' ! inydns fo: ATA/33 (hsk -—0‘—
mululug Ioggmg tc ATA/ 3 disk -
60 or MES --8-- |
mulfj] logl g 1 MFS X' .
. 50 -
g
g aop .
& IR
g 30 x E
=]
& 20 - . i
X e
R %o/
or p B
0 Y o TR I TUPPe L
0 10000 20000 30000 40000 50000 60000 70000
rate of packets sent to the host (packets/sec)
Fig. 3 Per-process CPU Usage of tinydns and

multilog programs

T
' i lmydns+mululoé for ATA/33 ~—0—

100 | . tinydns+mulfilog for MFS -+

80 |- .
g
2
g el E
&%
g
El
E 0r B
3] B

¥
20 =
e 1
0 10000 20000 30000 40000 50000 60000 70000

rate of packets sent to the host (packets/sec)

Fi

g.4 Total CPU Usage of tinydns and multilog
programs

usage of tinydns was always larger than that of
multilog.

Figure 4 shows that the total CPU usage in the
case of the file system on the ATA/33 disk rapidly
increased after the incoming packet rate of 25000
packets/sec, while the usage in the MFS case was
rather proportional to the overall processed pack-
ets. We suspect the device access latency of the
ATA/33 disk contributes to the difference of be-
havior.

5 Conclusions and Further Works

In this paper, we presented a simple DoS-
generation program is effective to paralyze other
hosts. We also evaluated the behavior of a DNS
server program by the CPU usage and the response
rate against the zero-payload UDP DoS packets.

We need to consider the following issues for the
further works:

o Establishing more accurate and easy-to-

measure metrics for the processing resource
usage (since we cannot use a profiler such as
gprof for a daemon program);

o Testing against DNS query packets which ac-
tually have valid meanings (i.e., valid RRs) to
find the effective DoS patterns;

o Locating the real bottleneck for increasing
processing performance of a DNS server by
detailed profiling.

DNS server and resolver functionalities are in-
cluded in not only on the computer hosts but also
on the embedded hardware products such as the
broadband routers. The further analysis and devel-
opment of countermeasure against DoS attacks is
essential to improve the overall DNS security.

Acknowledgements

Our thanks go to Mr. Tohru Asami, the prési—
dent and CEO of KDDI R&D Laboratories, Inc.,
for supporting our research activities.

References

[1] Mockapetris, P. V.: Domain names — con-
cepts and facilities (1987). RFC1034 (also
STD13).

[2] Mockapetris, P. V.. Domain names -
implementation and specification (1987).
RFC1035 (also STD13).

[3] Postel, J.: User Datagram Protocol (1980).
RFC768 (also STD6).

[4] Postel, J.: Transmission Control Protocol
(1981). RFC793 (also STD7).

[5] Postel, J.: Internet Control Message Protocol
(1981). RFC792 (also STDS).

[6] STACKD: std.c. http://
packetstormsecurity.nl/groups/
ldm/std.c.

[7]1 Wright, G. R. and Stevens, W. R.: TCF/IP Ii-
lustrated, Volume 2, Addison—Wesley (1995).
[8] Otsuka, T.: Computational Resource Con-
sumption of BIND against DoS, Technical re-
port, Faculty of Engineering, Osaka Univer-
sity (2003). Graduation Research Report for
the Bachelor’s degree.
[91 Bemnstein, D. J.: djbdns. http://cr.yp.
to/djbdns.html.
[10] Bemnstein, D. J.: daemontools.
cr.yp.to/daemontools.html.

http://

__54_

