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Abstract As a part of a trust management architecture in ubiquitous environments, we propose an inference method for user
presence based on an extended version of the hidden Markov model (HMM). The presence inference engine based on HMM
complements incomplete sensor signals and provides a trust management engine with user presence and its confidence level.
To provide a more refined stochastic model, we also use time intervals and user schedules as observable variables, and we
introduce micro states to represent time durations in a certain place. The experimental results show that the proposed method

improves the precision of user presence detected by the sensor system.
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1. Introduction

Trust management provides not only a user authentication
method based on public-key infrastructure (PKI) instead of
password authentication, but it also offers a flexible and sys-
tematic method for assigning roles, capabilities, or authoriza-
tions to a user the system doesn’t recognize. Specifically,
context information, including user presence, is crucial for
the system when deciding whether to permit a user access to
the system’s resources, and what kind of service the system
should provide for the user.

In this paper. we propose an inference method for user
presence based on the hidden Markov model (HMM). The
presence inference engine complements incomplete sensor
signals and provides a trust management engine with user
presence and its confidence level (i.e. the probability that
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the user may be in that position). In this architecture, we
can make a trust management policy depending on the con-
fidence level of user presence; e.g.. user A can access the
LAN when with a certain confidence A seems to be with a
full-time employee in the same room.

To provide a more refined stochastic model, we use not
only sensor signals but also time intervals and user sched-
ules as observable variables. and we introduce micro states
to represent time duration in a certain place. We numerically
evaluated the prediction power of the presence inference en-
gine using human subjects with RFID tags. The proposed
method resulted in better precision than a few methods in-
cluding the sensor subsystem itself and HMM without micro
states.

Based on the proposed method of presence estimation,
we implemented a prototype system that performs access
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Fig. 1 Architecture of trust management system

controls for connection services in an office computer net-
work [5] (Fig. 1).

Related work Inferences of user presence based on
Bayesian models have been studied. SmartMoveX[3] is a
system based on HMM. The Bayesian filter[1] is a general
temporal model that includes HMM, and in which the state
space can be continuous. Our model is an HMM augmented
with extra variables and is not an instance of Bayesian filters
but an instance of the dynamic Bayesian networks (DBN).
Patterson et al. [4] used a DBN for GPS-based presence in-
ference. Since they were motivated by an outdoor applica-
tion, their model is quite different from ours.

CSAC [2] is an approach similar to ours; a service provider
determines whether a service request is accepted based on in-
formation given by a context provider. They implemented a
service portal for train travelers. Our model is more general
than CSAC in that context parameters are freely introduced
in a policy since our policy language is based on first-order
logic.

2. Presence Inference Engine

The basic design of our stochastic model is as follows.
User’s (real) presence at a time instance is a random vari-
able over a given set of positions (e.g. {office, meeting_room,
cafeteria. home}). While the real presence is not observ-
able, information that correlates to the presence (e.g. sen-
sor signals, user’s schedule, and current time) is observable.
Moreover, the real presence changes as time goes on, and the
current presence correlates to the previous presence. These
correlations, depicted by Fig. 2, form a kind of the hidden
Markov model (HMM). Below, we briefly review the defini-
tion of HMM, and present an extension of HMM for inferring
auser’s presence using time intervals and the user’s schedule
as well as sensor signals.

2.1 Hidden Markov model (HMM)

HMM is a stochastic model that has a similar structure to
finite state machines. Formally, HMM is a 5-tuple M =
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Fig. 2 Probability model for presence inference
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(S,T,0,¢,I) where:

e Sisa finite set of states.

e Tisafinite set of output symbols.

® §:85 xS — R, where R is the set of real numbers.
is state transition probability distribution.

®  ¢:S x T — Risoutput probability distribution.

e [:S — Risinitial state distribution.

We sometimes use the random variable 7, that denotes the
state of the model at a time instance ¢.

Posterior probability p,(t) = Pr(m = s|x1...x¢) is the
probability that the model is in state s at time instance ¢ given
that a sequence 122 ...x¢y € T (where T is the Kleene
closure of T') is observed. The probability p,(t) can be com-
puted using the following equations.

fs(t) = P!‘(.’I;l ..
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2.2 Duration distribution and micro states

In the above-mentioned definition, the length of a stay in
the same state follows a geometric distribution. However,
when we use HMM to infer a user’s presence, it may be un-
natural to assume that the probability that will user stay in a
room (e.g. a meeting room) for 3 minutes is greater than the
probability that he or she will stay there for one hour.

The use of micro states is a simple approach for represent-
ing a hill-shaped duration distribution. For each position [,
we assign a subset of states to [, and consider that a user
is in | whenever the model is in any member of the subset
(Fig. 3). We call the subset and each member of the subset a



macro state and a micro state, respectively. A macro state is
defined by two parameters: the number r of micro states and
the probability p of the self loop in every micro state. The
probability Pr(d; = k) that the model stays in the macro
state [ for k time instances follows a negative binomial dis-
tribution.

2.3 State transition probability distribution for pres-

ence inference

As shown in Fig. 2, the state 7, at time ¢ is decided based
on the state m;—, at the previous time instance as well as
the current period y; and the scheduled plan 2;. Thus, the
state transition probability distribution should be given by the
conditional probability Pr(m; | m;—1, yt, 2¢) for each quadru-
ple (m¢, me—1, Yt 2¢). However, the size of the domain of the
quadruple is very large for practical applications. Instead,
we introduce a method for compounding independently de-
fined probabilities Pr(m; | m¢—1). Pr(me | y¢), and Pr(m, | 2;)
into one probability Pr(m | 7:—1, yt, 2¢) using the following

equation, where « and 3 are given weights.

Pr(m | mi—1.t, z2¢) = a Pr(my | m—1) + BPr(me | yt)
+ (1 —a=p)Pr(m | z),
0<a. 0<f8 a+f<1.

3. Experiments

We conducted a number of experiments to investigate the
precision of the output of the presence inference engine. The
following two sets of observation sequences were recorded
and used as input for the presence inference engine. The for-
mer is concerned with investigating precision in detail while
the latter is concerned with investigation in a realistic setting.
Experiment 1. The sequence of sensor signals observed
when a subject was moving around in a building for about
30 minutes according to a predefined scenario.

Experiment 2. The sequence of sensor signals observed
when a subject performed his/her ordinary work for a single
day.

3.1 Measure of precision

Let N be the length of an observation sequence input into
the presence inference engine. Let s¢ = s182...sn be the
scquence of correct presences. We define the precision of
the output of the inference engine as (1| ps,(t))/N. In-
tuitively. the numerator represents the expected value of the
number of correct answers if we assume that the inference
engine chooses an arbitrary position s with probability p,(t)
for each time t. Divided by the length of the sequence, pre-
cision is normalized within a range of between 0 and 1.

3.2 Sensor system

The presence inference engine used in the experiments
works with an external sensor system using RFID tags. Each

subject is carrying an active RFID tag while moving through
a building. There are seven fixed sensors, roughly one per
room, on a single floor of the building. Each sensor receives
signals emitted by the RFID tags. The control computer
(or controller) of the sensor system replies with the ID of
the sensor that is receiving the signal from each tag. When
more than one sensor is receiving the signal, the controller
answers the one that is receiving the strongest radio wave
signal. When there are no sensors receiving the signal, the
controller answers “no signal.”

3.3 Design of HMM

The set of HMM output symbols are defined according to
the sensor system, i.e., it consists of the seven positions (or
rooms) where RFID sensors are placed and one special sym-
bol ‘no_signal.” The ranges of the other random variables are
defined as follows.

® positions (the range of 7;):

— Seven positions where the sensors are placed:
room_301, room_302, refresh_corner, lounge, office,
east_office, laboratory.

— Two positions where no sensor exists: hall, cafeteria.

— Three virtual positions: another_place_in_building,
out_of_building, home. The latter two positions are used only
in Experiment 2.

® Periods (the range of y;): AM, lunch, PM, off.

® Plans (the range of z;): meeting_at_room_301. meet-
ing_at_room_302, meeting_at_hall, no_plan.

After a one-hour discussion among a few of the authors,
we defined the HMM parameters Pr(m; | my—1), Pr(me | ye).
Pr(m | 2¢), and the mean y; and the standard deviation o of
the duration distribution so that the parameters would repre-
sent the behavior of an ordinary subject in the building.

The output probability Pr(z; | 7;) was also defined as fol-
lows. For each room [ where a sensor exists, we gave
a high probability (more than 0.9) to Pr(z; = l|m = 1)
and a low probability (less than or equal to 0.02) to any
other z; including ‘no_signal” However, room301 and
room_302 were adjacent and the probability that the sen-
sor system would answer the room opposite to the correct
one was not marginal. Hence, we gave a relatively high
probability (0.13) to Pr(z, = room_301 |7, = room_302)
and Pr(z; = room.302|7m; = room_301). We gave the
same treatment for the office and east_office. For each
place | where no sensor exists, we gave a high probability
to Pr(z; = nosignal | 7y = ) and a low probability to any
other 2.

The weights a and 8 in Sect. 2.3 are defined as o =
1/(l4+rge+rye)and B =15,/ (1+75.4+7 ) Where 75,4
and r, ; are ratios defined in the following way, i.e., we re-
gard the current period and the current plan as important



when it is lunch time or when some plan is specified.

10 if y; = lunch

10if pl
U ifye=off = | 0if# % no.plan

T =
prt 0 if z; = no_plan.

0 otherwise.

3.4 Experiment 1

3.4.1 Settings

We defined a scenario in which each subject moved
through several locations including the office, meeting room,
hall, and cafeteria within about 38 minutes. According to the
scenario, six subjects (named a to f) were moving together.
The output of the sensor system was recorded every six sec-
onds (0.1 minute). The length N of the input sequence for
each subject was 378.

Because the time spent at each position in the scenario was
much shorter than in ordinary behavior, we defined the dura-
tion distribution according to the scenario.

We defined the following two different schedules and per-
formed an analysis of precision for each schedule.

® exact: Each meeting is specified as taking as long as
the correct one.

® no_plan: No plan is specified in this schedule.

3.4.2 Result

For each above-mentioned schedule, we compared the pre-
cision of the following four inference methods:

® proposed: the output of the proposed HMM.

® no microstate:  the output of the proposed HMM
without micro states.

® sensor+schedule: the output of the sensor system
replaced the output symbol ‘no_signal’ according to the fol-
lowing rules.

— If the current position [ is specified in the schedule,
then replace ‘no_signal’ with [.

— Otherwise, replace ‘no_signal’ with ‘another_place_in
_building.’

We assumed that the posterior probability was 1 for the out-
put position and 0 for the other positions.

e sensor: the same as sensor—+schedule except that
‘no_signal’” was simply replaced with ‘another_place.in
_building.’

The results are summarized in Table 1. In each sched-
ule, the proposed method resulted in better precision than
the other methods used. In particular, when no plans were
specified in the schedule, the proposed method gave much
better precision than both the sensor and sensor+schedule
methods. This suggests that our method is robust against in-
correct schedules. which frequently appear in practice.

3.5 Experiment 2

On a single day, two subjects (the same as the subjects ¢
and d in Experiment 1) performed their ordinary work while

Table I Result of Experiment | Table 2 Result of Experiment 2

method average subject
exact schedule c d
proposed 0.786 proposed 0.788 0.842
no microstate 0.783 sensor+schedule | 0.723 0.796
sensor+schedule | 0.772 sensor 0.723  0.796

sensor 0.622

no-plan schedule

proposed 0.713
no microstate 0.685
sensor+schedule | 0.622
sensor 0.622

the output of the sensor system was recorded. Moreover, the
correct position at each time was recorded by each subject in
a notebook. The output of the sensor system was recorded
every minute, from morning till the subjects left the build-
ing (approximately eleven hours). The length N of the input
sequence was 700 and 642 for subjects ¢ and d, respectively.

The results are summarized in Table 2. The pro-
posed method resulted in better precision than sensor and
sensor+schedule. In this experiment, the precisions of sen-
sor and sensor+schedule were the same, because there were
no time instances during the experiment in which a plan was
specified and ‘no_signal’ was observed.

4. Conclusion

We proposed a method for user presence estimation for
presence-aware trust management in ubiquitous environ-
ments. Experimental results show that the proposed method
outperforms a few methods including the sensor subsystem
itself and HMM without micro states.
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