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Abstract =~ We present truncated differential cryptanalysis of the block cipher Twofish,
which is one of the five finalists for the Advanced Encryption Standard (AES). From our
experimental results, we found a 16-round truncated differential with probability of about
27573, One can expect to get one good pair following the truncated differential from 25!
chosen plaintexts, and there are a total of 277 such good pairs. We also found 5-round
truncated differentials which can be useful in distinguishing Twofish reduced to 5 rounds
from a random permutation. This was considered to be an open problem by Knudsen.
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1 Imtroduction

Twofish is a 128-bit block cipher proposed by Schneier et al. [SKW+98]. 1t is one of the
five finalists of AES, and it is used in many products such as GnuPG, SSH Secure Shell, and
so on [C99]. The best known attack on variants of Twofish claimed by the designers is an
impossible differential attack on 6-round Twofish [F99]. Recently Knudsen [K00] showed that
there are differentials for Twofish for up to 16 rounds, predicting at least 32 bits of nontrivial
information in every round. The probability of the truncated differentials are too small to
distinguish Twofish with more than a few rounds from a random permutation, but he claimed
that it is possible, at least in theory, to find one good pair of plaintexts following the differential
through all 16 rounds. Murphy and Robshaw [MR00] made some observations on key-dependent
S-boxes and differential cryptanalysis of Twofish. Their approach was to choose the S-box to fit
the differential characteristic, instead of choosing the differential characteristic to fit the S-box.
They found a 6-round differential characteristic which holds for a fraction of at least 2720 of the
S-boxes and claimed possible attacks of 8-round Twofish. Table 1 summarizes the known results
on cryptanalysis of Twofish.

In this paper we study truncated differential cryptanalysis of Twofish. The type of truncated
differentials to be used are “byte characteristics,” that is, the values of the difference in a byte are
distinguished between non-zero and zero, and the measure of difference is exclusive-or. Note that
Knudsen’s truncated differentials were based on the integer subtraction difference between two
32-bit words. By using byte wise characteristics instead, we can make a thorough investigation
of the non-uniformity in the distribution of the differences, which was left as an open question
by Knudsen [K00].

Twofish consists of both byte-oriented and non-byte-oriented operations as shown in Figure 1.
The non-byte-oriented operations include the 1-bit rotates, addition with subkeys, and PHT
(pseudo-Hadamard transform), which comprises of two additions modular 232. To search for
byte characteristics of Twofish, we begin by computing the truncated differential probability of
addition modular 2". Based on the efficient computation of differential probability of addition
modular 2™ shown in [M00], we give an efficient computation of truncated differential probability
of addition modular 2™ in Section 2. In Section 3, we consider truncated differential probability
of the MDS. Finally in Section 4 we present the truncated differentials that we found by computer
experiments.

2 Efficlent Computation of Truncated Differential Probabili-
ties of Addition Modular 27

In [MOO], an efficient algorithm was presented for computing differential probabilities of addition
mod 2". The algorithm can be extended to compute truncated differential probabilities of
addition of 27, but a straightforward extension to the case of truncated differentials can still
be computationally very expensive. In this section, we study how to further speed up the

round whitening key size cryptanalysis complexity conditions reference
4 w/ any  distinguishing attack [K00]
6 w/o 128 impossible differential 2128 [F99]
6 w/o 192 impossible differential 2160 [F99]
6 w/o 256  impossible differential 2192 [F99)
6 w/ 256 impossible differential 2256 [F99]
g* w/ any  differential attack — > 272 fraction [MROO]

of the S-boxes

Table 1: Twofish cryptanalysis
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Figure 1: Twofish

computation of truncated differential probabilities.

We will follow the definitions and notation in [M00], and here we will only restate some of
them if they are directly related to our discussion below.

For z,y, z € GF(2)", the function addition mod 2" is defined as follows:

fz,y) =z +y =2z (mod2").

We divide Az € GF(2)™ into ¢-bit sub-blocks and denote them by A:zg], Aa:gﬂ, ... from the
least significant sub-block. So

Ax = (Axm . Am{f], Ax([f]),

1"

where m = n/t is the number of sub-blocks.

A very efficient algorithm for computing differential probabilities of f (denoted by DP;(Az,
Ay, Az)) is given in [MO0O0]. For each triplet (Az, Ay, Az), the running time of the algorithm is
O(n)!, while a naive approach would require a running time of O(2?").

The truncated differential probabilities for f are defined as follows.

1
TDP(dx, by, 6z) = ~ Z DP¢(Az, Ay, Az), (1)
x(Ax, Ay, Az)=(dxz,0y,62)

where ¢ is the number of pairs (Az, Ay) satisfying the condition x(Az, Ay) = (dz,dy). Let
wy(z) denote the Hamming weight of . Then it is easy to see that

c= (2" - 1)w}i(5m)+wu(5y).

In a typical setting (e.g., byte characteristics), we have n = 32 and ¢ = 8. So the number
of possible truncated differentials is (2%/*)% = 2'2. Some of these truncated differentials may
bave a very large ¢ value. For example, when wy(dz) + wy(dy) > 6, we have ¢ > 2?8, There-
fore, computation of all truncated differential probabilities using Equation (1) can still be very
expensive, even when the differential probabilities themselves can be calculated efficiently.

'Later the complexity was further improved to ©(logn) in the worst-case and ©(1) in the average-case.
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2.1 Basic idea

The main idea for speeding up the computation of truncated differential probabilities is to treat
each sub-block somewhat independently. More specifically, we will first compute some properly
defined “partial sums of differential probabilities” for each sub-block ignoring the carry from
one sub-block to the next, and then we will join these probabilities together to obtain the total
truncated differential probability for f.

For each sub-block, we need to consider both the difference in the carryin (denoted by Acin)
from the previous sub-block and difference in the carryout (denoted by Acout) to the next
sub-block.

e There are two possible values for Acin: 0, 1.

o Let Pacoyt denote the probability that there is carry from one sub-block to the next. That

is,
Ppcout = Pr[Acout = 1].

Based on the results in [M00], there are only three possible values for Pacous: 0, 0.5, 1.
For a give sub-block (the ith sub-block), let (dz;,dy;, 62;) be the values of (dz,dy,d2) re-
stricted to the sub-block. Below, we define 6 partial sums for the differential probabilities, one
corresponding to a possible combination of (Acin, Pacout) = (d,p) for d = 0,1 and p = 0,0.5, 1.
PS((SQZ“ 5%7 6,21, d7p)

= 5= ppaz Ayl AL, (2)
Condition PS

where Condition PS is

(A Ayl ANy = (5w, 6y, 62),

70

I

Acin d,

Pacour = b.

2.2 Detailed algorithm

Our algorithm for computing truncated differential probabilities contains two major components:
precomputing partial sums and joining partial sums of sub-blocks.

Precomputing partial sums We observe that the partial sums defined by Equation (2) only
depend on the § values restricted to a particular sub-block. Therefore, these partial sums can
be precomputed and stored in a table. Typically, each dz;, dy;, 02 is just a single bit. So the
total number of partial sums to be stored is 2% x 6 = 48.

Joining sub-blocks Given the partial sums for any two consecutive sub-blocks H and L (each
of length ¢ bits), we can compute the partial sums for the sub-block H||L of length 2¢ bits.
Let

PSL(éxia 6y7;7 (SZ'L'a d7 p)?
PSy(dwiy1, 6yiv1, 6241, d, p), and
PSp |z (6wi1 (102, 0yit1]|0yi, 02i411[02i, d, p)
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denote the partial sums of differential probabilities for the corresponding sub-blocks. Then
PSg . is computed as

PSyL(, - d,p) = PSu(-+0,p) x PSL(:,+,-,d,0)

+ PSy(-,-1,p) xPSp( -, d, 1)
+ PSg(-,--0,p) x PSL(-,,,d,0.5) x 0.5
+ PSy(,-,-1,p) xPSL(++,-,d,05) x 0.5
].

In general, the two sub-blocks H and L can have any number of bits, say ¢; and tg, respec-
tively. Using the above formula, we can compute the new partial sums for the sub-block H||L
of length (¢, + t2) bits.

Computing the total TDP By repetitively joining successive sub-blocks, we can obtain
the 6 partial sums PS(dz, dy,dz,d,p) for the entire block of length n. Since Acin = 0 for the
least significant sub-block, 3 of these partial sums (for which d = 1) actually have value zero.
Therefore, the total truncated differential probability is

TDP(6z, by, dz) = % x | PS(dz, by, 62,0,0)
+ PS(dz,6y,02,0,1)
+ PS(dz,dy,62,0,0.5)
-

Efficiency analysis The algorithm given in this section is independent of the Hamming weight
of 6z and dy. For n = 32 and t = 8, each of the 2'? truncated differential probabilities can be
computed using a constant number of table lookups, additions, and multiplications. Experiments
show that all the 212 probabilities can be computed in less than one second on a PC.

3 Truncated Differential Probabilities of MDS

The truncated differential probabilities for the MDS are defined as follows.

TDPyps(6z,6y) =~ 5 Pr[MDS(z) ® MDS(z ® Az) = Ay, 3)
x{Az,Ay)=(8z,0y)

where c¢ is the number of Az satisfying the condition x(Az) = dz.

The distribution of TDPypg(6z, dy) is related to the weight distribution of the MDS (Max-
imum Distance Separable) code. TDPypg(dz, dy) is determined by the Hamming weights of §z
and dy, as Table 2 shows.

4 Search for Truncated Differentials of Twofish

In this section, we present our search results for truncated differentials of Twofish. Our search
uses the differential probabilities of PHT and MDS computed in Sections 2 and 3.

For speeding up the search, we first set the probability to be one for 1-bit rotations. Once
we found the truncated differentials, we then adjust the probability as follows. If the input
difference (32-bit) of the 1-bit rotation is £?, the output difference is still £. Otherwise, we need
some adjustment. For example, if the input difference of the 1-bit right rotation is 8, the output

“In this section we use typewriter font for the hexadecimal representation of truncated differentials.
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wy(dy)
wy(dz) | 0 2 3 4
0 1 0 0 0 0
1 0 0 0 0 1
2 0 0 0 27'7.994 2~0.023
3 0 0 9-15.989  9—8.017 9—0.023
4 0 92723983 9-16.012 9-8.017 2*04023

Table 2: Truncated differential probabilities of MDS

difference is 8 with probability 27!, ¢ with probability 271 — 28 and 4 with probability 278
(here we have multiple paths, but in most cases the multiple paths join at the next MDS).

For additions with subkeys (i.e., f(z,k) =z +k =z (mod 2"), where k is some subkey),
the value corresponding to ék = 0 in our precomputed table gives the truncated differential
probability when we average over all possible keys. For any fixed subkey k, the probability
depends on k, and it can be larger or smaller than the average probability: the maximum
probability can be 1 for a fraction of the subkeys. For easy treatment of probability after the
search, we set the probability to be one for additions with subkeys.

4.1 Truncated differentials with high probability

First, we searched for truncated differentials that hold with relatively high probability, although
they may not be exploited in general (well-known) cryptanalytic attacks. As Knudsen [K00]
wrote, such differentials can provide some bits of nontrivial information in every round.

Our computer experiments found a 12-round truncated differential with probability of about
27409 Tn Table 3, the output difference of each round are shown in hexadecimal representation.
One can expect to get one good pair following the truncated differential from about 2°* chosen
plaintexts by using a structure in the last byte of the plaintext. There are a total of 29 such
good pairs.

More interestingly, we found a truncated differential for the full 16 rounds of Twofish with
probability of about 27573 (see Table 4). One can expect to get one good pair following the trun-
cated differential from about 2'% chosen plaintexts, and there are 228 such good pairs. In [K00]
Knudsen showed a 16-round truncated differential with probability 2725, The probability of
our 16-round truncated differential is much higher than what was found by Knudsen, and the
total number of good pairs for our differential is also much larger.

4.2 Truncated differentials useful for distinguishing attacks

We also searched for truncated differentials that may be useful in distinguishing attacks. As a
result, we found one 4-round truncated differential, and four 5-round truncated differentials (see
Tables 6 and 5). The 4-round truncated differential is a path included in the 4-round truncated
differential that Knudsen used for the x?-tests in [K00, Section 5.2]. Note that Knudsen’s
4-round truncated differential contains multiple paths and the probability is much higher.

Knudsen concluded that for more than 4 rounds, it is an open question how nonuniform
the distribution of differences can be. Now that we found 5-round truncated differentials with
probability slightly higher than a random permutation, in theory we can perform statistical
tests such as x? tests. Note that the probabilities in Table 5 can be a little smaller due to 1-bit
rotations or a little larger due to the effect of multiple paths.
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round probability

1 000 1 20‘000000

round probability 2 01 f ¢ 970028330
1 000 1 20000000 3 £ Ff o 98118785

2 01 f f 920028330 4 fof f 0-8209230
3 £ f f e 98118785 5 § F 7§ 9-16299694
4 f e f f 98209239 6 7§ £ £ 9-16.390147
5 £ F 7 f 916299694 7 £t b £ 0o 24480603
6 7 f £ £ 92-16.390147 8 b £ f § 924571056
7 f £ b f 9724480603 9 £ § 7 f 932661511
] b f f f 924571056 10 7 f f f 032751965
g9 £ £ 7§ 932661511 11 £ Db f 91084242
10 7 £ f f 9232751965 12 b £ f f 010932874
11 £ fp f 9-40.842420 13 £ £ 7 f 9-49.023329
12 b f f f 940932874 14 7§ f§ 9-19.113783
15 £ f Db f 0—57.204238
Table 3: 12-round truncated differential 16 b f £ £ 957204692

Table 4: 16-round truncated differential

5 Conclusion

We presented truncated differential cryptanalysis of the block cipher Twofish. We performed the
search by computer experiments, and found a 16-round truncated differential with probability
of about 27°73 which is much larger than previously known results. We also found 5-round
truncated differentials which can be useful in distinguishing Twofish reduced to 5 rounds from
a random permutation. We will implement some tests to confirm our conjecture.
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