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Abstract The aim of this paper is to describe a method that gives an efficient algorithm for performing Jacobian
group arithmetic on the most general algebraic curves over finite fields. When we consider algebraic curve
cryptosystems, an efficient Jacobian group arithmetic is required. For elliptic and hyperelliptic curve
cryptosystems, there exist algorithms for performing the Jacobian group arithmetic in O(¢?) operations
in the base field, where g is the genus of a curve. Furthermore, for more general curves so-called C,;
curves, R.Harasawa and J.Suzuki proposed a method for performing the Jacobian group arithmetic
in O(g*) operations in the base field. We generalize the method to Coy .0, curves. Furthermore, it
turns out that the generalization gives an efficient algorithm for performing Jacobian group arithmetic
in O(g?) operations in the base field for all algebraic curves that we consider from an algebraic curve
cryptographical point of view.
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1 Introduction

The aim of this paper is to describe a method that gives an efficient algorithm for performing Jacobian
group arithmetic on the most general algebraic curves for which cryptosystems based on the intractability
of the discrete logarithm problem (DLP) can be cosidered.

When we consider algebraic curve cryptosystems, an efficient Jacobian group arithmetic is required.
For elliptic, hyperelliptic and C,p curve, there exist some algorithm for performing the Jacobian group
arithmetic in O(g?) operations in the base field ([11] [12] [7]), where g is the genus of a curve. However,
it is also a fact that there exist some attacks against the DLP on these curves ([8] [5] [1] [6] [3] etc.).
Therefore, it is important to consider cryptosystems based on more general curves than Cy; curves.

In this paper, we address the problem whether or not there exists a method for performing Jacobian
group arithmetic in O(g?) operations in the base field for the most general curves. Now we consider
nonsingular curves satisfying the following condition [9]:

the set of pole numbers of the point at infinity is generated by t elements < ay,---,a; >.

We call the curves C,, ... o, curves. Particularly, in the case of ¢ = 2, the curve are C,p curves, which
include elliptic and hyperelliptic curves. A difference between previous curves and Cg, ... q, curves is
that the number of the definition equation is not necessarily one.

In this paper, we generalize Harasawa et al.’s method [7] for C,; curves to C,, ..., curves, so
that there does exist a method which performs Jacobian group arithmetic on C,,,...s, curves in O(g?)
operations in the base field in the case that the sizes of a; and the base field are fixed.

We note that, for Cj, ... s, curves, S.Arita has already proposed an algorithm for performing the
Jacobian group arithmetic, which takes O(g®) operations in the base field [2].

Finally, S. Miura {9] showed that all nonsingular curves C' defined over a perfect field K (especially,
a finite field) with at least one K-rational point are Cj, ..o, curves. Therefore, from an algebraic curve
cryptographical point of view, it turns out that this proposed method gives an efficient algorithm for
performing Jacobian group arithmetic in O(g?) field operations for all algebraic curves C/K, since we
consider curves with only one K-rational point at infinity.

2 Cg,...q, CUTVES

The notation follows [13].

Let A; C Ng be a monoid generated by ay,--+,a; € Np with a; < aiz1 (le. Ay:=<ay,---,a; >=
a;Np + -+« + a;Np), where Ny is the set of non-negative integers.

From now on, we assume that A; =< a,,-++,a; > is represented as a minimum generating system
(i-e. , a; €< @y, , i1, 8441, 8¢ > for 1 < Vi < ¢) and ged(ay, -, a;) = 1.

And we define Ua, : N — No as Ua, (01, -, 0) = Yore, Gitti.

Now, we define an ordering on N§ as follows[9]:

Definition 1 (C,, ...q, order ) We say o >4, ..o, B for a = (a1, -, 0),8 = (B1,---, ;) € N} if
one of the following two conditions holds:

1. \I,A:(aly"'aat) > ‘IIAg(Bb""ﬁt) , or

2 Up, (o, y00) = Ua,(Brye-, Be), a1 =By = By i < Bigr-
In this paper, we call the ordering Cg, ... o, order.

Next we define two sets B(A;) and V(A;} as follows:
B(A,) := { the least M€ N} with respect to C,, ... o, order with ¥4, (M) = a| a € A,},



V(A;) = {L € N{\ B(A,)| L=M+N, Me N \ B(A,),Ne N§ = N=(0,--+, 0)}.
Then, the following theorem is known:

Theorem 1 (Cq,,....a, curve [9]) Let C be an algebraic curve defined over a perfect field K with ¢ K-
rational point P. And we define Mp as the set of pole numbers of P (i.e. Mp = {—vp(f)| f € L(coP)},
where L(ocoP) := U; L(iP) for P C ). ’
Then , if
MP = At = Ay, 08 >

holds, the curve C has a nonsingular affine model in t variables with the defining equations:
{FPm =0 M € V(A,)},
Fu=XM4a X'+ > anX¥, (1)
NEB(A),¥a, (N)<¥a, (L)

where we denote [[; X™ by XM for M = (my,---,my) € Nj, and X; € L{coP) is a function such
that (X;)oo = a;P.

Here, L is the unique L € B(A;) satisfying Ua, (M) = ¥4, (L), and oy, # 0,en € K.

Furthermore, P is only one point at infinity.

In this paper, we call the affine curve {Fm = 0| M € V(A,)} a "C,, ... a, curve”.

Example 1 (C3 57 Curve) C3 57 curve C is defined by three equations as follows:

Y? = r XZ4mX34r XY +ryZ+rs X246y +17X 41
YZ = 61X *+ 52X +53XZ + 34X+ 85XY + 562 + 57 X%+ 53Y + 59X + 810
zZ? = t1X3Y +t2X22 +t3X4 +t4X2Y +tsXZ +tsX3 + 4 XY + 12 +t9X2

+t10Y + 111X +t12,
where (X)oo =3P, (Y)oo = 5P, (Z)so = TP, and 1, 31 and t; are nonzero elements.

It is known [9] that the genus of a C,, ... 4, curve is given by

a1—1
g=#No\A) = 3 [bi/as), @
=0
where b; := min{b €< az,---,a;, > |b=1 (mod a;)}
and |b;/a; | := max{s € Z| s < b;/a1}.
From now on, we assume K to be a finite field F; with ¢ elements.

Remark 1 From an algebraic curve cryptographical point of view, it is sufficient that only C,, .4,
curves be ezamined, since we suppose that a curve C/K has only one K -rational point at infinity, which
is @ Co,,....q, curve from Theorem 1.

3 Jacobian group arithmetic on C,, .., Curves

Since Cy, ... q, curves C' are nonsingular and have only one K-rational point at infinity, the Jacobian
group Ji(C) is isomorphic to the ideal class group CI(R) of the coordinate ring R := K{zy,---,24),
where z; = X; mod (Fy = 0| M € V(A,)). And we define ¢™ :=[[, ¢ for m = (my,---,m,) € N§.

And, for each element in Jk(C), there exists a divisor of the form E — nP with E > 0 and P ¢
support(E), which is said to be a semi-reduced divisor.



Furthermore, if n is minimized in D; = E —nP with E > 0 and P ¢ support(E) (semi-reduced) and
D; ~ D € Div%(C), then D; is said to be the reduced divisor equivalent to D. For a reduced divisor
D =E —nP, it holds n < g. And the reduced divisor is unique for each element of Jx(C).

The isomorphism @ between Jx(C) and CI(R) is given as follows:

& : Jx(C) —» CI(R),
[ Y ne@-( Y, no)Pl=I[LicP—( Y ng)Q) (3)

QEC,Q#£P QEC,Q#P QEC,Q#P
where we denote the ideal class which ideal I C K[z, - -, ;] belongs to by {I].

We call the ideals corresponding to reduced and semi-reduced divisors the reduced and semi-reduced
ideals, respectively. Then each semi-reduced ideal I is expressed by an integral ideal I C L(coP) =
Kz, -+, 2. And, for a semi-reduced ideal I, we define the degree of I by such an n that E — nP with
E > 0 and P ¢ support(E) is a semi-reduced divisor that corresponds to I.

From now on, we consider the arithmetic on the Jacobian group as that on the ideal class group of
the coordinate ring.

Here, we introduce the propety of the coordinate ring of Cy, ... .a, curve:

Theorem 2 [9] If we define T(A,) as T(A;) = B(A)N{0} xN*"1, then it holds T(A,) = {M(b;)] 0 <
i < ay — 1} and #T(A;) = a1, where b; is the same as in (2) and M(b;) € N} is the minimal element
M satisfying ¥a, (M) = b; with respect to C,,....a, order.

Purthermore, {27 = 1,2™,---,2%1-1} is a K[z;]-basis of the coordinate ring R = K[z, -z,
where {40, **,va,~1} are the elements of T(A,).

Now, for each integral ideal of R, the K[z]-basis can be uniquely expressed by taking the Hermite
normal form (HNF) of the matrix (8; ;), where the K[z;]-basis is given as the matrix (8o, -, Ba,-1)
with B = 27;0—1 B1,1(x1)z™, since the coordinatering R is a K|x;}-module.

Therefore, we express each representative element (i.e. reduced ideal) in an ideal class group of R
by the HNF of the K[z]-basis.

Furthermore, it turns out that the degree of an ideal is equal to the degree of x; in the product of
the diagonal elements of the HNF (see Appendix).

Here, it is known that we can obtain the Jacobian group arithmetic on C,, ..., curves as follows:

Algorithm 1 (Jacobian group arithmetic on Cq, ...4, curves )
- [Each ideal is expressed by the Hermite normal form.]

Input: Reduced ideals I, I in R (HNF).

Output: The reduced ideal I; ~ I I; (HNF).

Step 1: D « L1 I; ‘

Step 2: J « a semi-reduced ideal s.t. D™ = d—), where (€) is a principal ideal generated by e € K{x;]
(then, it holds J ~ D),

Step 3: f « a minimal nonzero element in J with respect to —vp(-);

Step 4: Iy « the HNF of (f)J 1 = Q2.
In order to compute the description of Algorithm 1, we should fix the following procedures:
1. how to compute the inverse ideal I~? given an ideal 7 (Step 2); and

2. how to compute the minimal element over an ideal with respect to —vp(-) (Step 3).



4 Proposed Method

In this section, we propose the method for performing the Jacobian group arithmetic on Cy,,...,q, curves
(Algorithm 1).

4.1 Computing Inverse Ideal

Let K(C) be the function field of a C,,....s, curve C.

From the fact that the integral closure of K(C) over K[z] is the coordinate ring R and the integral
basis is {27 }o<i<a,~1, We can extend a method [4] of number fields in a natural manner.

Then, we can compute an inverse ideal if we can compute the matrix T = (%;;)o<i,j<a~1 =
(Tri(c)/K(e) (2 )o<ii<ar -1 [7]-

And it is sufficient to compute only Trx(c)/x(z)(27), since
Trrc) /K@) (@7 e") = Tric) k) (Zock<ar—1 98 (@1)2™) = Tochca—1 90" (@1)Triey ke (@™),
where 2% 2% 1= 30 1ep g gi"’)(:cl):c“”‘.

Here, for C,) curves Eogigb,OSjsa,ai+bj$a,, ; jz'y’ = 0, since the integral basis is {v"}o<i<a—1, We
can compute the values of Trg(c)/ K(z)(y*) as follows [7}:

1. Try(c)/K(z)(y) can be obtained if the minimal polynomial of y over K[z] is given, which coincides
with the definition equation;

2. Trrc)/K( 2)(y*) can be computed by using the minimal polynomial of y over K [z] and the Newton
formula. (page 163, [4]).

However, generally, given an integral basis, it is not obvious to compute the minimal polynomial.
Now, we proposed a method of computing the minimal polynomial of each £ over K{z:].
First, for extension degrees of 2% over K(z;], we show the folloing proposition.

Proposition 1 For 1 <i < a; — 1, it holds
[K(z1,27): K(e)] = 7

where [ := ged(i,a1) = ged(Wa, (i), a1)-

Proof of Proposition 1

1t is sufficient to show [K(C) : K{(x;,2")] = [, since a; = deg(1)o0 = [K(C) : K(z,)] = [K(C) :
K(zy,z2)|[K(z1,27) : K(21)],

Now, it holds W4, () = deg(2)oo = [K(C) : K(27)] = [K(C) : K(z1,z")|[K(x1,2™) : K(z™)],
which implies [K(C) : K(z1,2")]| ged(a1, A, (7)) = ged(ay,4) = 1.

Therefore, the Proposition holds if [ = 1.

We consider the case of I > 1 (,especially i # 1).

Now we suppose that m := [K(C) : K(zy,2%)] <.

And we define the minimal polynomial F(zy,z%,z") =0 of 27 € K(C) over K(z1,z™) as

F(oy,2",2™) = > Filzr,e¥)(@m), )

0Lj<m’ f;(21,27)7#0

where fj(z1,2%) € K[zq,2%].
Then it holds —vp(fj(z1,2%)(z™)?) = j (mod [), which implies

—op(F(z1,2%,2M)) = max; g, (2, 01 )#0{ —vP(fi(21,27) (7))} < o0,



since j <m' <m <land —vp(z™)=1 (mod!). It contradicts vp(0) = oo.
Hence [K(C) : K(z,,27)] =1. Q.E.D.
From Proposition 1, we can compute Trx(c)/k(z,)(27) as follows:

Stage 1 if i = 0 then Try(c)/K(2,)(27) ¢ a1, otherwise m ¢« % with [ = ged(7,a1);

Stage 2 the computation of ( f}(zl)) with

1 ) RBz) - foia(m) S a(21) 1
T fa(z1) filz) - fa,-z(fl) fal—l(xl) ™
(2 )m= i) i) e e f.,,:;m)
(z¥)™ oz1)  fMz) - fRa(wn) fRq(za) g1t

Stage 3 the computation of minimal polynomial
D(a1,2%) = (@)™ + Togjem—1 Dj (21)(z™)7 with

* * E I 3

* * *

* * * ok
D(z1,2%) | 0 00

by performing elementary operations on rows from

L] Be) ) o @) £
z% f(z) fHzy) - f,}l—z(“f'l) far-1(z1)

@ | e e e fPThe) fmoi(en
@ | i) fr@) o fRe) fo(e)

Stage 4 T”'K(C)/K(x;)(l"") — -%(Dgi)(zl)).

4.2 Computing Minimal Element

We can obtain a minimal element with respect to —vp(-) by extending the modification [7] of Paulus’s
LLL-like algorithm [10] in natural manner, since the fact of b; = ¢ (mod a;) implies there exists an
unique [ such that —vp(f) = -—vp(fl(a:l)x"") for a nonzero element f = E e Filzy)am.

Namely, for an ideal I, it is sufficient to find an basis (so-called reduced basxs (10 {fo, -+, fa-1}
such that —vp(f;) # —vp(fj) moda; (0 < i< j < a—1). Then f := min;{—vp(f;)} is the minimal
element in I with respect to —vp(-) [10].

And the complexity can be evaluated as follows:

Theorem 3 [7] For a basis {fo,-- -, fa;—1} of an ideal I, the minimal element is computed in
O(a?s(ays + max;{b;}) log® g),

if the degree of xy in (fi ;) is bounded by s, where fi = (fio, *, fia;—1)t with fi = E;‘:_ol fij(zy)z.



5 Complexity

In Section 4, we proposed a method for performing Jacobian group arithmetic on Cl,,....a, curves (Al-
gorithm 1).

And we can evaluate the complexity as follows: (Complexity of elementary operations is based on
the facts in [7].) :

Theorem 4 For C,, ..., curves, the Jacobian group arithmetic (Algorithm 1) is completed in
O(at’g* log’ q).

Remark 2 Theorem 4 ensures that Jacobian group arithmetic on Cl, ... o, curves is computed in O(g?)
operations in the base field if the sizes of ay and q are bounded. And the assumption that the size of a;
15 bounded is natural, since a; 13 the minimal nonzero element in A,.
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Appendix: The Degrees of Ideals

For Vf = Y070 fi(z1)2™ € R (vi € T(A)), we define LM(f) as the maximal monomial in f with

i=0 Ji

respect to —vp(-), which is said to be a leading monomial of f.

And for a nonzero monomial czfz™ with ¢ € K* and d € N, we define MD(czlz™)as MD(czdz™) =
(d,0,+-+,0) ++; € N§, which is said to be a multi-degree of fi(z1)z™.

Furthermore, for a nonzero ideal I C R, we define A(I) as follows:

A(I) == {M € Ng| M ¢ MD(LM(I))},
where LM(I):= {LM(f)| f € I} and MD(0) := (o0, -+ ,00).
Then, the following proposition is known:

Proposition 2 [2/
For the degree of an ideal I C R, it holds

deg(I) = #A(I).
Then, we show the following proposition.

Proposition 3 Let I = {fo(21), *+, far—1(21)} be the HNF representation of an ideal I C R, where
filzr) = (fio(@1),++, fia=a(1))t for fil@1) = Ljip' fujlzn)a™.

Then,
deg(l) = deg,, [] fus(er) = 3 degz, (fuslen)).

Proof of Proposition 3

Let {go(z1)," - »ga,~1(z1)} be the reduced basis (Section 4-2 or [10]) of an ideal I. And we define
Q; := {LM(g: 55y (1)27®) x (czf)| c € K*, d € No}.

Then, from —vp(g;) # —vp(gj)moda; (0<Li<j<a~1),

2N =¢ (i #))

where §(i) satisfies ~vp(g;) = —vp(gis¢)(21)T™O).
Therefore, it holds

deg(I) = #A(I) = Zdega:lgi,é(i)(xl) = deg,, (det{g1(z1), -, 9¢(x1)}).

{ LM(I)=U;Q; U {0}

And, since we obtain {go(21)," -, ga; ~1(21)} from {fo(z1)," -, fa; ~1(21)} by performing elementary
operations on columns, the two determinants differ by some element in K*.
Therefore,

deg,, (det{go(1), -+, 9a,-1(2z1)}) = degn(H fii(z1))

(note that {fo(z1)," -, fa,—1(1)} is the HNF representation). Q.E.D.



