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Abstract. The new public-key encryption scheme described in this paper is based on the
Cramer-Shoup scheme [5] but can be proven to be semantically secure against an adaptive
chosen ciphertext attack (IND-CCA2) under a weaker assumption than that of the Cramer-
Shoup scheme. It requires no functional assumptions and requires only one number theoretic
assumption to assure the ideal security. This number theoretic assumption is weaker than the
Decisional Diffie-Hellman (DDH) assumption underlying the Carmer-Shoup scheme. The new
scheme is also more practical than the previous public-key cryptosystems that are IND-CCA2
under a single assumption.
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1 Introduction

It is widely agreed that the desirable security level of public-key cryptosystems is to be semantically secure
against an adaptive chosen ciphertext attack (IND-CCAZ2) or non-malleable against that attack (NM-
CCA2) [6, 13] (It is proven that these two security levels, respectively, IND-CCA2 and NM-CCA2, are
equivalent [1]).

Provably secure public-key encryption schemes can be classified into two categories: those like the
RSA-OAEP scheme, for which the security proof is based on the random oracle model, and those like the
Cramer-Shoup scheme, for which the security proof is based on the standard model of computation. Those
in the first category are generally more practical, but those in the later category are based on assumptions
that are more reasonable.

It is disirable that public-key encryption schemes should provide the ideal security, namely IND-CCA2,
under weak assumptions and should not have excessive computation costs.

To the best of our knowledge, Cramer-Shoup scheme is the only practical public-key encryption scheme
proven to be IND-CCA2 in the standard model. Its security is based on the intractability of the Decisional
Diffie-Hellman (DDH) problem and the existence of a family of universal one-way hash functions. But
because real security systems uses practical hash functions, such as the SHA and MD5 algorithms, in place
of the universal one-way hash function to increase the efficiency[14], the real-world security of the Cramer-
Shoup scheme cannot be proved unless the practical function is assumed to be a universal hash function.
Note that although the SHA is designed to be collision resistant (stronger notion than a universal one-way
hush function), the proof has not been given without making assumptions.

Cramer and Shoup also described a hash-free variant of their scheme, but as we will see in section 6,
the encryption procedure that hash-free variant requires is computationally expensive.

This paper describes a new public-key encryption scheme that is based on the Cramer-Shoup scheme
[5] but can be proven to be semantically secure against an adaptive chosen ciphertext attack (IND-CCA?2)
under a weaker assumption than that of the Cramer-Shoup scheme. It requires no functional assumptions
and requires only one number theoretic assumption to assure the ideal security. This number theoretic
assumption is weaker than the Decisional Diffie-Hellman (DDH) assumption underlying the Carmer-Shoup
scheme. This scheme is more practical than the previous public-key cryptosystems that are IND-CCA2
under a single assumption.

2 Definitions

This section defines the Decisional Diffie-Hellman (DDH) problem. For definitions of public-key encryption
or semantic security, see other literature, such as [1] and [8].

Definition 2.1 (DDH). Let G be a multiplicative group with a prime order g, and let g;,92 € G. Let &
be a sequence that belongs in one of the following two sets:

Do = {(g1,92,u1,u2) | us = 1", u2 = g2” for r € Zg},
D; = {(g1, 92,1, u2) | u1,us € G with log, u; # log,, usz}-

Then, the Decisional Diffie-Hellman (DDH) problem in G is the problem of guessing ¢ such that § € D;
for a given sequence §. And we say that the DDH assumption in G is true if, for any probabilistic polynomial
time algorithm A, any constant ¢, and sufficiently large &,

11
Pr{ (g1,92) ¢ G5 b {0,1}; 6 Dy : A(gr,92,8) =b] < 5+ 17

3 The Basic Scheme

Let G be a multiplicative group with a prime order g, and let G’ be a multiplicative group that includes G
as a subgroup.

3.1 Key Generation

The key generation algorithm runs as follows: Random elements g1, g2 € G are chosen, and random elements

3717~”'32a:l/i1,yi273€Zq (121,2)



are also chosen. Next, the elements in G

c=q" g™, di=g""g¥, h=g" (i=1,2)

are computed. Next, an injective map
m: X, XX2XM———)GI

is chosen, where X; and X, are finite sets consisting of positive integers such that agl|as < ¢ for any
a1 € X1 and as € Xo, and M is a message space consisting of positive integers such that m < ¢ for any
m € M. We assume here that the elements in X; and X, respectively have k; and ko digits. Then the
secret and public keys are given as follows:

Secret Key: (1, T2; Y11, Y12, Y21, Y22, 2)

Public Key: (gl » 925 Cy dl ’ d2a h) , 7‘-_1)
We give an actual example of (G,G', ) in section 5.

3.2 Encryption

For a given message m (m € M), the encryption algorithm runs as follows: It chooses a; € X, a2 € X3,
and r € Z, at random and then computes

ar mr
u=g", uz=g, e=mu(o1,ae,mh’", v=g*cd" ",

where a = a]|as.
Note that e is defined as an element of G’ and uy,us,v are defined as elements of G.
Then the ciphertext of m is given as follows:

Ciphertext: (u1,us,€,v)

3.3 Decryption

For a given ciphertext (u1,us,e,v), the decryption algorithm runs as follows: It computes &; € X1, € Xo
and 7 € M such that

(6, G2,m) = e/ui”,
by using z and w~!. It then tests if

glal ulz1+ﬁyn+my21u232+5‘y12+ﬁty22 =, (1)

where & = @ ||z, and outputs the plaintext

" m if the condition (1) holds,
- “reject” otherwise.

4 Proof of Security

In this section, we prove the following theorem.

Theorem 4.1 (IND-CCAZ2). The basic scheme is semantically secure against an adaptive chosen cipher-
text attack if the DDH assumption in group G is true.

Theorem 4.1 says that if the DDH assumption is true, the basic scheme is IND-CCA2. Since a; and az
are secret, however, the converse (namely, the basic scheme is not IND-CCA2 when the DDH problem is
solved) cannot be proven by the conventional method used to prove the security of the El Gamal scheme
(IND-CPA) and the Cramer-Shoup scheme (IND-CCA2).

Hence, we can say that breaking the basic scheme is at least as difficult as solving the DDH problem.
We think the problem of breaking the basic scheme is harder than solving the DDH problem, although this
paper does not specify the difference between the difficulties of these problems.



To prove the theorem, we will assume that there is an adversary Adv that can break the basic scheme,
and show how to use this adversary to construct a probabilistic polynomial time algorithm A that can solve
the DDH problem.

The input to A is (g1, g2, u1,u2), which comes from either D or R (To avoid a confusion, Dg and Dy in
the definition 2.1 are respectively denoted D and R here). A runs the following key generation algorithm,
using the given gy, g2. A chooses

Ty, Ta, Yils Yiz, 21, 22 € Ly (1=1,2)
at random and computes the elements of G
c=g"1g™, di=g¥ g, h=g7ep® (i=12).

A also chooses a proper injective map 7 (cf. section 3.1). The public key that Adv can see is (g1, g2, ¢, d1, da,
h,m, 7). Only A knows (1,2, Y11, Y12, Y21, Y22, 21, 22)-

Note that the key generation in A is slightly different from that in the basic scheme described in section
3. But, it can be easily shown that if there is a probabilistic polynomial time algorithm B that can break
the z-version of the basic scheme, then one can construct a probabilistic polynomial time algorithm B’
that can break the (21, z2)-version of the basic scheme, by using B. Thus, it is sufficient only to prove the
(21, z2)-version.

The encryption oracle by A is given as follows. For given mg,m; (€ M), A chooses b € {0,1} at random.
A also chooses o; € X; and as € X» at random and computes

e = w(a1, o, mp)u; “1ug®?,
v = glalulac1+ayn+mey21 sz+otyn+mz,y227
where @ = a;||az. Then, it outputs (u1,usz,e,v).

As we will see, the output of the encryption oracle is a perfectly legitimate ciphertext when the input
to A comes from D, but will not be legitimate when the input to A comes from R. This is crucial to the
proof of security of the basic scheme, as it is to the proof of the security of the Cramer-Shoup scheme [5].

Theorem 4.1 follows immediately from the following two lemmas.

Lemma 4.1. When the sequence (g1, g2, u1,u2) comes from D, then Adv can guess a correct hidden bit b
with a probability of more than 1/2.

We have u; = ¢;" and uy = go" for some r € Z, since the sequence (g1, g2, U1, u2) comes from D. It is
clear in this case that the output of the encryption oracle has the right distribution, since u;*1uy"? = ¢”,
wp¥rup¥t = d;" (i = 1,2) and u3*'up*2 = h”. Indeed, these equations imply that e = w(ay, a2, mp)h" and
v = gl‘“c"dlmdz’""".

To complete the proof, we need to argue that the output of the decryption oracle also has the right
distribution. Let us call (u},u),€’,v") € G* a valid ciphertest if log,, uy = log,, ub.

Note that if a ciphertext is valid with u} = ¢;” and u, = g»", then A" = u}*'u}*?. Therefore the
decryption oracle outputs m' € M such that 7(aj,ah,m') =¢€'/ h™, if it passes the test in the equation (1).

Consequently, Lemma 4.1 follows immediately from the following claim:

Claim 1. When the target ciphertext is valid, then the decryption oracle — in both an actual attack against
the cryptosystem and in an attack against A - rejects all invalid ciphertext, except with negligible probability.

We now prove Claim 1 by considering the distribution of the point P = (21, %2, Y11, Y12, Y21, Y22) € qu,
conditioned on the adversary’s view. Let log(-) denote log,, (-), and let w = log gs.

From the adversary’s view, P is a random point on the affine algebraic set V (C A%(Z,)) formed by the
intersecting hyperplanes

loge = z; + wxq, (2)
logdi = y11 + wyrz, (3) ‘
logdy = ya1 + wy2e- (4)

These three equations come from the public key. The output from the encryption oracle does not
constrain P any further, as the hyperplane defined by

logv = a; +7(z1 + wxa) + ralyrr + wyi2) + rm(yz; + wyaz) 5)



constrains P.

Now suppose that the adversary submits to the decryption oracle an invalid ciphertext (u},ub,e’,v'),
where logu} = r] and logul, = ry (r} # r}). The decryption oracle will reject the ciphertext unless P
happens to lie on the hyperplane H defined by

logv' = a} + iz + wrhzs + & (riy11 + rhwyis) + m' (Tlya1 + rhwyaz), (6)

where m(a}, b, m') = € fu; " u,™ and o = af]|ah. But it is clear that equations (2), (3),.(4) and (6) are
linearly independent, so H intersects the algebraic set V at a plane.

Therefore, for ¢ = 1,2,..., the i-th invalid ciphertext submitted by the adversary will be rejected with
a probability of at least 1 —1/(¢% — i+ 1). From this it follows that the decryption oracle rejects all invalid
ciphertext, except with negligible probability.

Lemma 4.2. When the sequence (g1, g2, u1,u2) comes from R, the Adv cannot guess a correct hidden bit
b with a probability of more than 1/2.

Let u; = g;™ and ug = g2™ (ry # r2). Lemma 4.2 follows immediately from the following two claims.

Claim 2. If the decryption oracle rejects all invalid ciphertexts during the attack, then Adv cannot guess
the hidden bit b with a probability of more than 1/2.

To see this, consider the point @ = (z1,22) € Zqz. At the beginning of the attack, this is a random
point on the line

logh = 21 + wzg, (7

determined by the public key. Moreover, if the decryption oracle decrypts valid ciphertexts (u},u),e’,v"),
then Adv obtains only linearly dependent relations

r'logh =1z +r'wz

since u} 'uf™ = g7 *1g,” * = h”". Thus, no further information about @ is leaked.
Consider now the output (u1,uz, €,v) of the encryption oracle. Let € = u;**uy*2. Consider the equation

loge = 1121 + wrazs. (8)

Equations (7) and (8) clearly are linearly independent, so the conditional distribution of € — conditioning
on b and everything in the Adv’s view other than e — is uniform. In other words, € is a perfect one-time
pad. Tt follows that b is independent of the Adv’s view.

Claim 8. When the target ciphertext is invalid, then the decryption oracle rejects all invalid ciphertexts,
except with negligible probability.

As in the proof of Lemma 4.1, we study the distribution of P = (z1,Z2, Y11, Y12, Y21, Y22) € ZqG, condi-
tioned on the adversary’s view. From the adversary’s view, this is a random point on the plane formed by
the intersecting hyperplanes (2), (3), (4) and

logv = a1 + 1121 + wras + a(r1y11 + r2wyiz) + me(r1yz1 + rawysz). )

Equation (9) comes from the output of the encryption oracle.

Now assume that the adversary submits an invalid ciphertext (uf,uj,e’,v') # (u1,us,e,v), where
loguj = r} and logu) =7} (ry #rh).

Let m(a},ah,m') = €' /ui " ub™, where o] € X1, oy € X, and m’ € M. Then, the decryption oracle

rejects the ciphertext unless P happens to lie on the hyperplane defined by
logv' = o} + riz1 + wrizs + o' (riy11 + rywyi2) + m' (rlya + riwyse), (10)

where o = a||a}.
From the equations (2), (3), (4), (9) and (10), we obtain the following relationship:

1 w 0 0 0 0 1 logc

0 0 1 w 0 0 T2 log dy

0 0 0 0 1 w il — 1 logd, (11)
1 ToW QT OraW  MpTy,  MpTow Y12 logv — ay

rl rhw o'r] a'rhw m'r] mrhw Zz; logv' — )



For convenience, the (5,6)-matrix in the equation (11) is written in the following as X.
If rank X = 5, then the equations (2), (3), (4), (9) and (10) are linearly independent. Hence, in this
case the decryption oracle reject the invalid ciphertext (u},u,€’,v") except with negligible probability.
We consider the case when rank X < 5. Since r; # r2 and r{ # rj, we have

1 0 :
rankX=3+rank( .0 )
0 a—a mp—m
It then follows that rank X > 4, and rank X = 4 if and only if a = o' and my =m/.
Now suppose that a = o' and my = m’. Then there exists a; € Z, (1 < i < 4) such that
Tl = a1 + asry,
Thw = a W + asTew,
ria = ay + e,
roo'w = aaw + asromw,
m'r] = as + agmyry,
m'rhw = azw + agmyrow,
since equations (2), (3), (4), (9) and (10) are linearly dependent.
Then u} and uj can be represented by '
up = g1 M uy and uh = ga*lug®s.

And v’ can be represented by

a0 Titayntmeya s @2tayiztmeye:
v = g™y up (12)
ag
— gll-’ll (cda)“l (ul1‘1+ay1x+mby21u2¢1+ay12+mby22)

— glal (cd10k201+02)al (u111+(10k2a1+a2)yll+mby21 u2$2+(10’°2ﬂ1+a2)y12+mby22)a3 , (13)

where it is assumed that all elements in X5 have ko-digits (cf. section 3).
We study the distribution of R = (a3, a2) € Zqz, condition on the adversary’s view. From the adver-
sary’s view, this is a random point on the line :
(14 10%2r1y11 + 10%¥2r0wyr0)e + (T1v1 + rewyia)as + rizy + rawes
+my(riya1 + rowyzs) = logwv. (14)
Equation (14) comes from equation (9).
The decryption oracle will reject the ciphertext, unless R happens to lie on the line £ defined by
logv' = a1 + ay(zy +wxs + (10" a1 + a2)(y11 + wyiz2))
+ag(rizy + (10520 + a2)riyn + rimeyer + wrazs + (10%ay + an)wrayrs + wremeyss)
= @171 + QWL + azriTy + a3riMpY21 + A3WTT2 -+ A3WT2MpY22
+ (1 + 10k2a1y11 + lOkzalwylz + 10k21131‘1y11 + 10"2a3wr2y12)a1
+ (@yn + arwyiz + azriyn + Gwrayin)as. (15)
This comes from equation (13).
When equations (14) and (15) are linearly independent, then the decryption oracle rejects the invalid
ciphertext (uf,u),e’,v') except with negligible probability (for the same reasons discussed in the proof

of Lemma 4.1). To examine the conditions under which these equations are linearly dependent, we can
computes the following determinant: k

1+ 10%2(ryy1y + rowynz) r1Y11 + T2wyi2
1+ 10%2(a1y11 + arwyia + asTiyin + aswrayie) @iy + Gwyia + asTiynn + azwrayi2

=ay logd; + (az — 1) logéy, (16)

where §; = uy ¥1tus¥12.

From equation (16) it follows that, unless a; = 0 and a3 = 1, it is difficult for the Adv to generate invalid
ciphertext (u},u},e’,v') for which equations (14) and (15) are linearly dependent, because d; can take any
value of G and the Adv cannot know the value of §;. When a; = 0 and a3 = 1, we have u} = u; and
uh = uy. On the other hand, e = ¢’ is induced from & = o' and my = m/'. So we have v = v'. Therefore, we
finally have (uy,us,e,v) = (u},ub,e',v'). This is contrary to the assumption (u1,u9,e,v) # (uy,uy, €', v").



5 Simple Implementation and Variations

This section gives an actual example how G, G' and 7 are chosen in the key generation of our basic scheme:
Choose a large prime p and a prime ¢ such that ¢ divides p — 1. Then set G’ = Z, and let G be the
subgroup of order ¢ in Z,. And make 7 an identity map from X; x X» x M into Z, in which (z1,22,m)
corresponds to 71 ||zz||m. The message space M is a finite set consisting of positive integers, and for any
71 € X1, T2 € X3 and m € M it must be 2, }|zs||m < p.

Using the idea of basic scheme described in this paper, we can make a converting method that can
convert any encryption scheme (secret-key encryption scheme or public-key encryption scheme) that is
IND-CPA or NM-CPA to one that is IND-CCA2. The details of the converting method are omitted here
because of space limitations. )

6 Performance

This section evaluates the efficiency of the encryption and the decryption in terms of the computational
cost of the modular multiplications. The basic scheme is compared here with the hash-free variant of the
Cramer-Shoup scheme because that is the most efficient of the previous public-key encryption schemes that
are IND-CCAZ2 under a single assumption.

The modulus p for both the new scheme and the hash-free variant of the Cramer-Shoup scheme is
assumed to be 1024 bits, and ¢ is assumed to be 256 bits. In the standard binary method [10}, a modular
exponentiation with exponent « (k bits) requires an average of 3k/2 modular multiplications. This is easily
generalized to the extended binary method in which computing H5:1 9;" mod n requires an average of
(21 — 1)k/2* modular multiplications, provided that 2* —¢ — 1 elements of Z, are pre-computed and
recorded. Note that the standard binary method requires no pre-computation, but the extended binary
method requires substantial pre-computation when ¢ is large.

Since public-key encryption schemes are normally used to distribute the secret keys of symmetric ciphers,
assume that the size of a plaintext is at most 256 bits.

First, the efficiency of the encryption procedures in these schemes is evaluated. The encryption proce-
dure of the new scheme requires about 2500 (= 128 x 3/2+ 256 x 3/2 x 6+4) modular multiplications when
the standard binary method is used. And when the extended binary method is used (and the size of both
parameters o1 and az is 128 bits), the encryption requires about 1649 (= 256 x 3/2 x 3 +256 x 31/16 +1)
modular multiplications, provided that 11 elements of Z, (= 11264 bits) are pre-computed and recorded.
The encryption procedure of the hash-free variant of the Cramer-Shoup scheme requires about 6157
(= 256 x 3/2 x 16 + 13) modular multiplications when the standard binary method is used and requires
about 1664 (= 256 x 3/2 x 3 + 256 x 16383/8192 + 1) modular multiplications when the extended binary
method is used, provided that 8178 elements of Z, (= 8374272 bits) are pre-computed and recorded.

Thus when the binary extended method is used, one can not see a substantial difference between the
numbers of the modular multiplications required in the two schemes, but there is a substantial difference
in the number of the pre-computed elements. :

Next, the efficiency of the decryption procedures of these schemes is evaluated. The extended binary
method is used here, since the number of the pre-computation is very small in both schemes (5 elements
in Z, are pre-computed in the new scheme, and 1 element is pre-computed in the hash-free variant of
the Cramer-Shoup scheme). The decryption procedure of the new scheme requires about 865 (= 256 x
3/2+ 256 x 15/8 + 1) modular multiplications and the decryption procedure of the hash-free variant of the
Cramer-Shoup scheme requires about 833 (= 256 x 3/2 + 256 x 7/4 + 1) modular multiplications.

We can see from the above that the decryption speeds of the new scheme and the hash-free variant
of the Cramer-Shoup scheme take almost same amount of time but the encryption procedure of the new
scheme is more efficient than that of the hash-free variant of the Cramer-Shoup scheme.
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