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Abstract This paper focuses on analysis of security notions and construction methods for encryption schemes

whose resistance against attacks is not dependent on unproven computational assumptions. In the aspect of anal-

ysis of security notions, this paper introduces a new notion of almost perfect secrecy, gives precise formulation of

non-malleability in unconditional setting, and reveals relations among security notions. In addition, this paper

proposes construction methods which are provably secure in terms of our strong security definition.

Key words unconditional security, encryption scheme, perfect secrecy, non-malleability

1. Introduction

In this paper we address security notions and construc-
tion methods for encryption schemes that do not depend on
any computational assumption. This paper is an extended
version of [24] and [25].

Since the discovery of public-key cryptography [10], sig-

nificant advances have been reported on public-key encryp-

tion schemes [21] [14]. However, it is known that a number
of technical problems arise if encryption schemes are imple-
mented as suggested in[21] and{14] (For example, see [6]).
Thus it is important to have a formal notion of what a se-
cure encryption scheme is, and to construct an encryption
scheme which can be proven to be secure in the formal no-
tion. The current standard security notion which was re-

garded as the strongest notion is non-malleability [12] [13]
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under adaptive chosen-ciphertext attacks [20] (NM-CCA2) or
equivalently indistinguishability [16] under adaptive chosen-
ciphertext attacks (IND-CCA2)[4]. So far, many provable
secure public-key encryption schemes have been proposed by
researchers [3] [9] [19] [5] [27].

These schemes and the infrastructure within which they
operate have a limitation in that their underlying secu-
rity relies on the presumed computational difficulty of cer-
tain number-theoretic problems such as the integer factoring
problem and the (elliptic curve) discrete logarithm problem.
Although the hardness of these problems is unquestioned at
the moment, it can be dangerous to base the security of the
global information economy on & very small number of math-
ematical problems. More importantly, in the past several
years there have been significant progress in quantum com-
puters. It has been known that the quantum computer can
solve both factoring and discrete logarithm problems with
ease [7] [26] if it can be realized.

On the other hand, researchers have studied uncondition-
ally secure encryption schemes which do not rely on any un-
proven assumption, such as the hardness of the integer fac-
toring problem, since the famous information-theoretic work
on cryptography by Shannon [22]. Let us briefly look exist-
ing unconditionally secure schemes. In[22], Shannon intro-
duced a strong security notion, so-called perfect secrecy, of
information-theoretic or unconditional security where no lim-
its on an adversary’s computational power are assumed. The
Vernam’s one-time pad is the prime example which satisfies
perfect secrecy. Also, some researches dealing with uncondi-
tionally secure encryption have been reported with the aim of
reducing the size of shared secret keys so as to overcome the
limitations imposed by Shannon’s result [2] [8] [11] [17]. How-
ever, in these results, there exist some assumptions such as
memory-bounded adversaries or noisy channel. In this paper,
we study unconditionally secure encryption schemes without
any assumption.

As mentioned eatlier, the focus of this research is to an-
alyze strong security notions for encryption schemes whose
security does not depend on any computational assumption.
It is discussed by taking into account the security notions for
public-key encryption schemes and additional requirements
for encryption schemes in the unconditional security setting.
The main contribution for analysis of security notions is to
introduce a notion of almost perfect secrecy, to give precise
formulation of non-malleability in unconditional setting, and
to reveal relations among security notions. In addition, the
other contribut.ion of this paper is to propose construction

methods for unconditionally secure encryption schemes.

2. Definitions

2.1 Discussion

In this section, we consider how unconditionally secure en-
cryption should be defined. Of course, unconditionally se-
cure encryption implies that the underlying security must
not depend on any computational assumption, and that the
security of the encryption under consideration here should
be guaranteed for an adversary who has unlimited comput-
ing power. To address the question, there are two issues to
be discussed. The first is how to establish a proper model for
encryption schemes, and the second is to define, in a formal
way, unconditional security notion in that model.

When introducing a model for unconditionally secure en-
cryption schemes, care should be taken so that properties of
public—kéy encryption schemes are captured. In addition, the
model should be as simple as possible.

We start with the following typical model for encryption
schemes.
[Definition 1] An
scheme 11 = (GEN, ENC, DEC) consists of a key gener-
ation algorithm, GEN, an encryption algorithm, ENC, and

encryption

a decryption algorithm, DEC.

(1) Key Generation: The key generation algorithm
GEN outputs an encryption-key e for a sender and a
decryption-key d for a receiver, respectively.

(2) Encryption: The encryption algorithm takes an
encryption-key ¢ and a plaintext m to produce a ciphertext
c:= ENC(e,m).

(3) Decryption: The decryption algorithm takes a
decryption-key d and a ciphertext ¢ to produce either a plain-
text m or a special symbol L to indicate that the ciphertext
was “invalid”, where the precise definition that a ciphertext
is tnvalid is provided below.

[Definition 2]
Then, a ciphertext ¢ is called valid if ¢ = ENC(e,m) for

Let e be an encryption-key of a sender.

some plaintext m. Otherwise, ¢ is called invalid.

To simplify our discussions, we consider a model of en-
cryption schemes in which there are a single receiver R and
multiple senders Si, S»,.... We wish an encryption scheme
to fulfill the following requirement.

[Requirement 1]

(1) Encryption and Decryption: Any sender can non-
interactively create a ciphertext with his encryption-key
and the encryption algorithm. Also, a receiver can mnon-
interactively check whether a ciphertext received from a
sender is valid with his decryption-key and the decryption
algorithm, and can non-interactively recover a correct plain-
text if the ciphertext is valid. More precisely, for a receiver
R with his decryption-key d, if ¢ is valid, DEC(d,c) # L

—284 —



and DEC(d, ENC(e,m)) = m for any plaintext m and any
pair of matching encryption and decryption key (e,d); and
if ¢ is invalid, DEC(d,c) = L.

(2)  Security: It is difficult for any adversary to succeed
in an attack. Here, we assume that not only any outsider
in our model is dishonest but also any user in our model,
except a legitimate sender who created a target ciphertext
and a legitimate receiver who receives the ciphertext, is not
always honest. And each of them may become an adversary
who tries an attack.

The security which we require in the above will be dis-
cussed for more details in Section 2.2 (see the next subsec-
tion).

A part of requirements in Requirement 1 can be relaxed
admitting an small error probability as follows.
[Requirement 2] A part of Encryption and Decryption in
Requirement 1 is replaced with the following:

(1)  Encryption and Decryption: For a receiver R with
his decryption-key d, if a ciphertext ¢ is valid, the receiver can
always recover a plaintext (ie. DEC(d, ENC(e,m)) = m
for any plaintext m and any pair of matching encryption
and decryption key (e, d)); and if ¢ is invalid, DEC does not
always returns L, but the probability that DEC does not
erroneously returns L (i.e. DEC(d,c) # L for an invalid ci-
phertext ¢) is at most €, where ¢ is not always zero but very
small probability.

In encryption schemes based on public-key cryptography,
an_encryption-key is publicly known and commonly used
among plural senders. Then, in order for the encryption
scheme to have enough security it is necessary that the
encryption algorithm ENC in Definition 1 is probabilistic
(see[16]). In fact, if ENC is deterministic, the encryption
scheme cannot have indistinguishability.

In considering a model of unconditionally secure encryp-
tion, we assume that ENC is deterministic so that‘ we can
argue the model as simple as possible. Of course, if there
exists no encryption that enjoys enough security for an ad-
versary with unlimited computing power under the assump-
tion, it seems to be meaningless to consider such a model in
which ENC is deterministic. However, it is shown later that
under the assumption an encryption scheme which satisfies a
strong security notion actually exists, where the strong secu-
rity notion will be precisely defined later. Thus, henceforth
in this paper we go on discussion under the assumption that
ENCis deterministic.

Although we will give precise definition of strong security
later, we can obviously say that an encryption scheme against
which an adversary can obtain a corresponding plaintext
completely from a ciphertext is insecure. In this sense, we

can easily show the following: In encryption schemes based

on public-key cryptography, an encryption-key is publicly
known and commonly used among plural senders. How-
ever, the following insists that it is unlikely in an encryp-
tion scheme in which an adversary has unlimited computing
power.
[Proposition 1] Suppose that there exists an encryption
scheme against which even an adversary with unlimited com-
puting power cannot obtain a corresponding plaintext com-
pletely from a ciphertext.. Then, in the encryption scheme
an encryption-key of each sender must be secret for other
senders, where the adversary means an outsider or any user
except the legitimate sender and receiver.

Therefore, in an encryption scheme where an adversary
has unlimited computing power, from Proposition 1 it follows
that key generation algorithm must generate encryption-keys
whose number is equal to that of senders and they must be
secretly distributed to senders, individually. Thus, this fact
make us assume that the number of senders is limited.

In this paper, for simplifying a model we prepare a trusted
authority, denoted by TA, whose roles are: to generate
encryption-keys and a decryption-key by using a key gen-
eration algorithm; and to distribute the decryption-key to
the receiver and each encryption-key to each corresponding
sender, respectively, in a secure way.

2.2 Security

We now address the security notions in our encryption
model: U := {S51,52,...,5,, R} is a set of users, where S;
(1 £ ¢ < n) are all senders and R is a receiver.

In discussing security notions of encryption schemes in
public-key cryptography, it is a current standard approach
to consider separately the various possible goals and vari-
ous possible attack models, and then to obtain each security
definition as a pairing of a particular goal and a particular
attack model (see[4]). Thus, throughout this paper we also
take this idea in discussing security notions of encryption
schemes in unconditional security setting. '

2.2.1 Goals

In encryption schemes in public-key cryptography, three
different goals are mainly considered: Non-malleability[12]
[13); Semantic security[16]; and Indistinguishability of en-
cryptions[16]. First, non-malleability means that given a
challenge ciphertext ¢, it is infeasible for an adversary to
create a different ciphertext ¢/, where ¢ # ¢, such that the
plaintexts m and m’ of these ciphertexts ¢ and ¢, respec-
tively, are meaningfully related (for example, m’ = m + 1).
Secondly, semantic security is a computational analogue of
Shannon’s definition of perfect secrecy[22], and hence means
that given a challenge ciphertext ¢, it is infeasible for an ad-
versary to derive any partial information on the plaintext

m underlying the ciphertext c¢. Finally, indistinguishability
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of encryptions means that it is infeasible for an adversary
to distinguish encryptions of any known pair of plaintexts.
This definition is technical in nature, and is known to be
equivalent to semantic security [186].

As a strong security definition, perfect secrecy due to Shan-
non [22] is widely recognized. And of course we should take
into account this notion in considering security notions of
encryption in unconditional security setting. In this paper,
we also consider almost perfect secrecy which is a relaxed no-
tion of perfect secrecy: Almost Perfect Secrecy means that
given a challenge ciphertext ¢, the partial information on the
plaintext from the ciphertext which an adversary can derive
might exist, but it is very small.

In addition, taking into account éecurit.y definitions of en-
cryption schemes in public-key cryptography, it is reason-
able to comsider an information-theoretic analogue of the
non-malleability. Thus, in this paper we consider the follow-
ing security definitions in unconditionally secure encryption
schemes:

[Definition 3] (Security Notions: Goals)

(1) Perfect Secrecy (PS): It is difficult for an adversary
to derive any partial information on the plaintext from a
target ciphertext.

(2) Almost Perfect Secrecy (APS): The partial infor-
mation on the plaintext from a target ciphertext which an
adversary can derive might exist, but it is very small.

(3) Non-Malleability (NM): Given a challenge cipher-
text ¢, it is difficult for an adversary to create a different
ciphertext ¢/, where ¢’ # ¢, such that the plaintexts m and
m’ of these ciphertexts ¢ and ¢, respectively, are meaning-
fully related.

2.2.2 Attacking models

In this section we consider attacking models for encryp-
tions in unconditional security setting. We address two
points: one is on the secrecy of a receiver’s decryption-key;
and another is on that of each sender’s encryption-key.

On the secrecy of a receiver’s decryption-key, the following
security notions can be considered as well as that of encryp-
tion schemes in public-key cryptography [18)[20].
[Definition 4] (Attacking Models against a Receiver): In
the following, an adversary means a dishonest sender or an
outsider in our model.

(1) CGihertest-Only Attacks (COA): If a dishonest sender
is adversary, the information which the adversary can use is
that of his encryption-key for attacking the challenge cipher-
text. If an outsider is an adversary, information avaiable
to him is only publicly known information for attacking the
challenge ciphertext. )

(2) (Generalized) Non-adaptive Chosen-Ciphertezt At-
tacks ((g)CCA or (g)CCA1)[18][1]: An adversary gets ac-

In CCA
(or CCA1), the adversary may use this decryption func-

cess to an oracle for the decryption function.

tion only for the period of time preceding his being given
the challenge ciphertext. We also generalize the above CCA
(CCA1) to gCCA (gCCA1) with respect to some relation
3(-,-) on the ciphertexts which is recognizable to everyone.
If two ciphertexts ¢; and ¢ (c1 * c2) satisfy (e, e2) = 1,
DEC(d,c1) = DEC(d,c2) for any decryption-key d. In
gCCA, the adversary cannot ask not only the challenge ci-
phertext ¢ but also any ¢ equivalent to ¢ with respect to
S(, ), that is, any ¢ with S(¢,¢') = 1.

(3) (Generalized) Adaptive Chosen-Ciphertest Attacks
((9)ACCA or (g)CCA2)[20}{1]: An adversary gets access to
an oracle for the decryption function. In ACCA (or CCA2),
the adversary may use this decryption function not only for
the period of time preceding his being given the challenge
ciphertext, but also after obtaining the challenge ciphertext.
The only restriction is that the adversary may not ask for
the decryption of the challenge ciphertext itself. We can also
generalize the above ACCA (CCA2) to gACCA (gCCA2) as
in the case of gCCA.

We next consider attacking models on the secrecy of a
sender’s encryption-key, as well. We introduce attacking
models against a sender S based on the idea of Definition
4.

[ Definition 5]

be a sender. In the following, an adversary means a dishonest

(Attacking Models against a Sender): Let S

sender or an outsider in our model.

(1)  Cihertest-Only Attacks (COA): If a dishonest sender
is adversary, the information which the adversary can use is
that of his encryption-key for attacking the challenge cipher-
text. If an outsider is an adversary, information avaiable
to him is only publicly known information for attacking the
challenge ciphertext.

(2) Non-adaptive Chosen-Plaintezt Attacks for S (CPA
or CPA1): An adversary gets access to an oracle for the

encryption function of S. The adversary may use this en-

" cryption function only for the period of time preceding his

being given the challenge ciphertext.

(3) Adaptive Chosen-Plaintert Attacks for S (ACPA or
CPA2): An adversary gets access to an oracle for the encryp-
tion function of S. The adversary may use this encryption
function .not only for the period of time preceding his being
given the challenge ciphertext, but also after obtaining the
challenge ciphertext.

Therefore, a strong notion of attacking models is ACPA
and (g)ACCA: An adversary gets to an oracle for the en-
cryption function of any sender. The adversary may use this
encryption function not only for the period of time preceding

his being given the challenge ciphertext, but also after ob-
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taining the challenge ciphertext. In addition, the adversary
gets access to an oracle for the decryption function. The
adversary may use this decryption function not only for the
period of time preceding his being given the challenge cipher-
text, but also after obtaining the challenge ciphertext. The
only restriction is that the adversary may not ask for the
decryption of the challenge ciphertext itself (and equivalent
ciphertexts).

2.2.3 Strong security notions

In this section, we summarize a strong security notion
based on. the argument in Sections 2.2.1 and 2.2.2. From
Definitions 3, 4 and 5, we can conclude:
[Definition 6] (Strong Security Notion) Let II be an en-
cryption scheme. Then, II is called secure if II satisfies both
(A)PS-ACPA&(g) ACCA and NM-ACPA&A(g)CCA, where
ACPA&(g) ACCA means ACPA and (g)ACCA.

2.3 Some Remarks on Security Notions

2.3.1 The security parameter

In defining a precise model of unconditionally secure en-
cryption schemes, we introduce the notions of security pa-
rameter which is usually introduced in encryption schemes
with computational security in public-key cryptography.
As well as a security parameter in public-key encryption
schemes, a security parameter in the context of uncondition-
ally secure encryption is introduced as follows:
[Definition 71 A security parameter k is a parameter which
(1) overall security; (2) the key-length of
encryption-keys and that of decryption-keys; (3) the length

determines:

of plaintexts and that of ciphertexts; (4) the running time of
encrypting and decrypting algorithms.

2.8.2 'The number of colluders

It is resonable to assume that some dishonest users might
collude to ‘succeed an attack. Thus, we adopt the idea of
threéhold scheme. Namely, we assume that there exists at
most w colluders among the users U = {S1,52,. .., Sn, R}.

2.3.3 The numbers of encrypting and decrypting oper-

ations

In order to strictly give security notions, we should intro-
duce the number up to which an adversary can have access
to an encryption oracle, and the number up to which the
adversary can have access to a decryption oracle. In this
paper, we introduce the number up to which each sender is
allowed to encrypt plaintexts, denoted by 1, and the num-
ber up to which the receiver is allowed to decrypt ciphertexts,
denoted by ¢'. This implies that in order to decrypt a tar-
get ciphertext an adversary can obtain at most 1 — 1 pairs
of some plaintexts and corresponding ciphertexts from the
target sender by using him as an encryption oracle, and that
the adversary can obtain at most ¢’ pairs of some ciphertexts

and corresponding plaintexts from the receiver by using him

as a decryption oracle.
‘3. Security notions and their relations

3.1 The model
As mentioned in the previous section, we consider the fol-
lowing model of encryption schemes.
[Definition 8] An
U, TA, M, C, £, D, GEN, ENC, DEC):
1. Notation:
o U:={Si,52,...,5., R} is a finite set of users, where

encryption scheme I1  consists of

R is a receiver and others S;(1 £ 7 < n) are senders,

e TA is a trusted authority,

o M= {My}, N Is asequence of finite sets of possi-
ble plaintexts. Here, k is a security parameter and My C
{0, 1}# %) where [3 (k) is a polynomial of &,

o C = {Ci} eV is & sequence of finite sets of possi-
ble ciphertexts. Here, k is a security parameter and Cx C
{0, 1}¥c¢® where I (k) is a polynomial of k,

o & = {&} N Is @ sequence of finite sets of possi-
ble encryption-keys. Here, k is a security parameter and
& C {0,1}'#®) where Iz (k) is a polynomial of &,

o D = {Di}, N is a sequence of finite sets of possi-
ble decryption-keys. Here, k is a security parameter and
Dy € {0,1}2®), where Ip(k) is a polynomial of &,

e GEN is a key generation algorithm which outputs
encryption-keys and a decryption-key, ‘

e ENC:E& x M —» Cis an encryption algorithm,

e DEC:DxC— M{J{L}is a decryption algorithm.

2. Key Generation and Distribution by TA: The
TA generates an encryption-key ¢; € & for each sender S;,
and a decryption-key d € D for a receiver R using GEN. Here
GEN is a probabilistic algorithm which produce, on input
1*, where k is a security parameter, keys (e1,€2,..-,€n, d) of
matching encryption and decryption keys, where e; € & for
1 <4< nandd € Di. Then, TA transmits the encryption-
key e: to the sender S; and the decryption-key d to the re-
ceiver R via a secure channel. After delivering these keys,
the TA may erase the keys (e1,€2,...,€n,d) from his mem-
ory. Each sender keeps secret his encryption-key, and the
receiver keeps secret his decryption-key.

3. Encryption: For a plaintext m € My, the sender
S: generates a ciphertext ¢ = ENC(ei,m) € Cx by using his
encryption-key e; in conjunction with ENC. Here, we as-
sume that ENC is deterministic, but in general it might be a
randomized algorithm. If it is deterministic, for a plaintext
m and an encryption-key e;, the ciphertext ¢ := ENC(e;,m)
is uniquely determined, while in the case of a randomized él-
gorithm many different ciphertexts can be produced for the
same plaintext.

4. Decryption: On receiving a ciphertext ¢ from a
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sender S:, the receiver R recovers a plaintext using his
decryption-key d and DEC. More precisely, if DEC(d, ¢) =
L, R regards the received ciphertext c as invalid. Otherwise,
R recovers the plaintext m = DEC(d, c) as valid ciphertext.
Here, we assume that DFEC is deterministic.

Let 1/ and ¢’ be the number up to which each sender is
allowed to encrypt plaintexts and the number up to which
the receiver is allowed to decrypt ciphertexts, respectively,
and let w be the number of possible colluders among users.
Let W := {W c U| |[W| £ w}. Each element of W repre-
sents a group of possibly collusive users. For a set 7 and a
non-negative integer ¢, let p] := {T' C T | |T| £ t} be the
family of all subsets of 7 whose cardinality are less than or
equal to t. Of course, the empty set. 0 is always contained in
of -

With notations above, we will discuss the security notions
in unconditionally secure encryption schemes in the sequel.

3.2 Security notions

In this subsection, we formally define security notions

based on the argument in Section 2. First of all, we define
an ezponentially negligible function as follows.
[Definition 9]  (Exponentially Negligible Function) Let (k)
be a function defined over the positive integers k €N that
takes non-negative real numbers. Then, (k) is called eaz-
ponentially negligible if there exists an integer ko and some
constant @ (1 < a) such that e(k) < & for all k 2= ko.

Using the notations introduced in this section, we now
formulate the strong security notions in Definition 6,
that is, (A)PS-ACPA&(g)ACCA and NM-ACPA&(g) ACCA.
along with our encryption model. First, we give PS-
ACPA&(g)ACCA as follows.

[Definition 10] (Perfect Secrecy under ACPA&gACCA)
(cf: [22]) Let k be a security parameter. Let Pr(m) be prob-
ability distribution on M. For W € W such that S;, R ¢ W,

we define

s .
PPS(S;, W) 1= max max
ew Ms;={mg;cs;}
max max Imax
Mgy Mg Mg, (U#5) Cr c

[Pr(m | c,ew, Ms,, ..., Ms,,Cr) — Pr(m)],

where ew is taken over all possible combination of

encryption-keys of W; Ms, = {ms;,cs;} is taken over
pﬁ’_"lxc" such that any element (ms,,cs;) of Ms, is a pair

of a plaintext ms; and a corresponding ciphertext cs; en-
crypted by Sj; Ms (I # j) is taken over gff'x %

"
that any element (ms,,cs,;) of Ms, is a pair of a plain-

such

text ms, and a corresponding ciphertext cs, encrypted by

Cre X (M L
Si; Cr is taken over p;}fx( Uty such that any ele-
ment of Cr is a pair of a ciphertext cg and a decryption

result of cr by R; and c¢ is taken over valid ciphertexts

which is not equivalent to any ck € Cr with respect to
any recognizable relation &(-,-). Furthermore, we define
PPS = maxs; w P{%(S;, W). Then, we require PFS = 0.
Next, we define almost perfect secrecy which means that
the information on the plaintext obtained from the target
ciphertext is exponentially negligible, which is new and a
relaxed notion of perfect secrecy.
[Definition 11]  (Almost Perfect
under ACPA&gACCA) Let k be a security parameter and

e(k) an exponentially negligible function. For simplicity, we

Secrecy

denote the exponentially negligible function (k) by e. We
define P*S as in Definition 10. Then, we require P75 < ¢.
Finally, we define an information-theoretic analogue of the
non-malleability as follows. To the authors’ current knowl-
edge, this is the first time when the formulation is precisely
presented.
[Definition 12] (Non-Malleability under ACPA&gACCA)
Let k be a security parameter and €(k) an exponentially neg-
ligible function. For simplicity, we denote the exponentially
negligible function e(k) by e. For a relation ® on My, we
write R(z1,z2) = 1 if the relation R holds for 2,22 € M;,
and we write ®(x1,z2) = 0 otherwise. For any relation ® on
My, we extend R to the relation R on M {1} as follows:

%(131,1‘2)
0 ifzi=_Loras=1

if 1,22 € My

&(561,132) = {

For W € W such that S;, R ¢ W and a relation ® on Mj,
we define
PYM(R, S, W) := max max
ew Mg;={mg;,cqs}
max max max max
Mgy oM, Mg, (I#£5) Cr P o

| lzlr(él'i(DEC(d7 ¢), DEC(d, ")) = ll¢,c, ew,

Ms,,...,Ms,,Cg) — iPr(éf?(m, DEC(d,c)) = 1)),

where ew is taken over all possible combination of
encryption-keys of Wi Ms, = {ms;,cs,} is taken over
7% ¥ such that any element (ms;,cs;) of Ms; is a pair

of a plaintext ms; and a corresponding ciphertext cs; en-
crypted by Sj; Ms, (I # §) is taken over pﬁ,""xck such that
any element (ms,, cs,) of Mg, is a pair of a plaintext ms, and
a corresponding ciphertext cs, encrypted by S;; Cr is taken

C M AL
over pot " «Uten

such that any element of Cr is a pair
of a ciphertext cr and a decryption result of cr by R; ¢ is
taken over valid ciphertexts generated by S;; and ¢ is taken
over ciphertexts such that ¢’ # c. Here c is not equivalent to
¢ with respect to any recognizable relation (-, -), and both
cand ¢ are also not equivalent to any ciphertext in Cr with

respect to (-, ). Furthermore, we define

PYM(R) = max PN (R, 5, W).
5
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Then, we require that for any relation ®, PY*(R) < e.
‘ 3.3 Relations among security notions

In this subsection, we reveal relations among security no-
tions.” Among security notions, we consider the following
notions: three goals, that is, Perfect Secrecy (PS), Almost
Perfect Secrecy (APS) and Non-Malleability (NM); and two
attacking models, that is, Ciphertezt-Only Attacks (COA)
which is the most powerless attacking model, and Adaptive
Chosen-Plaintext Attacks and generalized Adaptive Chosen-
Ciphertest Attacks (ACPA&gACCA) which is the most pow-
erful attacking model.

" [Theorem 1] The following relations among security no-

tions hold:
I R
NM-ACPAKZACCA ——— s+ PS-ACPA&gACCA APSACPA&ZACCA
A\ i) I
NM-COA PS-COA APS.COA

[L

where “X — Y” means that X always implies Y, while “X
# Y” means that there exists an encryption scheme which

is X but not Y.
4. Construction

In this section we propose construction methods for en-
cryption schemes which is secure in our strong security no-
tion (See Definition 6). We present two kinds of construction
methods: One is a generic construction method for strong en-
cryption schemes by the use of weak encryption schemes and
signature schemes; and another is a concrete construction
method for strong encryption schemes by the use of polyno-
mials over finite fields.

4.1 A Generic Composition Method

We present a generic construction method for encryp-
tion schemes which is secure in our strong security no-
tion. Loosely speaking, the construction for strong encryp-
tion schemes can be obtained by combining weak encryption
schemes and signature schemes. More precisely, we can show
the following.
[Theorem 2]
is APS-COA and a signature scheme which is EAUF-
ACMA&ACSA, we can construct an encryption scheme
which is APS-ACPA&gACCA and NM-ACPA&gACCA,
where “EAUF-ACMA&ACSA” means Ezistentially Accep-
tance UnForgeability under Adaptive Chosen-Message At-

If there exist an encryption scheme which

tacks and Adaptive Chosen-Signature Attacks which is a
strong security notion for unconditionally secure signature

schemes proposed in {23].

[Remark 1]
an encryption scheme which satisfies APS-ACPA&gACCA
and NM-ACPA&gACCA. In fact, we can take one-time pad
as an encryption satisfying APS-COA and can consider a

From Theorem 2 we can actually construct

similar construction of a signature scheme which is EAUF-
ACMA&ACSA as in[23].

4.2 An Efficient Construction Method

In this subsection, we propose a concrete construction
method for strong encryption schemes by the use of poly-
nomials over finite fields. Essentially, the underlying idea
of the construction presented in this subsection is based on
Remark 1. However, the construction is better than the con-
struction obtained by directly applying the idea in Remark
1, since the required memory size of the keys in the former
construction is less than that of the keys in the latter.

In the following, we propose a construction of key gen-
eration algorithm, GEN, encryption algorithm, ENC, and
decryption algorithm, DEC along with our model. In the
sequel, we use the notations introduced in the previous sec-
tions.

o GEN: The key generation algorithm, GEN, which,
on input 1%, picks a k-bit prime power ¢, constructs a finite
field F, with g elements. We assume that the identity of
each sender S; is also denoted by S; and that S; €F,. It
also picks uniformly at random a polynomial over F,; with
two variables f(X,Y) and two polynomials over F,s with
(¥ + w + 2) variables g,(X,Y1,Ya,...,Ysu, Z)(s = 1,2) as

follows:

FX,Y) = 5: i ai; X'Y?

i=0 j=0

n-lé+w ¥

GV, Ye, o Yow, 2) = 9 % Y b XY, 28

i=0 j=1 k=0

n-1 ¥
+3 S X 2 (s=1,2) (ay € Fq ) € F ).
i=0 k=0
where the coefficients a:; are chosen uniformly at random
from F, and the coefficients bfj,f are chosen uniformly at
random from Fgs.
Moreover, it uniformly at random picks two elements
v v (€ (F3)***). Then, an encryption-key e; of a

sender S; is

e = (f(8,Y), 1 (S, Y1, ..., Yypu, Z), 92(Si, Y1, .

and a decryption-key d of the receiver R is
d=(f(x,Y), 0,02, g1 (X, vV, 2), g2 (X, v, 2)).

The algorithm GEN returns (F,,F,%,¥) and

(er,e2,...,en,d), where & : F,> — F 3 is an isomorphism
of vector spaces over F,,and ¥ : {1,2,...,¢¥} — F, is an

injective map.
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For simplicity, we assume that (Fy, F 3,9, ¥) is publicly
known information and that M C Fy in the sequel.
o ENC: When a sender S; encrypts a plaintext m €Fy,
ENC computes .

F(S:,2(D) = f(5,Y)
¢ =m+ f(S:;, ¥(1))
ar = g1(8i, Y1,...

Y=v()

Yove, Z) z=a(s;,9(1),¢)

as = ga(S, Y1, .., Yoo, Z)| z=a(s;, 2(1),c)

where [(l = 1,2,...

generation of a ciphertext is exactly the /-th generation. Note

,%) is a counter and it means that this

that the number up to which each sender is allowed to gen-
erate ciphertexts is 1. Then, the ciphertext of the plaintext
mis ¢:= (Si,l,¢ a1, a2).

o DEC: On inputting a ciphertext ¢ = (Si,1,¢’, a1, a2),

DEC computes:
T = Gsliy, vy )= (s=1,2)
1l = ge(X, 0", 2)|xms; 2= a(si w000 (s=1,2).

Then, if r1 = 7} and r2 = rh, the plaintext is recovered by
computing m = ¢ — f(X,Y)|x=s, y=v(@) Otherwise, DEC
regards the ciphertext c¢ as invalid, and outputs L.
Then, we can show the following result.

[Theorem 3] The above construction results in an encryp-
tion scheme which satisfies APS-ACPA&gACCA and NM-
ACPA&gACCA under the following conditions: there exist
at most w colluders; the maximum number up to which each
sender is allowed to emcrypt plaintexts is at most 1; and
the maximum number up to which the receiver is allowed to

decrypt ciphertexts is at most .
5. Conclusion

This paper presented the analysis of security notions and
construction methods for unconditionally secure encryption
schemes. This paper introduced a new notion of almost per-

fect secrecy, gave precise formulation of non-malleability in

unconditional setting, and revealed relations among security '

notions. In addition, this paper proposed construction meth-
ods which are provably secure in terms of our strong security
definition.
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