2003—CSEC-22 (12)
2003717

HEEA HERAERES FRERE
IPSJ SIG Technical Report

BT FIV e XML 7 &7 &2 A #ilfE
WEOED PR &E TE E P At

t BA7 AC—T L () FABERHRAT T 242-8502 AR MM 1623-14

HHEL XMLF—ER—RICHTB7 7 AHERY S —TR&, 772 ADHNREBET 57HIC XPath RE D
ISAEFEEFAVBCEAB, LML, FOX53E7 7 AHERY —i&. XQuery DLy itk >TIEAHEL
5B, CORERERTBHIC., BAZ XML 7 7t AHEO b OBNMFERRT 5, 7 7 AGHERY > —,
BRER. BLU., AF—IHEXON5B L., BREINE. COREISIF—VTRFTEINZHT ¥t AHEHE Y
U E o TREHENZEREPBEIC 7T VEALRWERIEEN TV EHE SHRET B, BRI, EERD
FeBAR—ZLH L TV EIRERZLFMET A L A EITTEZDT, ETRORKREL, BUBINEIRETZ
b ol BRI RELED, BAlZ. XQuery DicHOBMMFOT Ok X AT 2FEL . ERICK-TEDE
MR R,

F——F XML F—Z~—ZA, XQuery. XPath, 7 7 A%, A—F<r>

XML Access Control Using Static Analysis

Makoto MURATAT, Akihiko TOZAWA?, Michiharu KUDO', and Satoshi HADA'

1 IBM Japan, Co.,Ltd. Tokyo Research Laboratory 1623-14, Shimotsuruma, Yamato, Kanagawa,
242-8502 Japan

Abstract Access control policies for XML database typically use regular path expressions such as XPath for spec-
ifying the objects to be accessed. However such access control policies are burdens to XQuery engines. To relieve
this burden, we introduce static analysis for XML access control. Given an access control policy, query expression,
and an optional schema, static analysis determines if this query expression is guaranteed not to access elements
or attributes that are permitted by the schema but hidden by the access control policy. Static analysis can be
performed without evaluating any query expression against an actual database. Run-time checking is required only
when static analysis is unable to determine whether to grant or deny access requests. We have built a prototype of
static analysis for XQuery, and shown the effectiveness through experiments.

Key words XML database, XQuery, XPath, access control, and automaton

languages achieve expressiveness by using XPath as a simple

1. Introduction . A
and powerful mechanism for handling an infinite number of

XML has become an active area in database research.
XPath and XQuery from the W3C have come to be widely
recognized as query languages for XML, and their implemen-
tations are actively in progress. In this paper, we are con-
cerned with fine-grained access control for XML database
systems. It should ideally provide expressiveness as well as
efficiency. That is, (1) it should be easy to write element-
and attribute-level access control policies, and (2) it should
be possible to efficiently determine whether or not an access
to an element or an attribute is granted by such fine-grained
access control policies.

Some early experiences (1], (5], [8] with access control for

XML documents have been reported already. Their policy

paths. For example, to deny accesses tc name elements that
are immediately or non-immediately subordinate to article
elements, we only have to specify a simple XPath expression
//article//name as part of an access control policy. XPath-
based access control policies are additional burdens for XML
query engines, however. Whenever an element or attribute
in an XML database is accessed at run time, a query en-
gine is required to determine whether or not this access is
granted by the access control policies. Since such accesses
are frequently repeated during query evaluation, naive im-
plementations for checking access control policies will easily
lead to unacceptable performance.

In this paper, we introduce static analysis as a new ap-

proach for XML access control. Static analysis examines ac-
cess control policies and query expressions as well as schemas,
if present. Unlike run-time checking described above, static
analysis does not examine actual databases. Thus static
analysis can be performed at compile time (when a query
expression is created rather than each time it is evaluated).
Run-time checking is required only when static analysis is
unable to grant or deny access requests without examining
the actual databases. In addition, static analysis facilitates
query optimization, since access-denied XPath expressions in
queries can be rewritten as empty lists at compile time.
The key idea for our static analysis is to use automata for
representing and comparing queries, access control policies,
and schemas. Our static analysis has two phases. In the
first phase, we create automata from queries, access control
policies, and (optionally) schemas. In the second phase, we
compare these automata to make a static access decision.
We have three possible decisions: (1) accesses by queries
are always-granted; (2) they are always-denied; and (3) they
are statically indeterminate. Run-time access control is no
longer required when the decision is either always-granted
or always-denied, but it is still needed when the decision is

statically indeterminate.
2. Preliminaries

In this section, we introduce the basics of XML, schema
languages, XPath, and XQuery.

2.1 XML

An XML document consists of elements, attributes, and
strings. These elements collectively form a tree. The con-
tent of each element is a sequence of elements or strings. An
element has a set of attributes, each of which has a name
and a value. We hereafter use £¥ and 4 as a set of tag
names and that of attribute names, respectively. To distin-
guish between the symbols in these sets, we prepend '@’ to
symbols in T4,

An XML document representing a medical record is shown
in Figure 1. This XML document describes diagnosis and
chemotherapy information for a ¢ertain patient. Several com-
ments are inserted in this document. For the rest of this
paper, we use this document as a motivating example.

2.2 Schema

A schema is a description of permissible XML docu-
ments. A schema language is a computer language for writing
schemas. DTD, W3C XML Schema, and RELAX NG from
OASIS (and now ISO/IEC) are notable examples of schema
languages. We do not use particular schema languages in

this paper, but rather use tree regular grammars (4] as a for-
mal model of schemas. Murata et al. [9] have shown that tree
regular grammars can model DTD, W3C XML Schema, and

<record>
<diagnosis>
<pathology type="Gastric Cancer">
Well differentiated adeno carcinoma
</pathology>
<comment>This seems correct</comment>
</diagnosis>
<chemotherapy>
<prescription>5-FU 500mg</prescription>
<comment>Is this sufficient?</comment>
</chemotherapy>
<comment>How was the operation?</comment>
</record>

B 1 An XML document example

RELAX NG.

A schema is a 5-tuple G = (N,2F,£4, S, P), where N is
a finite set of non-terminals, £F is a finite set of element
names, 4 is a finite set of attribute names, S is a subset
of F x N, and P is a set of production rules X — r A
(X € N, r is a regular expression over $E x N,and Aisa
subset of £4).

Produétion rules collectively specify permissible element
structures. We separate non-terminals and element names,
since we want to allow elements of the same name to have
different subordinates depending on where these elements
occur. For the sake of simplicity, we do not handle text as

values of elements or attributes in this paper.
Example 1 A schema for our motivating example is
Gi = (N1, £, 28, 51, P1), where

N1 = {Record, Diag, Chem, Com, Patho, Presc},

£ = {record,diagnosis, chemotherapy,
comment, pathology, prescription},

£ = {@type},

81 = {record[Record]},

P; = {Record — (diagnosis|Diag]*,

chemotherapy{Chem]*,

comment[Com|*, record[Record]*) 8,
Diag — (pathology[Patho], comment{Com]*) 8,
Chem — (prescription(Presc]*,

comment [Com]*) 9,
Com — € §, Patho — ¢ {@type}, Presc — € 0}.

An equivalent DTD is shown below.
<1ELEMENT record (diagnosis*,chemotherapy*,
comment*,record)>

<!ELEMENT diagnosis (pathology, commentx*)> ‘
<1ELEMENT chemotherapy (prescription*,comment*}>
<1ELEMENT comment (#PCDATA)>

<!ELEMENT pathology (#PCDATA)>

<!ATTLIST pathology type CDATA #REQUIRED>

<!ELEMENT prescription (#PCDATA)>

A schema is said to be recursive if it does not impose any
upper bound on the height of XML documents. The above
schema is recursive, since record elements are allowed to
nest freely. Most schemas (e.g., XHTML and DocBook) for
narrative documents are recursive. Our static analysis can
handle recursive schemas and an infinite number of permis-
sible paths.

2.3 XPath

Given an XML document, we often want to locate some
elements by specifying conditions on elements as well as their
ancestor elements. For example, we may want to locate
all anchors (e.g., <a ...> of XHTML) elements occurring
in paragraphs (e.g., <p ...> of XHTML). In this example,
“anchor” is a condition on elements and “occurring in para-
graphs” is a condition on ancestor elements. Such conditions
can be easily captured by regular path expressions, which
are regular expressions describing permissible paths from the
root element to elements or attributes.

XPath provides a restricted variation of regular path ex-
pressions. XPath is widely recognized in the industry and
used by XSLT and XQuery. We focus on XPath in this
paper, although our framework is applicable to any regular
path expression.

XPath uses awes for representing the structural relation-
ships between nodes. For example, the above example can
be captured by the XPath expression //p//a, where // is
an axis called “descendant-or-self”. Although XPath pro-
vides many axes, we consider only three of them, namely
“descendant-or-self” (//), “child” (/), and “attribute” (@)
in this paper. Extensions for handling other axes are dis-
cussed in Section 6.. Namespaces and wild-cards are outside
the scope of this paper, although our framework can easily
handle them.

XPath allows conditions on elements to have additional
conditions. For example, we might want to locate foo el-
ements such that their @bar attributes have "abc" as the
values. Such additional conditions are called predicates.
This example can be captured by the XPath expression
//fool@bar = "abc"], where [@bar = "abc"] is a predi-
cate. ’

‘2.4 XQuery

Several query languages for XML have emerged recently.
Although they have different query algebras, most of them
use XPath for locating elements or attributes. Our frame-
work can be applied to any query language as long as it uses
regular path expressions for locating elements or attributes.
However, we focus on XQuery in the rest of this paper.

FLWR (FOR-LET-WHERE-RETURN) expressions are of
central importance to XQuery. A FLWR expression consists
of a FOR, LET, WHERE, and RETURN clause.

The FOR or LET clause associates one or more variables
with XPath expressions. By evaluating these XPath expres-
sions, the FOR and LET clauses in a FLWR expression create
tuples. The WHERE clause imposes additional conditions on
tuples. Those tuples not satisfying the WHERE clause are
discarded. Then, for each of the remaining tuples, the RE-
TURN clause is evaluated and a value or sequence of values
is returned.

The following is a sample query that lists the pathology~

comment pairs for the Gastric Cancer.
<TreatmentAnalysis>

{

for $r in document("medical_record")/record

where $r/diagnosis/pathology/@type

= "Gastric Cancer"
return
$r/diagnosis/pathology, $r//comment

}
<TreatmentAnalysis>

3. Access Control for XML Documents

In this paper, access control for XML documents means
element- and attribute-level access control for a certain XML
instance. Each element and attribute is handled as a unit
resource to which access is controlled by the corresponding
access control policies. We use the term node-level access
control to represent both the element-level and the attribute-
level access control.

3.1 Syntax of Access Control Policy

The node-level access control policy for XML documents
applies similar syntax used in the conventional access con-
trol models (e.g. 3], [6], [10]). In general, the access control
policy consists of a set of access control rules and each rule
consists of an object (a target node), a subject (a human user
or a computer process), an action, and a permission (grant
or denial) meaning that the subject is (or is not) allowed to
perform the action on the object. The subject value is speci-
fied using a user ID, a role or a group name but is not limited
to these. For the object value, we use an XPath expression.
The action value can be either read, update, create, or delete,
but we deal only with the read action in this paper because
the current XQuery does not support other actions. The
following is the syntax of our access control policy:

(Subject, +/-Action, Object)

The subject has a prefix indicating the type of the sub-
ject such as role and group. “+” means grant access and “-”
means deny access. In this paper, we sometimes omit spec-
ifying the subject if the subject is identical with the other

rules.

Suppose there are three access control rules for the docu-

ment described in Section 2. 1:

Role: Doctor
+R, /record

Role: Intern
+R, /record

-R, //comment

Each rule is categorized by the role of the requesting sub-
ject. The first rule says that “Doctor can read record ele-
ments”. The second rule says that “Intern can read record
elements”. The third rule says that “Intern cannot read any
comment elements” because comment nodes may include con-
fidential information and should be hidden from access by
Intern. Please refer to Section 3.2 for more precise seman-
tics.

It is often the case that the access to a certain node is deter-
mined by a value in the target XML document. For a medical
record, a patient may be allowed to read his or her own record
but not another patient’s record. Therefore the access con-
trol policy should provide a way to represent a necessary con-
straint on the record. By using an XPath predicate expres-
sion, such a policy could be specified as (Role:patient, +R,
/record[@patientId = $userid®“’]/diagnosis). This pol-
icy says that the access to a diagnosis element below the
record element is allowed if the value of the patientId at-
tribute is equal to the user ID of the requesting subject. We
use the term wvalue-based access control to refer to an access
control policy (or rule) that includes such an XPath predi-
cate that references a value.

3.2 Semantics of Access Control Policy

In general, an access control policy should be designed to
satisfy the following requirements: succinctness, least priv-
ilege, and soundness. Succinctness means that the policy
semantics should provide a way to specify a smaller number
of rules rather than to specify rules on every single node
in the document. Least privilege means that the policy
should grant the minimum privilege to the requesting sub-
ject. Soundness means that the policy evaluation must al-
ways generate either grant or denial decision in response to
any access request.

In this paper, we consider another requirement called de-
nial downward consistency, which is a requirement specific
to XML access control. It requires that whenever a policy
denies the access to an element, it must also deny the ac-
cess to its subordinate elements and attributes. In other

words, whenever access to a node is allowed, access to all

(#1) : We use a variable $userid to refer to the identity of the request-

ing user in the access control policies.

the ancestor elements must be allowed as well. We impose
this requirement since we believe that elements or attributes
isolated from their ancestor elements are meaningless. For
example, in some application, to process an element or an at-
tribute may need to have access to the xml:base attribute (2}
specified in an ancestor element. Another advantage of the -
denial downward consistency is that it makes implementa-
tion of runtime policy evaluation easier.

To satisfy the above requirements, the semantics of our ac-
cess control policy is based on the following three principles:

(1) An access control rule with +R or -R (capital letter)
propagates downward through the XML document structure.
An access control rule with +r or -r (small letter) does not
propagate and just describes the rule on the specified node.

(2) A rule with denial permission for a node overrules
any rules with grant permission for the same node.

(3) If no rule is associated with a certain node, the de-
fault denial permission “-” is applied to that node.

Now we informally describe an algorithm to generate an
access decision according to the above principles. First, the
algorithm gathers every grant rule with +r and marks “+”
on the target nodes referred to by the XPath expression. It
also marks a + on all the descendant nodes if the action is
R. Next, the algorithm gathers the remaining rules (denial
rules) and marks “-” on the target nodes in the same way.
The - mark overwrites the + mark if it is already marked.
Finally, the algorithm marks - on every node that is not yet
marked. This operation is performed for each subject and
action independently.

For example, the access control policy in Section 3.1 is in-
terpreted as follows: The first rule marks the entire tree with
+ and therefore Doctor is allowed to read every node (includ-
ing attributes and text nodes) equal to or below any record
element. The second and third rules are policies for Intern.
The second rule marks the entire tree with + as the first rule
does and the third rule marks comment element and subor-
dinate text nodes with - and it overwrites + marks. Thus,
three comment elements and text nodes are determined as
“access denied”. The XML document that Intern can see is
shown in Figure 2.

A rule that uses +R or -R can be converted to the rule with
+r or -r. For example, (Sbj,+R,/a) is semantically equiv-
alent to a set of four rules: (Sbj,+r,/a), (Sbj,+r,/a//*),
(Sbj,+r,/a//@x), and (Sbj,+r,/a//text()). Thus, +R and
-R are syntax sugar of our underlying policy model for our
static analysis. On the other hand, such syntax sugar will
benefit GUI-based policy authoring tool because it repre-
sents policy writers’ intention in more succinct way. Thus
we use +R and -R in the following sections to make the policy

specification more succinct.

<record>
<diagnosis>
<pathology type="Gastric Cancer">
Well differentiated adeno carcinoma
</pathology>
</diagnosis>
<chemotherapy>
<prescription>
5-FU 500mg and CDDP 10mg
</prescription>
</chemotherapy>
</record>

B 2 The XML document that Intern can see

3.3 Run-time Access Control

For the integration of access control and query processing,
we assume that if there exist access-denied nodes in a target
XML document, the query processor behaves as if they do
not exist in the document. We believe that the node-level ac-
cess control will greatly benefit by returning only authorized
nodes without raising an error %,

We explain how the semantics described above are enforced
by the access control system at run-time. A sample sce-
nario is the following: Whenever an access to a node (and
its descendant nodes) is requested, the node-level access con-
troller makes an access decision on each node. The controller
first retrieves access control rules applicable to the requested
node(s): Then, the controller computes the access decision(s)
according to the rules and returns grant or denial per each
node. Obviously, a naive implementation of this scenario
leads to poor performance by repeating evaluations of the

rules per node.
4. Static Analysis

In this section, we introduce our framework for static anal-
ysis. The key idea is to use automata for comparing schemas,
access control policies, and query expressions.

Figure 3 depicts an overview of our static analysis. Static
analysis has four steps as below:

Step 1: creating schema automata from schemas

Step 2: creating access control automata from access con-
trol policies

Step 3: creating query automata from XQuery queries
Step 4: comparison of schema automata, query automata,

and access control automata

When schemas are not available, we skip Step 1 and do

(#%£2) ! Another semantic model is to raise an access violation when-

ever the query processor encounters the “access denied” node.

Access

[[schema | Control Query
Policy

| ey R T

Access

Query
Control

tom Automata

Analysis Result

B 3 Framework of the analysis

not use schema automata in Step 4.

4.1 Automata and XPath expressions

In preparation, we introduce automata and show how we
capture XPath expressions by automata.

A non-deterministic finite state automaton (NFA) M is a
tuple (2, Q, @™, Q", §), where {2 is an alphabet, Q is a fi-
nite set of states, Q‘"i'gQ is a set of initial states, Qﬁ“gQ is
a set of final states, and § is a transition function from Q x
to the power set of @ [7]. The set of strings accepted by M
is denoted L(M).

Recall that we have allowed only three axes of XPath (see
Section 2. 3). This restriction makes it easy to capture XPath
expressions with automata. As long as an XPath expression
contains no predicate, it is easy to construct an automaton
from it. The constructed automaton accepts a path if and
only if it matches the XPath expression.

When an XPath expression r contains predicates, we can-
not capture its semantics exactly by using an automaton.
However, we can still approximate r by constructing an
over-estimation automaton M[r] and an under-estimation
automaton M|r]. To construct M([r], we assume that predi-
cates are always satisfied. That is, we first remove all predi-
cates from 7 and then create an automaton M[r]. Obviously,
Mi{r] accepts all paths matching r and may accept other
paths (over-estimation). Meanwhile, to construct M [r], we
assume that predicates are never satisfied. That is, if a step
in r contains one or more predicates, we first replace this
step with an empty set, and then create an automaton M][r].
Obviously, M[r] does not accept any paths if r contains pred-
icates (under-estimation). As a special case, when r does not
contain any predicates, M|r] is identical to M|[r] and we sim-
ply write M[r] for denoting both. v

4.2 Static Analysis Algorithm

a) Step 1: Creating schema automata

Since we are interested in permissible paths rather than

permissible trees, we construct a schemae automaton from
a schema. A schema automaton accepts permissible paths
rather than permissible documents.

Let G = (N,ZF,£4, S, P) be a schema. To construct a
schema automaton from G, we use all non-terminals (i.e.,
N) of G as final states. We further introduce an additional
final state ¢™ and a start state ¢™. Formally, the schema

automaton for G is
MG = (EE u EA,N U {qini’qﬁn‘}’a, {qini},NU {qﬁn}),

where § is a transition function from (NU{g'™, ¢™}) x (£PU
T4) to the power set of N U {¢™™, ¢} such that

8(zx,e) = {z’ | for some z — rA in P, e[z’] occurs
inr} U {z' |z =¢"™,e[z'] € S},
8(z,a) = {¢" | a € A for some z — r A in P},

where e is an element name in £F and a is an attribute name
in £4,
For example, consider the first schema in Section 2.. The

schema automaton for this schema is
M® = (2P ust, NU{d™, ¢}, 6, {g™}, N U {d™})
where

$E = {record, diagnosis, chemotherapy, comment,
pathology, prescription},

T4 = {@type},

N = {Record, Diag, Chem, Com, Patho, Presc},

5(¢'™, record) = {Record},

&(Record, diagnosis) = {Diag},

&(Record, chemotherapy) = {Chem},

&(Record, comment) = {Com},

d(Record, record) = {Record},

§(Diag, pathology) = {'Patho},

§(Diag, comment) = {Com},

6(Chem, prescription) = {Presc},

6(Chem, comment) = {Com},

5(Patho, @type) = {¢f"}.

Observe that this automaton accepts the following paths.

/record,

/record/comment,

/record/diagnosis,

/record/ diAgnosis/ pathology,
/record/diagnosis/pathology/@type,
/record/diagnosis/comment,
/record/chemotherapy,
/record/chemotherapy/prescription, and

/record/chemotherapy/comment

Recall that our last schema in Section 2. is recursive. The
schema automaton for that schema allows an infinite number
of paths, since record can be repeated freely for each of the

above paths.

b) Step 2: Creating access control automata

An access control policy consists of rules, each of which
applies to some roles. For each role, we create a pair of au-
tomata: an under-estimation access control automaton and
an over-estimation access control automata. This pair cap-
tures the set of those paths to elements or attributes which
are exposed by the access control policy.

Let 71,...,7 be the XPath expressions occurring in the
grant rules with propagation (+R), ri41, ...,7m be the XPath
expressions for the grant rules without propagation (+r), and
let rm+1,...,7n be the XPath expressions occurring in the de-
nial rules (-R). We first assume that none of 1, ..., 7, contain
predicates. Then, the under-estimation access control au-
tomaton and over-estimation access control automaton can
exactly capture the set of exposed paths and these automata,
denoted MT, are identical.

Recall that we interpret the policy according to the
“denial-takes-precedence” principle. MT accepts those paths
which are allowed by one of ry, ..., rm but are denied by any

of Pmt1,.eeey Tn. Formally,

L(MT) = (L(M[r1])- £* U -+ U L(M[r])- =*
UL(M[ri41]) U--- U L(M{rn]))
\(L(M[rm41])- Z° U U L(M[ra])- 27)

where £ = ZFUX4 and “” denotes the concatenation of two
regular sets. We can construct MT by applying boolean op-
erations to M({r1], ..., M[rn]. Note that propagation of grant
and denal rules can be handled by appending X* which ac-
cepts any suffix to each path.

Now, let us consider the case that predicates occur in
71, ..., Tn. Since predicates cannot be captured by automata,
we have to construct an over-estimation access control au-
tomaton MT as well as an under-estimation access con-
trol automaton MT. Rather than exactly accepting the
set of exposed paths, the former and latter automata over-
estimates and under-estimates this set, respectively. Ob-
serve that L(M[ri]),..., L(M|[rm]) are positive atoms and
L(M|rm41)), ..., L(M[rs]) are negative atoms in the above
equation. To construct an under-estimation access control
automaton MY, we under-estimate positive atoms and over-
estimate negative atoms. On the other hand, to construct
an over-estimation access control automaton —M——f, we over-

estimate positive atoms and under-estimate negative atoms.

Formally,

L(MD) = (L(M[r1])-£* U--- U L(M[r])- T
ULMrim]) U--- U L(M[rm]))
\ (L(Mrms1])- " U--- U L(M[ra])- T*)

and

L(MT) = (L(M[r1])-* U -- - U L(M[rs])- £*
UL(M[ri]) U U L(M[rm]))
\ (LM [rm41])- B* U+ U L(M[ra])- 2°).

Again, we can construct ML and MT by applying boolean
operations to automata occurring in the right-hand side of
the above equations.

c) Step 3: Creating query automata

Given a FLWR expression of XQuery, we first extract the
XPath expressions 6ccurring in it. If an XPath expression
contains variables, we replace each of them with the XPath
expression associated with that variable.

It is important to distinguish XPath expressions in RE-
TURN clauses and those in other (FOR, LET, and WHERE)
clauses. XPath expressions in FOR-LET-WHERE clauses
examine elements or attributes, but do not access their sub-
ordinate elements. On the other hand, XPath expressions
in RETURN clauses return subtrees including subordinate
elements and attributes.

As an example, consider the XQuery expression given in
Section 2.4. From this XQuery expression, we extract the
following XPath expressions.

FOR-LET-WHERE

/record
/record/diagnosis/pathology/@type
RETURN
/record/diagnosis/pathology
/record/comment

Next, we create a query automaton M” for each r of the
extracted XPath expressions. If r occurs in a FOR-LET-
WHERE clause, then M™ is defined as M|[r]. Observe that
we over-estimate 7, since we would like to err on the safe
side in our static analysis. When 7 occurs in a RETURN
clause, M" is defined as an automaton that accepts a path
if and only if some of its sub-paths matches r. Formally,
L(M7™) = L(M]r])-£*. This automaton can easily be con-
structed from Mr].

As an example, let » be /record/comment, which is the
last XPath expression occurring in the RETURN clause.
Then, M" accepts paths such as /record/comment/record
and /record/comment/record/comment/@type in addition
to /record/comment.

d) Step 4: Comparison of automata

We are now ready to compare schema automata, access
control automata, and query automata. For simplicity, we
first assume that predicates do not appear in the access con-
trol policy. v

The path expression r is always-granted if every path ac-
cepted by both the schema automaton M€ and query au-

tomaton. M" is accepted by the access control automaton

MT. That is,
L(M™) N L(MC)CL(MT).

When schemas are unavailable, we assume that M€ allows
all paths and examine if'L(M')gL(MF).

The path expression 7 is always-denied if no path is ac-
cepted by all of the schema automaton, query automaton,

and access control automaton; that is,
LMTYn LM%Y N L(MT) = 0.

When schemas are unavailable, we examine if L(M") N
L(MT) =0.

The path expression 7 is statically indeterminate if it is
neither always-granted or always-denied.

When predicates appear in the access control policy,
we have to use M'T and MT rather than MT. We
use an under-estimation M' when we want to determiﬁe
whether or not a query is always-granted: We examine
L(M7™) N L(M®)CL{MT) (when schemas are available) or
L(M ’)gL(M[:) (when schemas are unavailable). Likewise,
we use an over-estimation MT when we determine whether
or not a path expression is always-denied: We examine
L(M™YNL(MS)N L(MT) = 0 (when schemas are available)
or L(M™)N L(MT) = § (when schemas are unavailable).

4.3 Query Optimization

When an XPath expression r in a XQuery expression is
This

rewriting makes it unnecessary to evaluate r as well as to

always-denied, we can replace r by an empty list.

perform run-time checking of the access control policy for r,
and may trigger further optimization if we have an optimizer
for XQuery.

Recall our example XQuery expression in Section 2.4.
When the role is Doctor, static analysis reports that every
XPath expression is always-granted. Run-time checking is
thus unnecessary. If the role is Intern, static analysis reports
that the last XPath expression is always-denied. We can thus
rewrite the query as follows. Observe that comments are not
returned by this rewritten query.
<TreatmentAnalysis>

{
for $r in document("medical_record")/record
where $r/diagnosis/pathology/@type="Gastric Cancer"
return
$r/diagnosis/pathology
}
<TreatmentAnalysis>

5. 'Experiment

We have implemented our static analysis algorithm in
Java. In this section, we present an experiment based on

this implementation to show how much the cost of query

Query# |V {2 {3 {4 |s e [7[s o jrofulefniulisfetofialnio Query# |1 f2 }3 Ja s Je 7 s |o jofuprionfulisiwiojnfoio
M G{GiG]G|G|G|G|G|G|GIG|GIGIG|G|G|{G|G|G|G M GjGicjiGjc|G|c|c|GclGlGciG|G |G GJG|GiG
MM GiG|G|G{G D GID|G]|GC D|D}{G |GG |G|D |G MM G|GjG G |G GID|G|G|G G GG G
™M D|D|D|D|D]|G D|D|D|D|D|G|Gi{D|ID{D|D|G|D ™ G - G G

s GIG|GID|G|G |G G|GiG|GciG|G|G s G|G|GiD]|G G G

B GiG |G G|G |G G|G{G |GGG |G B G|G|G G G

v Di{GIG|D|G|G|D|D|{D|D|DID|GIG}G|DID|G}|G|D v D|G|G D |G D|ID|D|D|D DG D
us G D G us G -

UB G] G uB G -

uy D Dj- D}- D D w D pl-|-%-]-]-f{-{D}-}|-1ID

(a) With the DTD

(b) Without the DTD

1 Sample Analysis

evaluation can be reduced by our static analysis and query
optimization.

We use the sample queries and the DTD developed by the
XMark project, which is-a well-known benchmark framework

(3 The number of sample queries is 20 and the

for XQuery
DTD defines 77 elements. We use a sample access control
policy in which 9 roles are defined. Each role is associated
with 1 through 15 access control rules. The sample policy
is a value-based policy, i.e., XPath predicates appear in the
rules. We omit the detail due to space limitations.

For each pair of query and role, we check whether or not
our static analysis removes the run-time access check. Also,
we repeat the experiment for two cases: one case with the
DTD and the other case without the DTD.

Tables 1(a) and 1(b) show the results of our static analysis
with and without the DTD, respectively. Each entry in the

table indicates the result by either “G”, “D”, or “-".
o “G” indicates that all XPath expressions in the query

are always-granted and thus no run-time access check is re-

quired.

e “D” indicates that at least one of the XPath expres-
sions in the query is always-denied, but no expression is stat-
ically indeterminable. In this case, we rewrite the query.

Again, no run-time access check is required.
e “—” indicates that at least one XPath expression in

the query is statically indeterminable and thus a run-time
access check is still required. If the query contains an XPath

expression that is always-denied, we rewrite it.
For example, Table 1(a) shows that the result for Query #4

and role IM is “D”, which means that when a user filling a
role IM makes Query #4, it can be rewritten statically and
no run-time access check is required.

Tables 1(a) and 1(b) show that 65% and 40% of the
query/role pairs, reépectively, do not require run-time access
checks. Furthermore, for 25% and 10% of the query/role
pairs, we can optimize queries by rewriting meaningless

XPath expressions as null lists. Table 1(b) shows that even

(#¥3) : The project home page can be found at http://monetdb.cwi.
nl/xml/

when no DTD is available our static analysis works very well,
and the analysis is further refined by exploiting DTD infor-
mation. We conclude that our static analysis can frequently

make run-time access checks unnecessary.
6. Conclusion

In this paper, we have proposed static analysis to ease the
burden of checking access control policies for XML docu-
ments We have built a prototype of our static analysis and

demonstrated its effectiveness. However, our static analy-

sis has some limitations. In particular, we dealed with only
a subset of XPath. We need to extend our static analysis
technique so that it supports more features of XPath expres-

sions.

X 3

[1] E. Bertino, S. Castano, E. Ferrari, and M. Mesiti. Author-
x: a Java-based system for XML data protection. In IFIP
WG 11.8 Working Conference on Database Security, 2000.

[2] T. Bray, J. Paoli, and C. M. Sperberg-McQueen. Extensi-
ble Markup Language (XML) 1.0. W3C Recommendation.
http://www.w3.org/TR/REC-xml, Feburary 1998.

[3] S. Castano, M. Fugini, G. Martella, and P. Samarati.
Database Security. Addison-Wesley, 1994.

[4] H. Comon, M. Dauchet, R. Gilleron, F, Jacquemard,
D. Lugiez, S. Tison, and M. Tommasi. Tree automata tech-
niques and applications. Available at http://www.grappa.
univ-1ille3.fr/tata, 1997.

[5) E. Damiani, S. D. C. di Vimercati, S. Paraboschi, and
P. Samarati. Securing XML documents. In EDBT 2000,
LNCS 1777, Mar. 2000.

[6] D. E. Denning. Cryptography and Data Security. Addison-
Wesley, 1983.

[7] J. E. Hopcroft and J. D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley,
1979.

[8] M. Kudo and S. Hada. XML document security based on
provisional authorization. In CCS-7. ACM, Nov 2000.

[9] M. Murata, D. Lee, and M. Mani. “Taxonomy of XML
Schema Languages using Formal Language Theory”. In Ez-
treme Markup Languages, Aug. 2001. http://www.cs.ucla.
edu/~dongwon/paper/.

[10] T.Y.C. Woo and S. S. Lam. A framework for distributed
authorization. In CCS-1, pages 143-158. ACM, Nov. 1993.

