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Abstract The security of double block length hash functions and their compression functions is analyzed in this
paper. First, the analysis of double block length hash functions by Satoh, Haga, and Kurosawa are investigated.
The focus of this investigation is their analysis of the double block length hash functions with the rate 1 whose
compression functions consist of a block cipher with the key twice longer than the plaintext/ciphertext. It is shown
that there exists a case uncovered by their analysis. Second, the compression functions are analyzed with which
secure double block length hash functions may be constructed. The analysis shows that these compression functions
are at most as secure as the compression functions of single block length hash functions.
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block cipher. The topic of this paper is the latter method.

1. Intreduction ; . . o L
The main motivation of this construction is the minimiza-

A hash function is a mapping from the set of all binary se- tion of design and implementation effort, which is supported

quences to the set of binary sequences of some fixed length. by the expectation that secure hash functions can be con-

It is one of the most important primitives in cryptography [1].
A hash function dedicated to cryptography is called a cryp-
tographic hash function. Cryptographic hash functions are
classified into unkeyed hash functions and keyed hash func-
tions. In this paper, the unkeyed hash functions are discussed
and they are simply called hash functions.

A hash function usually consists of a compression function.
A compression function is the function f: {0,1}* x {0, 1} =
{0,1}*. There are two major methods for construction of a

compression function, namely, from scratch and based on a

structed from secure block ciphers.

Hash functions based on block ciphers are classified into
two categories: single block length hash functions and dou-
ble block length hash functions. A single block length hash
function is a hash function the 1ength of whose oufput is
equal to that of the block cipher. The length of the output
of a double block length hash function is twice larger than
that of the block cipher. The length of the output of a widely
used block cipher is 64 or 128. Thus, single block length hash

functions are no longer secure.



The compression functions of double block length hash
functions are classified by the number of encryptions and
the key length of the block cipher. The double block length
hash functions with the compression functions with two en-
cryptions of an (m,m) block cipher were analyzed in [2], [3],
where an (m, k) block cipher is the one with the length of the
plaintext/ciphertext m and the length of the key k. Satoh,
Haga, and Kurosawa [4] analyzed the double block length
hash functions with the compression functions with one en-
cryption of an (m,m) or (m,2m) block cipher. They also
made an analysis of the double block length hash functions
with the compression functions with two encryptions of an
(m, 2m) block cipher. They stated that no effective attacks
had not been found for the double block length hash func-
tions with the compression functions, with two encryptions of
an (m, 2m) block cipher, satisfying the property exceptional
defined by them.

In this paper, first, the analysis of double block length hash
functions by Satoh, Haga, and Kurosawa is investigated. The
focus of the investigation is their analysis of the double block
length hash functions with the rate 1 whose compression
functions consist of an (m,2m) block cipher. This inves-
tigation shows that there exists a case uncovered by their
analysis. This result implies that there exist double block
length hash functions whose compression functions do not
satisfy the property exceptional and on which no effective
attacks are found.

Second, for the double block length hash functions on
which no effective attacks are known, their compression func-
tions are analyzed. It is shown that all of these compression
functions are at most as secure as those of single block length
hash functions. Thus, even if there may exist secure double
block length hash functions, it is impossible to prove it only
by relying on the security of their compression functions.

The paper is organized as follows. Some definitions are in-
troduced and mathematical facts are described in Section 2.
Block-cipher-based hash functions are defined in Section 3.
The analysis by Satoh et.al. is investigated in Section 4. In
Section 5, the analysis of compression functions is described.

Finally Section 6 concludes this paper with future work.
2. Preliminaries

N denotes the set of natural numbers. @ denotes the bit-
wise exclusive OR. a||b denotes the concatenation of a €
{0,1}*-and b € {0,1}7, where a||b € {0,1}**7.

2.1 Block Ciphers

A block cipher is a keyed function which maps an m-bit
plaintext block to an m-bit ciphertext block. Let x,m € N.
An (m, k) block cipher is a mapping £ : {0,1}" x {0,1}"™ —
{0,1}™. For each k € {0,1}*, the function Ex(-) = E(k,-) is

a one-to-one mapping from {0,1}™ to {0,1}™. {0,1}" and
{0,1}™ in the domain {0,1}" x {0,1}™ and {0,1}™ in the
range are called the key space, the plaintext space, and the
ciphertext space, respectively. m is called the block length
and k is called the key length.

2.2 Hash Functions

2.2.1 [Iterated Hash Functions

A hash function is a mapping from the set of all binary se-
quences to the set of binary sequences of some fixed length.
A hash function is denoted by h : {0,1}* — {0,1}%, where
{0,3})" = Uigo{oa 1}i'

A hash function h : {0,1}* — {0,1}* usually consists of
a compression function f : {0,1}* x {0,1}* — {0,1}* and
an initial value IV € {0,1}*. h is computed by the iterated
application of f to the given input. Thus, h is called an it-
erated hash function. The output of the hash function h for
an input M € {0,1}*, h{M), is calculated as follows. M is
called a message.

(Step 1) The message M is divided into the blocks of the
equal length b. If the length of M is not a multiple of
b, M is padded using an unambiguous padding rule. Let
Mi, Ms, ..., M, be the blocks from the (padded) message
M, where M; € {0,1}® for i =1,2,...,n.

(Step 2) H: = f(Hi-1,M;) is calculated for i =
1,2,...,n, where H; € {0,1}* and Ho = IV. H, is the
output of h for the message M, that is H, = h(M). If the
initial value should be specified, the equation is described as
H, = h{Ho, M).

2.3 Properties Required for Hash Functions

For a hash function h, there exist many pairs (M, M) such
that h(M) = h(M) and M M. For cryptographic use, the
hash function h must satisfy the following properties.
preimage resistance Given a hash value H, it is compu-
tationally infeasible to find a message M such that h(M) =
H.
second preimage resistance Given a message M, it is
computationally infeasible to find a message M such that
R(M) = h(M) and M % M.
collision resistance It is computationally infeasible to
find a pair of messages, M and M, such that h(M) = h(M)
and M + M.

The relationships among the properties are [1]:

e If a hash function satisfies the second preimage resis-
tance, then it also satisfies the preimage resistance, and

o If a hash function satisfies the collision resistance, then
it also satisfies the second preimage resistance.
Therefore, it is the easiest to satisfy preimage resistance, and
it is the most difficult to satisfy collision resistance.

2.4 Attacks on Hash Functions

The following attacks [3] are against the properties listed



in Section 2. 3.

the preimage attack Given an initial value Ho and a
hash value H, find a message M such that H = h(Ho, M).
the second preimage attack Given an initial value Hp
and a message M, find a message M such that h(Ho, M) =
h(Ho, M) and M + M.

the free-start preimage attack Given a hash value H,
find an initial value Ho and a message M such that
h(Ho,M) =H.

the free-start second preimage attack Given an ini-
tial value Ho and a message M, find an initial value Ho
and a message M such that h(Ho, M) = h(Ho,M) and
(Ho, M) % (Ho, M).

the collision attack Given an initial value Hy, find two
messages M, M such that h(Ho, M) = h(Ho, M) and M #
M.

the semi-free-start collision attack Find an initial value
Hp and two messages M, M such that h(Ho, M) = h(Ho, M)
and M + M.

the free-start collision attack Find two initial values
Ho, Ho and two messages M, M such that h(Ho, M) =
h(Ho, M) and (Ho, M) % (Ho, M).

The following two propositions [5] are often used to esti-
mate the amount of computation of the attacks.
[Proposition 1] Suppose that a sample of size r is drawn
from a set of N elements with replacement. If r,N — oo,
then the probability that a given element is drawn converges

to
1—exp (*]—7\'7) (1)

[Proposition 2] (Birthday Paradox)
ple of size r is drawn from a set of N elements with replace-
ment. If r, N = oo and r is O(v'N), then the probability

that there is at least one coincidence is converges to

1—exp (—%) . 2)

3. Hash Functions Based on Block Ci-
phers

Suppose that a sam-

3.1 Compression Function Construction
" There are two major methods for constructing compres-
sion functions: construction based on block ciphers and con-
struction from scratch. The topic of this paper is the former
construction.

3.2 Single Block Length Hash Functions and Dou-

ble Block Length Hash Functions

Let h: {0,1}* — {0,1}° be an iterated hash function and

E :{0,1}* x {0,1}™ — {0,1}™ be a block cipher used in

the compression function of k. If a = m, then h is called a

single block length hash function. If a = 2m, then h is called
a double block length hash function.

Let ¢ be the number of the encryptions of the block cipher
used in the compression function. Let b = |M;|. Then, the
rate is defined as b/(o - m) and is used as a speed index.

3.3 Hash Functions Considered in This Paper

We consider double block length hash functions with the
rate 1, whose compression functions are composed of an
(m, 2m) block cipher.

Let M; = (M} M} € {0,1}*™ be a message block,
where M}, M? ¢ {0,1}. The compression function H; =
f(Hi_1,M;) is defined by the two functions f*, f? such as

H =

where H; = (H},H?) and H}, Hf € {0,1}™, for j =i —1,i.

Each of f! and f? contains one encryption of the (m,2m)
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block cipher E. H} and H} are represented by

H!

where A,B,C,D,W,X,Y,Z € {0,1}". A, B, C, D, W,
X, Y and Z are represented by linear combinations of
H} |, H2 ,, M} and M? as follows:

EA“B(C) @& D
Ewx(Y)® Z,

It

(4)

i

H}
HZ
= I Mll (5)

M?

Hi,
H,
Mt
M?

(6)

il
~
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where L1 and L2 are 4 X 4 binary matrices.

Let @, b, ¢ and d denote row vectors of L1 and let w, z,
y and z denote row vectors of Lo.

3.4 The Black-Box Model

The black-box model [6] is used in our analysis. In this
model, a block cipher is assumed to be random, that is,
Ey : {0,1}™ — {0,1}™ is a random permutation for each
k € {0,1}*. The oracle E~*, on input (k,y), returns x such
that Ex(x) =v.

4. A Comment on the Analysis by Satoh,
Haga and Kurosawa ‘

Satoh, Haga, and Kurosawa [4] have analyzed the security
of the double block length hash functions defined in Section
3.3. In this section, their analysis is investigated. It is shown

that there exists a case uncovered by their analysis.



4.1 Analysis by Satoh et.al.

Satoh et.al. presented the following claim (Theorem 16 in

their paper [4]).
[Claim 1] For the double block length hash functions of
the rate 1, whose round function has the form of (4), sup-
posse that at least one of L1 and L is not exceptional. Then,
there exist second preimage and preimage attacks with about
4 x 2™ complexity. Furthermore, there exists a collision at-
tack with about 3 x 2™/% complexity.

Throughout this paper, as in the above claim, the com-
plexity of an attack is the required number of encryptions
and decryptions of the block cipher.

The notion of ezxceptional is defined as follows.

[Definition 1] Let L be a 4 x 4 binary matrix. Let L, be
the 4 x 2 submatrix of L, where L, consists of the right half
elements of L. Let L2 be the 3 x 2 submatrix of L, such that
the third row of L, is deleted. Let L? be the 3 x 2 submatrix
of L, such that the fourth row of L, is deleted. L is called
exceptional if Rank(L) = 4 and Rank(L?) = Rank(L}) = 2.

4.2 A Comment

Let Nz be the 2 x 2 submatrix of L,, where V2 consists
of the upper half elements of L,. Satoh et.al. presented
their proof of Claim 1 for two cases: (i) Rank(L) = 3 and
Rank(N2) = 2 and (ii) Rank(L) = 4. The first case is in-
vestigated in the remaining part. Their proof proceeds as

follows.

Since Rank(N2) = 2, one can find (by elementary

row operations) «, 3 = 0,1 such that

a
b N1 N2
L, = = ’ ' B (7)
c N3 Ng
d®daa® (b
where
N; = (; 0) ®
Let
A Hy q
B H2
=L . 9
c M )
D’ M

Then, D' =0, H:_,, H?_; or H:_, ® H2_,.

Subsequently, they stated in their proofs that ¢ = Aia ®
A2b when D’ #+ 0. However, in general, there may be a
case that ¢ = \1a & \2b @ d even if D’ & 0. Furthermore,
in this case, their attack for the case that Rank(L) = 3,
Rank(N2) = 2, and D’ # 0 cannot be applied.

In their attack, the adversary chooses random triples
(4, B,C) such that C = A\ A @® X\2B and computes D =
Eqp(C)® H}. Then the adversary computes D' = D &
aA ® BB. However, if c = A1a® A2b® d, C is calculated by
A, B, and D. Therefore, the adversary cannot compute D
by Eayp(C) @ Hp.

5. Collision-Resistance of Compression
Functions

From the results by Satoh, Haga, and Kurosawa and the
discussion in the last section, no effective attacks are found
in the double block length hash functions defined in Section
3.3 with compression functions satisfying

(i) the property exceptional, or
(ii) Rank(L:1) = Rank(L:) =
Rank(Na2) = 2, and

c®d = Aia® \qb for some A1, X2 € {0,1}

Yy ® 2z = Asw @ sz for some A3, A4 € {0,1},

where N; > is the upper right 2 X 2 submatrix of L; for
i=1,2.

In this section, some effective attacks are presented

3, Rank(Ni,) =

on compression functions satisfying Rank(L;) = 3 and
Rank(L2) 2 3. This implies that it is impossible to prove the
security of double block length hash functions, on which no
effective attacks are found, mentioned above, only by relying
on the security of their compression functions.

[Theorem 1]
sented by the equation (4) such that Rank(L1) 2 3 and
Rank(Lz) 2 3. Then, there exist a free-start second preim-

Let f be any compression function repre-

age attack and a free-start collision attack on f with com-
plexities about 2 x 2™ and 2 X 2™/2 respectively.
This theorem is proved for the following two cases:
1. Rank(L:) =4 or Rank(Lz) =4,
2. Rank(L:) = Rank(Lz) = 3.
The following lemma is for the former case.
[Lemma 1] Suppose that Rank(L;) 2 3 and Rank(Lz) =
3. If Rank(L;) = 4 or Rank(Lz) = 4, then there exist a
free-start (second) preimage attack and a free-start collision
attack with complexities about 2 x 2™ and 2 x 2™/2 | respec-
tively.
(Proof) Without loss of generality, it is assumed that
Rank(L:1) = 4.

Since Rank(L1) = 4, from (5),

H} A
HZ 4 1B
11 =i ! (10)
M; C
M? D

For the (second) preimage attack, the adversary Adv pro-

ceeds as follows.



the free-start (second) preimage attack
(Step 0) (This step is only for the free-start second preim-
age attack.) Adv computes the output (H;,H?) from the
given input (H}_,, H?_ |, M}, M}).
(Step 1) Adv chooses 2™ random triples (A, B,C) and
computes D = E Al 5(C) @ H}. Since the block cipher is
assumed to be random, D is also random.
(Step 2) For each 4-tuples (A,B,C‘, D), Adv computes
(HL,, H? , M}, M?) with (10). Since (A4, B,C, D) is ran-
dom, (H}_;, HZ |, M}, M}?) is also random.
(Step 8) For each (H},,H? |, M}, M?), Adv computes
(W,X,Y,Z) with (6) and computes H? = EW”X()?) &Z.
Since Rank(L;) 2 3, (w,x) ¥ (0,0). Therefore, at least
one of W and X is expressed by a linear combination of
HL ,, H?,, M} and M?. Since H} ,, H: ,, M} and M?
are random, By, ¢(Y) is random, and H7 is also random.
Thus, according to Proposition 1, Adv can find H? such that
H? = H? with probability about 0.63. The total complexity
is about 2 x 2™.

For the free-start collision attack, Adv proceeds as follows.

the free-start collision attack

Adv chooses arbitrary H}. Then it chooses 2™/2 random
triples (A,B,C') and computes f]f in the same way as in
the steps 1-3 above. According to Proposition 2, Adv can
find a collision of f? with probability about 0.39. The total
complexity is about 2 x 2™/2, O
[Lemma 2] Suppose that Rank(L:) = Rank(L:) = 3.
Then, there exist a free-start (second) preimage attack and
a free-start collision attack with complexities abouot 2 x 2™
and 2 x 2™/?, respectively.

This lemma is lead from the following two lemmas.

[Lemma 3] Suppose that Rank(Li) = Rank(Ls) = 3. If
¢ @ d is not represented by any linear combination of a and
b, or y @ z is not represented by any linear combination of
w and x, then there exist a free-start (second) preimage at-
tack and a free-start collision attack with complexities about
2 x 2™ and 2 x 2™/, respectively.
(Proof)
Without loss of generality, ¢® d is not assumed to be rep-
resented by any linear combination of @ and b.
Since Rank(L,) = 3, the following three cases should be
considered:
(a) a and b are linearly dependent,
(b) @ and b are linearly independent and ¢ = A1a ® A2b
for some A1, Az € {0,1},
(c) a and b are linearly independent and d = A1a® A2b
for some A1, Az € {0,1}.
In the case (a), either @ or b is 0, or @ = b. Thus the key
A||B is A||0, 0||B, or A||A. Without loss of generality, the

key is assumed A[|A. Then, from the equation (5),

H},
A B
Cl= (h1 h? m! mz) 1\14_1 ) (11)
D > a2

where L’ is the 3 x 4 submatrix of L1 and h!, h?, m', and
m? are the column vectors of L. Since Rank(L’') = 3, one
column vector of L’ is expressed by a linear combination of
the other column vectors. Without loss of generality, it is
assumed that h! is expressed by a linear combination of the

other vectors. Then,

A HZ
cl=1"| M |onr'H_,, (12)
D M?
where L = (h* m! m?). Since Rank(L") = 3,
H? | A
M |=L""||c|enrHL,|. (13)
M? D

the free-start (second) preimage attack
(Step 0) (This step is only for the free-start second preim-
age attack.) Adv computes the output (H}, H?) for the given
input (H}_;, H2,, M}, M?).
(Step 1) The adversary Adv chooses 2™ random 2-tuples
(4,C) and computes D = EAMA(C') o H}.
(Step 2) For each (4,C, D), Adv chooses a random o,
and computes (HZ 1, M} M?) from (13).
(Step 3) For each (AL, H2, M}, M?), Adv computes
(W, X,Y, Z) with (6) and computes H? = EW”;((Y’) ®Z.
Since Rank(L2) = 3, (w,x) # (0,0). Therefore, at least
one of W and X is expressed by a linear combination of
H ., H2,, M} and M?. Since I;Tilkl, HZ ., M} and M?
are random, By, 4(Y) is random, and H? is also random.
Thus, according to Proposition 1, Adv can find H? such that
H? = H? with probability about 0.63. The total complexity
is about 2 x 2™.
the free-start collision attack

Adv chooses arbitrary H}. Adv chooses 2™/2 random 2-
tuples (4, C) and computes D = EAM(C') @ H}. After that,
it computes H? in the same way as in the steps 2-3 above.
According to Proposition 2, Adv can find a collision of f?
with probability about 0.39. The total complexity is about
2 x 2m/2, :

In the case (b), the adversary Adv proceeds as follows.

the free-start (second) preimage attack
(Step 0)
age attack.) Adv computes the output (K7, H?) for the given
input (H}_,, HZ. ., M}, M?).

(This step is only for the free-start second preim-



(Step 1) Adv chooses 2™ random triples (4, B,C) such
that ¢ = M A & A1 B and computes D = E,&ué(é) @ H}.
(Step 2) For each (A, B,C, D), Adv chooses a random 4-
tuple (H}_;, H2 |, M}, M?) which satisfies (5).

(Step 3) For each (H}_,, H? ,, M} M?), Adv computes
(W,X,¥,Z) with (6) and computes H? = Ev'an(Y) ® 2.
Since Rank(Lz) = 3, (w,®) £ (0,0). Therefore, at least
one of W and X is expressed by a linear combination of
AL, HX, N} and N?. Since H},, H?,, M} and M}
are random, Ey ¢(Y) is random, and H? is also random.
Thus, according to Proposition 1, Adv can find H? such that
H? = H? with probability about 0.63. The total complexity

is about 2 x 2™,

the free-start collision attack

Adv chooses arbitrary H}. Then it chooses 2™/2 random
triples (4, B,C) such that ¢ = MA@ A2B and computes
H? in the same way as in the steps (1)—(3). According to
Proposition 2, Adv can find a collision of f? with probability
about 0.39. The total complexity is about 2 x 2™/2,

The attacks in the case (c) are almost similar to those in
the case (b). 0

The next lemma is also for the case that Rank(Li) =
Rank(L2) = 3. In one part of this case, no effective free-
start preimage attack is found.

[Lemma 4] Suppose that Rank(L1) = Rank(L:) = 3. If
c®d = Ma® Xband y® 2z = Asw @ Mz for some
A1, 2,23, € {0,1}, then there exist a free-start second
preimage attack and a free-start collision attack with com-

plexities about 2™ and 2™/2 yespectively.

(Proof)

Since Rank(L1) = 3, of the 4-
tuples (H ., H? ;,M} ,M?) which correspond to the
same (4,B,C,D) is 2™. Let V be the set of 4-
tuples (H} ., HZ,, M}, M?) corresponding to the same

the number

(A, B, C, D). The following three cases are considered.

Case (I) If all of w, @, y, z are represented by linear com-
binations of a, b, e, d, then (W, X,Y, Z) is constant for every
(HL HE M} M) V.

Case (II) If at least one of w and @ is not represented by
any linear combination of a, b, ¢, d, then W||X takes 2™
different values for the elements in V.

Case (IIT)

binations of a, b, ¢, d, and ¥ is not represented by any linear

If both w and « are represented by linear com-

combination of a, b, ¢, d, then z is not represented by any
linear combination of a, b, ¢, d since y & z = Jzw G Mz
for some A3, A\s € {0,1}. In this case, both Y and Z take 2™

different values for the elements in V.

the free-start second preimage attack
(Step 1) Adv computes the output (H}, H?) for the given

input (Hi1~17 Hi2—17 Mll) ]‘412)

(Step 2) Adv repeatedly chooses a random 4-tuple
(HL,,H? |, M}, M?) corresponding to (A,B,C,D) such
that

Hi_
HZ
=1L ]\i[l 3 (14)

M?

9 QT =

and computes (W, X, Y, Z) by (6) and H? = E‘;V")-((f’) ®Z
until H? = HZ.
This succeeds
e with probability about 1 and with complexity 3 for
Case (I),
e with probability about 0.63 and with complexity
about 2™ for Case (II) and Case (III).

the collision attack

(Step 1) Adv chooses arbitrary (H}_ ,, H? ;, M}, M?) and
computes H}.

(Step 2) Adv repeatedly chooses a random 4-tuple
(HL,, H2 |, M} M?) corresponding to (A,B,C,D) such

- that

H 4
HE,

=L , (15)
M}

M?

Q% >

and computes (W, X, ¥, Z) by (6) and H? = By x(Y)® Z
until a collision of f? is found.
This succeeds
e with probability about 1 and with complexity 3 for

Case (I),
e with probability about 0.39 and with complexity
about 2™/2 for Case (II) and Case (III). o

In Lemma 4, if at least one of w, ¢, y, z is linearly inde-
pendent of a, b, ¢, d, then there exists a free-start preimage
attack with probability 0.63° and with complexity 2 x 2™.
This attack is obtained from the free-start second preimage
attack in the proof of Lemma 4 by replacing Step 0 with the
following Step 07,

(Step 0') -Adv repeatedly chooses (H} ,H? ,, M} M?)
at random until the output corresponding to it is equal to
the first half of the given output (H}, H?).

This step succeeds with probability about 0.63 and with com-
plexity about 2™.

6. Conclusion

The security of double block length hash functions and
their compression functions have been analyzed. First, the

analysis by Satoh, Haga, and Kurosawa on double block

— 18_‘



length hash functions have been investigated and it has been
shown that there is a case uncovered by their analysis. Then,
some effective attacks have been presented on the compres-
sion functions which may produce secure double block length
hash functions.

Future work includes the analysis of the double block
length hash functions whose security remains unclear.
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