HMEA FHRLE S PP 2004—DPS—117 (7)
IPSJ S1G Technical Report 2004—CSEC— 24 (7)
2004734

Moderate Concurrency Control in Distributed Object Systems

Yousuke Sugiyama, Tomoya Enokido, and Makoto Takizawa
Dept. of Computers and Systems Engineering
Tokyo Denki University, Japan
{sugi, eno, taki} @takilab.k.dendai.ac.jp

Abstract

In object-based systems, objects are distributed in multiple object servers like database servers interconnected with com-
munication networks. Objects are manipulated only through their own methods. Methods are procedures for manipulating
an object. We first extend traditional lock modes for read and write on simple objects like files and tables to methods on
objects. We introduce new types of conflicting relations among methods, availability and exclusion ones. Then, we define
a partially ordered relation on lock modes showing which one is weaker than another for a pair of modes. We discuss
a moderate concurrency control algorithm for concurrently manipulating distributed objects. Before manipulating an
object through a method, the object is locked in a weaker mode than a an intrinsic mode of the method. Then, the lock
mode is escalated to the method mode. The weaker the initial mode is the more concurrency is obtained but the higher
frequently deadlock occurs.

SEATO o P EICBII3HRELERETHE O ML

#lES B5F Bt miR#H
WRBEBRERERE TEWRRHER S A7 LA THFER
E-mail {sugi, eno, taki} @takilab.k.dendai.ac.jp

HHM AT LATEHEEEREA TP 27 M —N\PEEBEE Ry TV KK OEREINTWS, 722
P MRT—F EFRENHI TEIMEEINZDBDOTH . FHRXLTE. 77 MR T—TINOL St TS
JMIMLUTERSINTELOY 7B RE, EH2AY Yy RICHEET 3, DWT. WREEPHIEIC LD XV v
FRIOFHF L WHERBRIIOWTIERET S, IhEHIL, Oy 7 E—ROBRFBIZIOVWTORIEFEREZEEL. &
BRI RTHIE TV T) LI DWTHRS, FELZFBESHEICBW TR, 7227 MIBEERT S8
WOy 7 &g, BMERTRICAY Yy REFOOy 7 E— RIZi(kxh 3,

1 Introduction itive read and write methods are symmetric. We intro-
duce novel types of relations, exclusion and availability
Object-based systems [6] are composed of objects relations among methods to lock an object based on the
which are distributed in networks. Each object is an en- conflicting relation. The exclusion relation shows how
capsulation of data and methods for manipulating the data. exclusively each method can be performed. The avail-
A method is a procedure which is more complex than read ability relation indicates how frequently an object can be
and write. An object is allowed to be manipulated only locked to perform each method. In traditional pessimistic
through methods supported by the object. A method op, approaches [2, 4], every object is locked before manipu-
conflicts with another method op, on an object o if and lated by a transaction. An object is locked in write (w)
only if (iff) the result obtained by performing the methods and read (r) modes before the object is written and read,
op and op, depends on the computation order of op; and respectively. In another optimistic approach [5], a trans-
opz on the object 0. A conflicting relation among methods action manipulates an object without locking the object.
is specified based on the semantics of an object in defining When the transaction commits, every object manipulated
the object. is validated that the object has not been manipulated in
Lock modes based on conflicting relations are dis- a conflicting way by other transactions. If validated, the
cussed by Korth [4]. If a pair of methods conflict with one transaction commits. Otherwise the transaction aborts.
another on an object, both the methods cannot be concur- An object is first read and then written by a transac-
rently performed, i.e. the lock modes of the methods are tion in order to update the object in typical transactions.
exclusive. Otherwise, the modes are compatible. A con- In order to increase the throughput in the pessimistic ap-
flicting relation among methods on an object may not be proach, every object is first locked in a read (r) mode even
symmetric although the conflicting relation among prim- if the object is manipulated by a write (w) method. Then,

—37—

a transaction manipulates the object. When a transaction
commits, lock modes of objects manipulated by the trans-
action are changed up to a write mode. If successfully
changed, the transaction commits. Otherwise, the trans-
action aborts. This way can be said to be moderate in
between the pessimistic and optimistic ways.

In this paper, we extend the optimistic locking protocol
for simple read and write methods to objects which sup-
port more abstract levels of methods. We discuss a novel
type of moderate concurrency control algorithm for dis-
tributed objects. In the algorithm, an object in an object
server is first locked in a weaker mode than a method be-
fore a transaction manipulates the object in the method.
Then, the object is locked in an intrinsic mode of the
method on commitment of the transaction. We discuss
what a stronger mode means on the basis of availability
and exclusion relations of lock modes.

In section 2, we present a system model and discuss
conflicting relations on methods. In section 3, we discuss
lock modes. In section 4, we discuss a moderate concur-
rency control protocol. In section 5. we discuss how to
evaluate the protocol.

2 System Model

A system is composed of clients and object servers Dy,
-+ -, Dy, (n > 1) which are interconnected in reliable com-
munication networks [Figure 1]. Each object server D;
supports applications with a collection of objects [6]. A
database server [7] is a typical example of object server.
An object is an encapsulation of data and methods. A
method is a procedure for manipulating data in an object.
An object is allowed to be manipulated only through its
own methods. A pair of methods op; and opa conflict
with one another on an object o iff the result obtained
by performing the methods op; and op, depend on the
computation order of op; and op,. If some pair of meth-
ods are concurrently performed on an object, the object
gets inconsistent or inconsistent results of the method are
obtained. Here, the methods cannot be concurrently per-
formed, i.e. exclusively performed on the object o. Thus,
there are two aspects on conflicting relations to realize the
serializability [2] and multiple exclusion, respectively.

Figure 1. Distributed servers.

Application programs are performed on clients and ap-
plication servers in 2-tier and 3-tier client server models,
respectively. An application program issues a method op
to manipulate an object o in an object server D;. The
method op is performed on the object o. Then, the re-
sponse with the result obtained by performing the method
op is sent back to the application program.

A transaction shows execution state of an application
program which issues method requests to object servers
and receives responses form the objects server. A trans-
action is modeled to be an atomic sequence of methods
issued to objects, which satisfies ACID (atomicity, con-
sistency, isolation, durability) properties [1]. A transac-
tion T} precedes another transaction 75 (T7 — T3) iff Ty
are T issue conflicting methods op; and op; to an object
o, respectively and op; is performed before opz. A col-
lection T of transactions T3, - - -, Ty, are serializable iff
both T; — Tj and T; — T; do not held for every pair of
transactions T; and 7); in the transaction set T [1,2]. That
is the precedence relation is asymmetric. In order to make
objects consistent, multiple transactions are requested to
be serializable.

3 Lock Modes
3.1 Availability and exclusion sets

In traditional concurrency control theories [2], a con-
flicting relation among read and write methods on a sim-
ple object like file and table is symmetric. For exam-
ple, read conflicts with write while write conflicts with
read. Korth [4] discusses an asymmetric conflicting re-
lation with a new mode u to update an object in addition
to read(r) and write(w) modes. Here, w and u conflict
with one another. However, the mode u is compatible with
r but conflicts with u so that a read mode can be esca-
lated to a write mode without deadlock in a transaction.
A transaction first locks an object in an u mode and reads
the object. Then the transaction escalates the lock mode
to a w mode to write the object. Even if other transactions
lock the object in an r mode, the transaction can lock the
object in a u mode. However, no transaction can neither
lock the object in an 7 mode nor w mode after the transac-
tion holds the lock in the « mode. Transactions can update
objects without deadlock.

Suppose a method op is issued to an object o. Here, the
object o is locked in amode. Let p(op) denote a lock mode
if a method op. If the object o is successfully locked in the
mode p(op), the method op is performed on the object o.
Otherwise, the method op is kept blocked. Now, we define
a conflicting relation among lock modes on an object o.
Let M, be a set of lock modes on an object o.
[Definition] A lock mode pu(op:) conflicts with a lock
mode u(op2) on an object o (u(opy) > u(op2)) iff op; can-
not be performed while op; is being performed on the ob-
jecto.

The conflicting relation > on the mode set M, (> C
M:")) is neither symmetric nor transitive. A mode p(op;)
may not conflict with a method u(op2) (u(op1) § 1(0p2))
even if p(opa)> p(opr). A lock mode p(opy) is compati-
ble with a lock mode p(op2) (u(op1) O p(op2)) if u(op)
does not conflict with p(op2), i.e. pu(op1) p p(opz). The
compatibility relation [J may not be symmetric either. If a
conflicting relation > is symmetric on an object o, a rela-
tion ¢ shows a symmetric conflicting relation on the mode
set M,,.

Let P, be a set of methods supported by an object o.
We define an availability set A(op) (C P,) and exclusion
set E(op) (C P,) of methods for a every method op on an
object o as follows:

o A(op) = {op1 | u(op) conflicts with 1(op1) (u(op)

> p(op1))}

e E(op) = {op1 | plop1) conflicts with 1(op) (

w(op1) > plop))}

If the conflicting relation » is not symmetric, the avail-
ability set A(op) is different from the exclusion set E(op).
If the conflicting relation > is symmetric, A(op) =
E(op). Here, let a conflicting set C(op) be A(op) (=
E(op)), i.e. C(op) = {op1 | u(op1) & ulop)}. For ev-
ery pair of methods op; and opa, op1 € C(op2) iff op2 €
C(op1).

First, a method op is issued to an object 0. If any
method in the availability set A(op) is being performed on
an object o, a method op cannot be performed, i.e. blocks
until no method in A(op) is performed. The larger the
availability set A(op) is, the less frequently a method op
can be performed. Suppose A(op;) C A(op2) for a pair of
methods op; and op on an object o. Here, op; cannot be
performed if op; cannot be performed, i.e. some method
conflicting with op; is being performed on an object o.
However, even if opy cannot be performed, op; may be
performed. Here, op; is referred to as more available
than op2 (op; > 4 op2). opy is equivalent (A-equivalent)
with opy with respect to the available set A (op1 =4 op2)
iff A(op1) = A(opz2). op1 > 4 op2 iff op1 >4 op2 or opy
=4 0pP2.

Next, suppose a method op is now being performed on
an object. Even if a method op; in the exclusion set E(op)
is issued to the object o, op; cannot be performed. The
larger the exclusion set E(op) is, the more exclusively a
method op is performed, i.e. the fewer number of methods
can be concurrently performed with op. Suppose E(op;)
C E(op2) for a pair of methods op; and op, on an ob-
ject o. Here, if some method issued cannot be performed
since the method op; is now being performed, the method
cannot be performed if op; is being performed. Here,
op- is referred to as more exclusive than op; (op2 > g
op1). op; is equivalent (E-equivalent) with opy with re-
spect to the exclusion set E (opy =g ops) iff E(op)) =
E(op2). op1 =g opz iff op1 =~ g op2 or op1 =g op2. ops
is equivalent with opy (opy = opz) iff opy =4 op, and
op1 =g opa.

[Definition] Let op; and op, be methods on an object o.

1. A mode wu(opy) is more available than p(opy)
(#(op1) > a p(op2) iff opy > 4 opa.

2. ulopy) is more exclusive than p(ops) (u(op1) =g
w(op2)) iff op1 > g op2. O

3. w(opy) is stronger than p(op2) (u(op1) > E 1(0p2))
iff op; >4 and op; > g op2. O

Methods supported by an object o are partially ordered
in the availability > 4 and exclusion > g relations. Let P,
be a set of methods supported by an object o. For every
pair of methods op; and ops in P, op; Ua op, and op;
Ug op2 denote least upper bounds (lubs) of op; and op;
with respect to the availability and exclusion relations > 4
and > g, respectively. opy N ope and op; NEg op2 show
greatest lower bounds (glbs) of op; and op; with respect
to the availability and exclusion relations > 4 and g, re-
spectively.

Let us consider an example of r, w, and © modes [4].
The availability and exclusion sets for the methods are
given in Table 1. Here, since A(u)CA(r)CA(w), 7 is
more available than w and u is more available than r and
w(r >4 u>4 w). Since E(r) C E(u) C E(w), wis
more exclusive than 7 and u while u is more exclusive
thanr (w>gu=gr). rUsu=rNgu=uandr Ny
u=rNgu=r.

Table 1. Availability and exclusion sets

A E
r | {w,u} {w}
w | {w,r,u} | {w,r, u}
u | {w} {w,r}

3.2 Conlflicting set

Let us consider case the conflicting relation > is sym-
metric, i.e. conflicting relation > holds and A(op) = E(op)
for every method op on an object 0. Here, the conflict-
ing set C(op) is defined to be A(op) (= E(op)) for every
method op on an object o.

[Definition] A method op; is stronger than another
method opy (opy > ope) iff C(op1) C Clop2) O.

In another word, op, is weaker than op;. op; and op,
are equivalent (op; = opy) iff Clopy) = Clopz). opr =
op, iff opy > opa or op1 = opo.

Let U and N show least upper bound (lub) and
greatest lower bound (glb) of methods with respect to
the strength relation >, respectively. In the r and w
modes, C(r) = {w} and C(w) = {r, w}. Since C(r) C
C(w), awrite (w) mode is stronger than a read (r) mode
(w> 7). 7 U w and 7 N w show modes w and r, respec-
tively.

Next, let us consider a counter object ¢ which supports
methods initialize (ini), increment (inc), decrement
(dec), and check (chk). The conflicting relation ¢ is sym-
metric. For example, a pair of methods chk and inc con-
flict with one another, chk inc. A pair of methods inc
and dec are compatible withe one another, inc ¢ dec. Ta-
ble 2 shows the conflicting sets C' for methods. For ex-
ample, C(ini) = {ini, inc, dec, chk} and C{inc) = {ini,
chk}. Here, ini is stronger than inc (ini = inc) since
C(ine) C C(ini). inc and dec are equivalent (inc = dec)
since C(inc) = C(dec). chk U incis ini. chk N inc show
a virtual mode {inz}.

A conflicting mode set CM (y) is defined to be a set
of modes conflicting with a mode x in M,. For exam-
ple, CM(ini) = {ini, chk, inc, dec} and CM(inc) =
CM(dec) = {ini, chk}. A lock mode p(op) is also repre-
sented by the conflicting set C M (pop). For example, the
lock mode of the methods inc and dec can be written in a
set {ind, chk}.

Table 2. Conflicting sets
C

int | {ini, chk, inc, dec}
chk {ini, inc, dec}
inc {ini, chk}

dec {ini, chk}

4 Moderate Locking Protocol
4.1 Traditional approaches

We overview traditional pessimistic [2] and optimistic
[3,5] concurrency control protocols on distributed objects
in order to extend the traditional protocols [2,3,5] to ob-
jects with methods in an object-based system. In the op-
timistic approach [5], objects are manipulated by transac-
tions as follows:

1. A transaction T manipulates, i.e. reads and writes an
object without locking.

2. On completion of the the transaction 7', it is validated
whether or not the object is manipulated by other
conflicting transactions during the execution of . If
validated, the transaction T' commits. Otherwise, T
aborts.

Jing et. al. [3] discuss another optimistic protocol for
mobile databases.

1. If a transaction T issues a read request to an object
o in an object server D;, the object o is locked in a
read (r) mode. If succeeded, read is performed on
the object o.

2. Ifatransaction T issues a write request on an object
o, the object o is locked in an 7 mode. The write
method is performed on the object o if succeeded.

3. If a transaction T' commits, the r locks on objects
written by the transaction T are changed with write
(w) mode. If changed, the transaction " commits.
Otherwise, the transaction 7" aborts.

In the pessimistic way, a transaction T locks an object
before reading and writing the object. If read and write
are issued to an object, the object is locked in read (r)
and write (w) modes, respectively. A transaction issues no
lock after releasing a lock, i.e. on completion of the trans-
action, all the locks are released in the strict two-phase
locking protocol [2].

In the most optimistic way [5], objects are manipulated
without locking. In the most pessimistic way, objects are
written after locked in a w mode. In another way, an ob-
ject is first locked in a weaker mode, i.e. r mode. Then,
the lock mode is escalated to the w mode. This way is re-
ferred to as moderate, which is more optimistic than the
pessimistic way and more pessimistic than the optimistic
way. We extend the moderate protocol for read and write
to abstract methods on distributed objects.

4.2 Locking protocol

We discuss an algorithm of a moderate concurrency
control protocol on distributed objects. We extend the tra-
ditional concurrency control algorithm for primary meth-
ods read and write to methods, i.e. procedures on objects.
We consider an object o which supports a collection P, of
methods. Let M, be a set of lock modes {u(op) | op € P,
}. First, we assume all the conflicting relations of methods
are symmetric on every object. First, let L be a bottom
mode, ie. L =U{p|peM,}. LetT denote atop
mode T =N {u|p €M, }. T shows the most exclusive
lock which no other method be performed on an object if
the object is locked in the mode T. On the other hand, L
indicates that every other method can be performed with
the mode L. Here, C(L)= ¢ and C(T)=M,. If an object
supports only read and write, T is a w mode and 1 is an
r mode.

Suppose a transaction 7" issues a method op; to the ob-
ject o. The object o is locked and manipulated in a method
op by a transaction T as follows:

[Locking protocol]

1. Let 8 be some lock mode such that L < 8 < u(op).
The object o is locked in the mode 3.

2. If locked, the method op is performed on the object
0. Otherwise, the transaction T" waits.

3. When the transaction 7" commits, the lock mode of
the object o is escalated to the mode p(op). If suc-
ceeded, the transaction T' commits. Otherwise T’
aborts. J

If 3 = L, the protocol is the most optimistic. If 3 =
1(op), the protocol is the most pessimistic. We can take
another mode 3 such that L < 3 < pu(op) in the moder-
ate approach. The stronger the mode /3 is, the more pes-
simistic the protocol is.

A conflicting mode set C M (u(op)) for a method op is
defined to be a set {u(op’) | op’ conflicts with op on an
object o (op’ & op)} (C M,) of lock modes. CM ()
is a set of lock modes conflicting with a mode 1 € M,.
This means that an object o cannot be locked in any mode
p(opy is C M (u) if the object o is locked in a mode .

Let N M (1) be a set of lock modes which are compati-
ble with a lock mode u. Here, CM(u) N NM(u) = ¢ and
CM(p) U NM(p)=M,. In the protocol, C M (3) shoutd
be a subset of CM (u(op)), i.e. CM(B) C CM(u(op)).
Each lock mode p can be represented in a set CM ().
A pair of modes p and py are equivalent (¢ = uo) iff
CM (1) = CM (2). We have to discuss which subset of
C M (u{op)) to be selected as an initial lock mode 3.

We introduce a concept of the weight | u | of a lock
mode 4. The weight | u | shows the usage ratio, i.e. prob-
ability that a lock mode of a method issued is y. The more
frequently methods of the mode p are issued, the larger |
| is. For a set M of lock modes, | M | is defined to be
E,eM | 1 |- The weight | 1 | of a lock mode g is normal-
izedas|py |+ -+ | pn|=1where My ={ p1,---, prn},
ie. [M,|=1.

Now, suppose that an object o is locked in a mode y; €
M, and then the lock mode is escalated to another mode
p2 € M, where po > p1. The more number of lock
modes are compatible with the mode p;, the more num-
ber of transactions can manipulate the object 0. However,
if transactions lock the object o in lock modes which are
compatible with the mode 3 but conflict with p, the lock
mode 3 cannot be escalated to uo. Here, deadlocks may
occur. | NM(u1) | shows probability that an object o can
be locked by a method issued after an object o is locked in
amode py. | NM(u1) N CM(u2) | indicates probability
that a lock mode held after an object o is locked in a mode
u1 conflicts with 2, i.e. the lock mode u; on the object
o cannot be escalated to po. For example, suppose | ini |
=0.01, | chk | =0.59, | inc | = 0.3, and | dec | = 0.2. |
CM(dec) | = | {ini, chk} |=|ini |+ |chk |=0.6 and |
NM(dec) | =04.

The following lock mode /3 in the power set 2€ M (1(op))
is taken:

e | NM(B)| is the maximum and | NM(B) N
CM(u(op)) | < 7 where the maximum allowable
conflicting ratio 7.

The maximum allowable conflicting ratio 7 is given by
the designer of the system.

A transaction may manipulate an object o through mul-
tiple methods. For example, a transaction increments a
counter object after checking the object. Here, suppose
that a transaction T holds an object o in a mode p; and

then issues a lock request y to manipulate the object o.
The lock mode of the object is changed as follows:

1. If g > pg or pg > py, the lock mode p; on the
object o is not changed.

2. Otherwise, the lock mode y; is escalated to the least
upper bound 1 U pa.

The lock mode on an object is monotonically escalated
but never descended in a transaction. [4].

5 Evaluation

We evaluate the moderate concurrency control protocol
in terms of throughput and number of transactions to be
aborted due to deadlocks. We present a way for evaluation
the protocol. A system includes m objects oy, - -+, Op
(m > 1) and each object o; supports k; (k; > 1) types
0p;i1, -+ 0Pk, of methods. Here, let P be a set of all
methods Py, U --- U P, in the system. We assume that
a conflicting relation C; among methods is symmetric on
every object o;.

First, the conflicting relation C; is randomly created.
Here, the conflicting ratio o; is defined to be | C; | / k2. It
is randomly decided whether not op; and op; conflict with
one another for every pair of methods ops and op; on the
object o given the conflicting ratio ;.

In the evaluation, we assume every object supports the

same number of methods, i.e. k; = --- = k,,, = k and the
same conflicting ratio oy =+ - - = 0,,, = 7.
Multiple transactions 71, - - -, T manipulate objects oy,

-+, Om. Each transaction T serially invokes !, meth-
ods on the objects. A transaction 7, randomly selects a
method on an object every 7, time units. T} is a sequence

of methods op®!, - - -, op®'s, where each op*/ € P. Here,
we assume every transaction issues the same number of
methods, i.e. [=-.- =1, = every same 7 time units, i.e.
TI= =TRp=T. :

Suppose a transaction T issues a method op;; to an
object 0;. Here, the object o; is first locked in a mode
B (= ulopi;)). If succeeded, T issues another method.
If not, the transaction T waits. Finally, the transaction
T, commits. Here, a lock for a method op;; is changed
to the mode p(op;;). If succeeded, all the locks held by
the transaction T are released. Otherwise, T, waits. If
transactions are deadlocked, a deadlocked transaction is
aborted.

In this simulation, all the objects are stored in one ob-
ject server. The transactions T3, - - -, T}, issue methods
to the object server. We measure the throughput [meth-
ods/time unit] and the number of transactions aborted due
to deadlock and the total throughput. We are now making
simulation.

op:

Figure 2. Evaluation

6 Concluding Remarks

WEe discussed the moderate concurrency control for dis-
tributed objects where objects are manipulated by meth-
ods. The moderate approach takes a position in between
the pessimistic like two-phase locking protocol one and
the optimistic one. We defined conflicting and exclusive
relations among lock modes. We discussed the moder-
ate concurrency control protocol by extending the tradi-
tional pessimistic and optimistic protocols for read and
write methods to objects with methods.

References

[1] P. A. Bernstain, V. Hadzilaces, and N. Goodman. Concur-
rency Control and Recovery in Database Systems. Addison-
Wesley, 1987.

{2] J. Gray. Notes on Database Operating Systems. Lecture
Notes in Computer Science, (60):393-481, 1979.

[3] J. Jing, O. Bukhres, and A. Elmagarmid. Distributed Lock

Management for Mobile Transacitons. Proc. of the 15th

IEEE International Conf. on Distributed Computing Sys-

tems (ICDCS-15), pages 118-125, 1995.

H. F. Korth. Locking Primitives in a Database System. Jour-

nal of the Association for Computing Machinery, 30(1):55-

79, 1983.

[5] H. T. Kung and J. T. Robinson. On Optimistic Methods

for Concurrency Control. ACM Transactions on Database

Systems, 6(2):213-226, 1981.

J. Niwbray and R. Zahari. The Essential CORBA. Wiley,

1995.

[71 Oracle8i Concepts Vol. 1. 1999. Release 8.1.5.

[8] K. Tanaka and M. Takizawa. Quorum-based Locking Pro-
tocol for Replicas in Object-based Systems. Proc. of the
5th IEEE International Symp. on Autonomous Decentral-
ized Systems (ISADS’ 2001), pages 196-203, 2001.

[4

[6

