
1

タグスイッチネットワークのモデル検査による漏曳検査

櫻 田 英 樹†

タグに従ってパケットが転送されるネットワークでは, ノードの設定ミスにより, パケットが予期し
ないセグメントに漏れ出したり, 目的のセグメントに到達しないなどのトラブルが生じることがある.
パケットの漏れ出しは特に, セキュリティを脅かす問題である. 本論文では, タグに従ってパケットが
転送されるネットワークをモデル化し , モデル検査によってパケットの到達性を検査する方法につい
て述べる. モデルは記号モデル検査のツールである NuSMV 上で実装される. この方法はノードの設
定が実際に用いられる前にその正しさを確認するためや,トラブルが起きたときに原因を究明するた
めに有用である.

Model Checking Configurations
for Tag-Switched Computer Networks

Hideki Sakurada†

In tag-switched computer networks, errors in the configurations of the nodes can cause the
frames to leak into unexpected segments or not to reach the destination segments. Frame
leakage, in particular, can be a security problem. This paper describes a method to model
tag-switched networks and check the reachability of frames by model checking. The model
is implemented on NuSMV, a tool for symbolic model checking. The method is useful for
checking configurations before they are activated and for analyzing the cause of trouble.

1. Introduction

Managing a computer network is more or less a

difficult job because the network is a distributed

system that consists of nodes (routers, switches, or

terminals) that work independently. Changing the

functionalities of a part of a network requires one to

consistently change the configurations of more than

one nodes at the same time. If one forgets to change

one of them, the part does not work as intended

and even other parts of the network may work in-

correctly. Moreover, the symptoms of the trouble

often appear after a few hours from the change. Be-

cause it is sometimes hard to determine the effect

of configuration changes or the cause of the trouble,

applying formal methods to network management

is appealing.

This paper focuses on tag-switched networks. A

tag-switched network is a network where data are

conveyed in frames with tags. The nodes that con-

† 日本電信電話株式会社 NTT コミュニケーション科学基礎研究
所
NTT Communication Science Laboratories, NTT Cor-

poration

321

Switch1

321

Switch2

Term1

Term2

Term3

Term4

A A

図 1 A simple tag-switched network that contains two

VLANs

struct the network forward frames from a port to

selected ports according to the tags attached to

the frames. Tag-switched networks are commonly

used to make more than one LANs coexist in a sin-

gle physical network. The LANs are called virtual

LANs (VLANs). Figure 1 shows a simple tag-

switched network that contains two VLANs and

研究会Temp
テキストボックス
－49－

研究会Temp
テキストボックス

研究会Temp
テキストボックス

研究会Temp
テキストボックス

研究会Temp
テキストボックス

研究会Temp
テキストボックス

研究会Temp
テキストボックス
社団法人 情報処理学会　研究報告IPSJ SIG Technical Report

研究会Temp
テキストボックス
2004－CSEC－25　(9)

研究会Temp
テキストボックス
2004／5／21



2

the flow of a frame from Term1 to Term3. The two

switches, Switch1 and Switch2, are configured so

that they attach tag A (tag B, resp.) to the frames

from port 2 (port 3, resp.) and forward them to

port 1 and that they inversely switch the frames

with tag A (tag B, resp.) from port 1 to port 2 (port

3, resp.) and remove the tag. Thus, the frame from

Term1 is attached tag A by Switch1, transmitted to

port 1 on Switch2, switched to port 2 according

to the tag, stripped of the tag by Switch2, and fi-

nally transmitted to port 1 on Term3, which is in

the same VLAN as Term1 is.

Since tag-switching provides a kind of routing

mechanism, errors in the configurations of the

nodes cause the frames to leak into unexpected seg-

ments or not to reach the destination segments.

In particular, frame leakage may break the secu-

rity of the network. This paper describes a method

to model tag-switched networks and to assure the

reachability of the frames by model checking. The

method can be used to check network configura-

tions before they are activated and analyze the

cause of trouble. More specifically, the method

models a tag-switched network as a Kripke struc-

ture and checks the frame reachability specified

as CTL formulae. The model allows each frame

to have more than one tags to analyze networks

based on some standards that are revewed in the

next section. The model checking is done with

the NuSMV1), a matured tool for symbolic model

checking. Applying model checking to check config-

urations for tag-switched networks has not yet been

done as far as the author knows. Even if writing

a program to assure the reachability directly with

graph algorithms is not very difficult, use of a ma-

tured tool for model checking enables one to avoid

the risk of bugs in the programs. Moreover, since a

logic (e.g. CTL2) or LTL3)) used to specify network

properties is quite expressive, one can check a va-

riety of properties other than reachability without

any additional modeling.

The rest of this paper is organized as follows.

The next section reviews a few standards for tag-

switched networks. Section 3 models a simple net-

work without tags. Section 4 extends the model to

tag-switched networks and shows an example that

models the network shown in Fig. 1. Although our

method is explained using only a few simple exam-

ples, the method can be easily applied to more com-

plex networks. Section 5 summarizes the results of

the paper and discusses some related works.

321

Switch1

321

Switch2

Term1

Term2

Term3

Term4

図 2 A simple network without tags

2. Standards for Tag-Switched Net-
works

IEEE standard 802.1Q4) is a standard for tag-

switched networks. It extends the header format

of the frames of Ethernet or FDDI with a 12-bit

tag. This standard is implemented on many so-

called “managed layer-2 switches” and is one of the

most common ways to construct VLANs in corpo-

rate networks. Although the standard allows only

one tag on each frame, some vendors independently

extend the standard to enable multiple tags on a

frame5). These extensions make it possible to con-

struct sub-VLANs in a VLAN without caring about

conflicts among the set of the tags.

Multi-protocol Label Switching (MPLS)6) is an-

other standard for tag-switched networks. MPLS

allows each frame to have a stack of tags (labels)

after the header of the frame. When a node on

a MPLS network receives a frame, it decides the

next-hop node according to the tag on top of the

stack. The node optionally pushes, pops, and alters

a tag on top of the stack. MPLS is widely used by

carriers in IP-VPN services to avoid conflicts in the

private IP address spaces of their customers and

to identify traffic that needs different qualities of

services.

3. A Simple Network Model

In this section, a simple network without tags is

modeled. The network is shown in Fig. 2. It has the

same physical structure as the network in Fig. 1.

The nodes in the network receive frames from any

port and forward them to all the ports other than

the incoming port.

Since the flows of the frames are of interest, the

研究会Temp
テキストボックス

研究会Temp
テキストボックス

研究会Temp
テキストボックス

研究会Temp
テキストボックス

研究会Temp
テキストボックス
－50－



3

321

Switch1

321

Switch2

Term1

Term2

Term3

Term4

1

2

3

4

5

6

7
switch = Term3

port = 1

phase = switchedswitch = Term3

port = 1

phase = discarded

node = Term1

port = 1

phase = transmitted

node = Switch1

port = 2

phase = switched

node = Switch1

port = 1

phase = transmitted

node = Switch2

port = 1

phase = switched

switch = Switch2

port = 2

phase = transmitted

図 3 The trace of the state transition for the flow of a

frame

model is given as a Kripke structure where each

state represents the physical location and the in-

ternal state of a frame. The Kripke structure

has three variables: node, port, and phase. The

first two represent the physical location of a frame.

The last one represents the internal state of a

frame and the value is switched, transmitted, or

discarded. They respectively indicate that the

frame is switched from a port to another port in-

side a node, transmitted from a port of a node to a

port of another node through a cable, or discarded

on a port on a node. For the network considered in

this section, the value of node is Switch1, Switch2,

Term1, Term2, Term3, or Term4 and the value of port

is an integer between 1 and 4. A trace that repre-

sents a flow of a frame from Term1 to Term3 is shown

in Fig. 3. In the first state of the trace, the frame

is on port 1 on Term1 and is to be transmitted to

the peer port. In the second state, the frame is

on port 2 on Switch1, which is the peer port in

the previous state, and is to be switched inside the

switch. In the third state, the frame is switched to

port 1 on the same switch and is to be transmitted

to the peer port. Note that a trace where the frame

is switched to port 3 or 4 is also possible here. Af-

ter the interleaving transmissions and switchings,

the frame reaches port 1 on Term3. And then the

frame is received by the terminal and discarded on

the port of the switch in the final state.

The script that implements the model on NuSMV

is shown in Fig. 4. The VAR section de-

MODULE main

VAR

node: {Switch1, Switch2,

Term1, Term2, Term3, Term4};
port: 1..3;

phase: {switched, transmitted, discarded};
TRANS

case

phase = switched:

case

node in {Switch1, Switch2}:
case

port = 1:

next(port) in {2,3}
& TRANSMIT;

port = 2:

next(port) in {1,3}
& TRANSMIT;

port = 3:

next(port) in {1,2}
& TRANSMIT;

esac;

node in {Term1, Term2, Term3, Term4}:
DISCARD;

esac;

phase = transmitted:

case

/* Switch1/1 - Switch2/1 */

node = Switch1 & port = 1:

next(node) = Switch2

& next(port) = 1 & SWITCH;

node = Switch2 & port = 1:

next(node) = Switch1

& next(port) = 1 & SWITCH;
...

/* otherwise */

TRUE: DISCARD;

esac;

phase = discarded:

DISCARD;

esac

図 4 Implementation of a simple network on NuSMV

clares the variables of the Kripke structure. The

TRANS section defines the transition relation of the

Kripke structure. The expressions next(node),

next(port), and next(phase) respectively repre-

sent the values of the variables node, port, phase

in the next state. The case expression

case

cond1: exp1

研究会Temp
テキストボックス

研究会Temp
テキストボックス

研究会Temp
テキストボックス

研究会Temp
テキストボックス

研究会Temp
テキストボックス
－51－



4

cond2: exp2
...

condn: expn

esac

returns the value of expi if and only if cond i eval-

uates to TRUE and all cond1,. . . ,cond i−1 evaluate

to FALSE. The transition relation consists of three

cases according to the value of phase. The case

for switched is generated from the configurations

of the nodes. The variables node and port is

tested and used to decide the port next(port)

in the next state. In Fig. 4, the frames incom-

ing from any port are switched to all ports other

than the incoming port by Switch1 and Switch2.

The terminals discard the incoming frames. The

case for transmitted is generated from the physi-

cal construction of the network. The next(port)

on next(node) are respectively the peer port on the

peer node of port on node. The case for discard

is always the same. The next state is same as the

current state. The expressions TRANSMIT, SWITCH,

and DISCARD are defined by the following macros of

the C preprocessor ☆.

#define TRANSMIT \

(next(phase) = transmitted)

#define SWITCH \

(next(phase) = switched)

#define DISCARD \

(next(phase) = discarded & \

next(port) = port & \

next(node) = node)

The requirements for the network can be specified

as CTL formulae. For example, the reachability of

the frame originating from port 1 on Term1 to port

1 on Term3 is specified by the following formula:

SPEC

(node = Term1

& port = 1

& phase = transmitted)

-> EF (node = Term3).

The -> and EF are respectively implication and the

“exists eventually” modal operator.

4. Extension with a Tag Stack

In this section, the network in Fig. 1 is modeled

by extending the model in the last section with tags.

The Kripke structure to model this network is ob-

tained by extending the structure presented in the

☆ NuSMV can be used with the C preprocessor by invok-

ing with the option -cpp

321

Switch1

321

Switch2

Term1

Term2

Term3

Term4

1

2

3

4

5

6

7

A A

ts = [tagA]

.

.

.

ts = []

.

.

.

ts = []

.

.

.

ts = []

.

.

.

ts = []

.

.

.

ts = []

.

.

.

ts = [tagA]

.

.

.

図 5 Trace of the state transition for the flow of the

frame in Fig. 1

last section with a variable ts, a tag stack. The

value of ts is a list of tags. The trace of the state

transition for the flow of the frame in Fig. 1 is shown

in Fig. 5. The assignments of the other variables are

the same as in Fig. 3.

This model is implemented on NuSMV by the

program shown in Fig.6. The variable ts is of type

tagstack, whose operations are given as the macros

TEST, POP and PUSH. The macro TEST(ts, 1, A) is

true if and only if tagA is the 1st tag from the top

of the stack ts. The macros POP and PUSH respec-

tively pop and push a tag on top of the stack (i.e.

let the pushed or poped stack be the stack in the

next state). In the case of phase = switched, the

stack of the frame is tested and optionally POP-ed

or PUSH-ed when switched. The other part is the

same as in Fig. 4.

The detailed implementation of the module

tagstack is shown in Fig. 7. Since NuSMV does

not have a type for lists, the stack is implemented

as an array of a fixed length. The length is three in

Fig. 7.

The reachability of the frames is specified in CTL.

For example, to make sure that frames originating

from VLAN A do not leak to VLAN B, it is suffi-

cient to write the following formula and to check it

on NuSMV:

SPEC

port = 1 & node in {Switch1, Switch3}

-> AG (! (node in {Switch2, Switch4))).

The operators AG and ! are respectively the “forall

研究会Temp
テキストボックス

研究会Temp
テキストボックス

研究会Temp
テキストボックス

研究会Temp
テキストボックス

研究会Temp
テキストボックス
－52－



5

MODULE main

VAR

node: {Switch1, Switch2,

Term1, Term2, Term3, Term4};
port: 1..3;

phase: {switched, transmitted, discarded};
ts: tagstack;

TRANS

case

phase = switched:

case

node in Switch1, Switch2:

case

port = 1 & TEST(ts, 1, A):

next(port) = 2 & POP(ts)

& TRANSMIT;

port = 1 & TEST(ts, 1, B):

next(port) = 3 & POP(ts)

& TRANSMIT;

port = 2:

next(port) = 1 & PUSH(ts, A)

& TRANSMIT;

port = 3:

next(port) = 1 & PUSH(ts, B)

& TRANSMIT;

esac;

node in {Term1, Term2, Term3, Term4}:
DISCARD;

esac;

phase = transmitted:

case

/* Switch1/1 - Switch2/1 */

node = Switch1 & port = 1:

next(node) = Switch2

& next(port) = 1 & SWITCH;

node = Switch2 & port = 1:

next(node) = Switch1

& next(port) = 1 & SWITCH;
...

/* otherwise */

TRUE: DISCARD;

esac;

phase = discarded:

DISCARD;

esac

図 6 Implementation of the Extended Network on

NuSMV

#define MAX 3

#define PUSH(ts, t) \

((case \

ts.size != MAX: \

next(ts.overflow) = ts.overflow \

& next(ts.size) = ts.size + 1; \

ts.size = MAX: \

next(ts.overflow) = TRUE & \

next(ts.size) = ts.size; \

esac) & \

next(ts.stack[1]) = t & \

next(ts.stack[2]) = ts.stack[1] & \

next(ts.stack[3]) = ts.stack[2])

#define POP(ts) \

(next(ts.overflow) = ts.overflow & \

next(ts.size) = ts.size - 1 & \

next(ts.stack[1]) = ts.stack[2] & \

next(ts.stack[2]) = ts.stack[3])

#define STAY(ts) \

(next(ts.overflow) = ts.overflow & \

next(ts.size) = ts.size & \

next(ts.stack[1]) = ts.stack[1] & \

next(ts.stack[2]) = ts.stack[2] & \

next(ts.stack[3]) = ts.stack[3])

#define TEST(ts, p, tset) \

((p <= ts.size) & (ts.stack[p] = tset))

MODULE tagstack

VAR

stack: array 1 .. MAX of {tagA, tagB};

size: 0 .. MAX;

overflow: boolean;

INIT

overflow = FALSE

図 7 Implementation of the module for a tag stack

globally” modal operator and negation.

The frames on the network handled so far in this

section have at most only one tag. Since the model

allows any number of tags, although the number is

limited in implementation, it is easy to extend the

network to include a hierarchy of VLANs. More-

over, the properties that can verify are not limited

to reachability because of the expressiveness of CTL

and LTL. For example, to make sure that there is

no loop of frames in the network, it is sufficient to

check that all frames will be eventually discarded,

研究会Temp
テキストボックス

研究会Temp
テキストボックス

研究会Temp
テキストボックス

研究会Temp
テキストボックス

研究会Temp
テキストボックス
－53－



6

which is specified in the following:

SPEC

EF (phase = discarded).

Note that even if the network does not include a

physical loop, the frames may loop because of tag

switching. For another example, in some larger net-

work, to verify that all frames originating from the

node Node1 to the node Node2 go through a node

NodeX that can filter viruses in frames, it is suffi-

cient to write the following specification in LTL:

LTLSPEC

node = Node1

-> ! (node != NodeX U node = Node2).

The operator U is the “until” modal operator.

5. Conclusion

This paper has described a method to model tag-

extended networks as Kripke structures and check

the correctness of the configurations of the nodes

that construct the networks by the NuSMV model

checker. The method can, for example, check the

reachability and the loop freeness of the frames. If

the physical construction of a network is given in a

machine-readable form, it is easy to automatically

generate the NuSMV script for the model from the

configurations for the nodes. The author has been

developing a tool that collects the configurations

from switches via the TFTP protocol or the SNMP

protocol and automatically checks the reachability

of the frames. Even if writing a program that does

the same checks by graph algorithms is not difficult,

the method enables one to avoid the risk of bugs in

the program. Moreover, by usnig NuSMV or other

model checkers that can check specifications writ-

ten in certain logics, properties of the network other

than reachability can be checked with the method.

There are a few works that apply formal meth-

ods to network management. Guttman7) defines a

language to model IP networks that consist of the

packet filtering gateways and their security policies

in terms of reachability. He also gives algorithms

to generate the configurations of the packet filters

on each interface of the gateways and verify that

the policies are realized. He does not use a generic

model checking tool for verification in contrast with

the present method that uses the NuSMV model

checker and allows one to verify properties other

than reachability. Guttman et al.8) modeled net-

works that consist of security gateways that per-

form IPsec operations on each packet that goes

thorough the gateways. The operations include

push and pop of an IPsec header on the stack of

a frame. They give the constraints on the behav-

iors of the gateways and prove that the authenti-

cation and confidentiality goals are achieved under

the constraints. Their model and the present model

similarly allow a packet, which is called a frame in

this paper, to have a stack of information used by

gateways. They focus on the formalization and the

investigation of IPsec in contrast with this paper

that focuses on checking of running networks.

参 考 文 献

1) Cimatti, A., Clarke, E., Giunchiglia, E.,

Giunchiglia, F., Pistore, M., Roveri, M., Sebas-

tiani, R. and Tacchella, A.: NuSMV Version

2: An OpenSource Tool for Symbolic Model

Checking, Computer Aided Verification, 14th

International Conference, CAV 2002,Copen-

hagen, Denmark, July 27-31, 2002, Proceed-

ings, Lecture Notes in Computer Science,

Vol. 2404, Springer, pp. 359–364 (2002).

2) Clarke, E.M., Emerson, E.A. and Sistla, A.P.:

Automatic Verification of Finite-State Concur-

rent Systems Using Temporal Logic Specifica-

tions, ACM Transaction on Programming Lan-

guages and Systems, Vol. 8, No. 2, pp. 244–263

(1986).

3) Pnueli, A.: A temporal logic of concurrent pro-

grams, Theoretical Computer Science, Vol. 13,

pp. 45–60 (1981).

4) IEEE: IEEE Standards for Local and

Metropolitan Area Networks: Virtual Bridged

Local Area Networks (2003). IEEE Std 802.1Q-

2003.

5) Riverstone Networks: RapidOS Management

Center User Guide Release 1.1 (2002).

6) Rosen, E., Viswanathan, A. and Callon, R.:

Multiprotocol Label Switching Architecture

(2001). RFC 3031.

7) Guttman, J. D.: Filtering Postures: Local En-

forcement for Global Policies, Proceedings 1997

IEEE Symposium on Security and Privacy,

IEEE Computer Society, pp. 120–129 (1997).

8) Guttman, J. D., Herzog, A. L. and Thayer,

F. J.: Authentication and Confidentiality via

IPSEC, Computer Security - ESORICS 2000,

6th European Symposium on Research in Com-

puter Security, Toulouse, France, October 4-6,

2000, Proceedings, Lecture Notes in Computer

Science, Vol.1895, Sprinter, pp.255–272 (2000).

研究会Temp
テキストボックス

研究会Temp
テキストボックス

研究会Temp
テキストボックス

研究会Temp
テキストボックス

研究会Temp
テキストボックス
－54－




