
Locking Protocol for Information Flow Control

Ryung Chon, Tomoya Enokido, and Makoto Takizawa
Dept. of Computers and Systems Engineering

Tokyo Denki University
E-mail {den, eno, taki}@takilab.k.dendai.ac.jp

Abstract
This paper discusses a novel locking protocol to prevent illegal information flow among objects in a role-

based access control (RBAC) model. In this paper, we newly define a conflicting relation “a role R1 conflicts
with another role R2” to show that illegal info rmation flow may occur if a transaction with R1 is performed befor
e another transaction with R2. Here, we newly introduce a role lock on an object to abort a transaction with R1
if another transaction with R2 had been already performed on the object. Role locks are not released even if
transactions issuing the ro le locks commit. A role lock on an object can be released if information brought into
the object got obsolete. We discuss how to release obsolete role locks.

オブジェクト間で起こり得る不正な情報流を防止する役割ロック

田隆 榎戸智也 滝沢誠
東京電機大学理工学部情報システム工学科
E-mail {den, eno, taki}@takilab.k.dendai.ac.jp

役割アクセス制御 (RBAC)モデルでは、オブジェクト間で不正な情報流が生じ得る。本論文で不正な
情報流を防止するために、新たなロックプロトコルを論ずる。役割 R1のトランザクション T1の次に役割
R2の他のトランザクション T2 が実行されると、不正な情報流が生じるとき、R2は R1に競合すると定義
する。各トランザクションは、この役割をモードとするロックをかける。役割競合するロックがかけられ
ているときは、トランザクションはアボートする。この役割ロックは、トランザクションがコミットされ
たとしても、解放されない。不要になった役割ロックを解放する方法についても論じる。

1 Introduction

In access control models, confinement problem
[6] occurs. That is, illegal information flow might oc-
cur even if only authorized requests are performed on
each object. In order to resolve the confinement prob-
lem, mandatory access control (MAC) [1] and lattice-
based access control (LBAC) [3, 9] models are dis-
cussed for traditional read and write methods on sim-
ple objects like files and tables. Information flow con-
trol in object-based systems is discussed in the paper
[8]. However, information flow control for only read
and write methods is discussed. An object-based sys-
tem [7] is composed of objects which are distributed
in a network. Objects support more abstract methods
than read and write ones. In the paper we discuss
access control in object-based systems.

In a role-based access control model (RBAC) [10,
11], a role shows a job function in an enterprise. A
role is specified in a set of access rights [4, 10]. Each
access right is a pair <o, t> which means that an ob-
ject o is allowed to be manipulated by a method t. If
a subject is granted a role including an access right
<o, t>, the subject can issue a request t to an object
o. A subject can be granted multiple roles. A subject
initiates a transaction with role granted to manipulate
objects. A transaction is modeled to be an atomic se-
quence of methods issued to objects.

Suppose a role includes a pair of access rights <f ,
read> and <g, write> and a transaction first is-
sues a method read to a file object f and then write
to a file object g. Here, data in a file object f is
derived through the method read and then the data
is brought into the file object g through the method
write. Suppose a role R2 includes another access
right <g, read> where data in the object g is derived
through the method read. Here, a transaction T2 with
R2 can obtain data in the object f from the object g
even if T2 is not allowed to manipulate f . If the role
R2 includes an access right <f , read> where data
in f can be derived through a method read, informa-
tion flow from f to the transaction T2 is not illegal.
Otherwise, the information flow is illegal. Thus, we
discuss how information flow to occur by performing
transactions with roles. In addition, information flow
depends on in what order methods are performed in a
transaction.

In order to check if illegal information flow might
occur on performing a method of a transaction, we
newly introduce an asymmetric conflicting relation
among roles. A role R1 conflicts with another role
R2 iff illegal information flow might occur by per-
forming a transaction with a role R1 before another
transaction with a role R2. We newly introduce role
locks on objects. A transaction T with a role R locks
an object o with a role lock of mode R before manip-

1

研究会Temp
テキストボックス
－13－

研究会Temp
テキストボックス
社団法人 情報処理学会　研究報告IPSJ SIG Technical Report

研究会Temp
テキストボックス
2004－CSEC－25　(3)

研究会Temp
テキストボックス
2004／5／21

ulating the object o. If no role lock conflicting with
role R is held on the object o, the transaction T can
manipulate the object o. Otherwise, the transaction
T is aborted because illegal information flow with the
object o might occur if T manipulates the object o.
Here, all role locks held by the transaction T are re-
leased. However, even if a transaction commits, role
locks held by the transaction are not released differ-
ently from traditional locking protocols [2]. Thus, role
locks are monotonically accumulated on each object
each time a transaction commits. Suppose a trans-
action with a role R derives data from an object o1.
In the meantime, another transaction updates the ob-
ject o1. Here, the role lock R on another object o2 is
obsolete since the value brought into the object o2 is
obsolete, i.e. different from the current value in the ob-
ject o1. We discuss how to release obsolete role locks
on objects.

In section 2, we discuss a conflicting relation
among roles. In section 3, we discuss how to lock
and release objects in roles. In section 4, we discuss
implementation of role locks.

2 Conflicting Relation on Roles

2.1 Roles on objects

An object-based system is composed of objects.
Each object is an encapsulation of data and methods
for manipulating the data [5]. Methods are more ab-
stract than primitive methods like read and write on a
simple object like table since methods are procedures
realized by primitive and other methods. For example,
a counter object a supports methods initialize(init),
increment(inc), and decrement(dec). The counter
object a is manipulated only through these methods.
Objects are distributed in servers which are intercon-
nected with high-speed networks.

A method is characterized in terms of two types
Input and Output with respect to whether data is
derived from an object or brought into an object. A
method t is an Input type if data in an object o
is derived through the method t. A method t is an
output type if data is brought into an object o through
the method t. Here, Input(t) and Output(t) indi-
cate propositions that a method t is an Input and
Output type, respectively. For example, Input(inc),
Input(dec), and Output(check) hold in a counter
object.

An access right (or permission) is specified in a pair
<o, t> of an object o and a method t supported by the
object o. Only a subject s who is granted an access
right <o, t> is allowed to manipulate an object o only

through a method t. A role R is a collection of access
rights. Each role R shows a job function in an enter-
prise. A subject performing a job function is granted
a role R showing the job function in the enterprise. If
a subject performs multiple job functions, the subject
is granted multiple roles. A subject initiates a transac-
tions to objects to do some work. A transaction is a
unit of work which is a sequence of access requests. A
transaction is associated with one of roles which the
subject is granted. A transaction T associated with
a role R is allowed to issue a method t on an object o
if <o, t> ∈ R. Otherwise, the access request <o, t>
is rejected, i.e. the transaction T is aborted. An access
request t on an object o is also written as a pair <o,
t>.

Information in an object o is derived in a role R (o
⇒ R) if and only if (iff) <o, t> ∈ R and Input(t).
Information in a role R is brought into an object o (R
⇒ o) iff <o, t> ∈ R and Output(t). Suppose a role R
includes access rights <a, inc> and <a, check> on a
counter object a. Here, a⇒R since some transaction
with role R may issue a method inc which brings data
into an object a, i.e. Input(inc). R ⇒ a since data in
the object a is derived by check, i.e. Output(check)
[Figure 1].

inc check

a

information flow.:
: object

: method

Figure 1. Information flow.

Information in an object o1 flow into an object o2

in a role R (o1 ⇒R o2) iff o1 ⇒ R and R ⇒ o2. Let a
and b be a pair of counter objects. Suppose there are
a pair of roles R1 = {<a, check>, <b, inc>, . . .} and
R2 = {<a, dec>, <b, check>, . . .}. If a transaction
T with R1 issues a method check to the object a (a ⇒
R1) and then inc to b (R1 ⇒ b), counter information
in the object a might be brought into the other object
b, i.e. a ⇒R1 b. b ⇒R2 a since b ⇒ R2 in check and
R2 ⇒ a in dec. Information in an object o1 flow into
an object o2 (o1 ⇒ o2) iff o1 ⇒R o2 for some role R.

2.2 Conflicting relation on roles

Suppose counter object a supports a method
check and another counter object b supports a pair
of methods check and inc where Output(check),
Output(check), and Input(inc). Let T1 and T2 be
a pair of transactions with roles R1 = {<a, check>,
<b, inc>, . . .} and R2 = {<b, check>, . . .}, respec-
tively. Suppose that the transaction T1 issues a pair

2

研究会Temp
テキストボックス
－14－

of access requests <a, check> and <b, inc>. Here,
information in a counter object a flow into another
counter object b (a ⇒ b). Then, the transaction T2

issues an access request <b, check>. If the role R2

includes an access right <a, check>, the transaction
T2 is allowed to derive data from the object o1. Other-
wise, T1 cannot issue the access request <b, check>
because T1 might obtain data in the counter object a
from another object b. That is, illegal information flow
might occur. This is shown in a directed object-role
graph [Figure 2]. Here, there are two types of nodes,
role and object nodes. Directed edges “o → R” from
an object node o to a role node R and “R → o” mean
o ⇒ R and R ⇒ o, respectively. o →∗ R, and R →∗

o, α →∗ β and R →∗ R′ iff o ⇒∗ R, R ⇒∗ o, respec-
tively. α →∗ β shows a path from a node α to β in an
object-role graph. A role R is referred to as Output
and Input types if R → o and o → R for some object
o, respectively. In Figure 2, the roles R1 and R2 are
Output types and R2 and R3 are Input types.
[Definition] Information in a role R1 flow into a role
R2 (R1 ⇒ R2) iff R1 ⇒ o ⇒ R2 for some object o.�

Information in a role R1 transitively flow into
another role R2 (R1 ⇒∗ R2) iff R1 ⇒ R2 or R1 ⇒
R3 ⇒∗ R2 for some role R3. In Figure 2 a role R3

is {<b, check>. Here, R1 ⇒∗ R3 since R1 ⇒ R2

and R2 ⇒ R3. Data written to the counter object a in
the method inc by a transaction with a role R1 might
be derived in check by another transaction with a role
R3.

A following property holds for the subsumption re-
lation:
[Property] R3 ⇒ R2 if R1 ⇒ R2 and R1 ⊆ R3.�

R1 R2 R3

a b

<a , inc>
<a , check>

<b , inc>
<b, check>

: information flow: counter object role:

Figure 2. Object-role graph (R1 ⇒ R2 ⇒
R3).

Let R be a set of roles in a system. A role R1 is
referred to as connected to another role R2 in R (R1

�→ R2) iff R1 ⇒ R2 or R1 �→ R3 �→ R2 for some
role R3 in R. R1 �→ R2 means that some data written
into objects by a transaction with a role R1 might be
derived by another transaction with a role R2.
[Definition] A role R1 conflicts with a role R2 (R1

� R2) iff o ⇒ R1 ⇒ R2 and o � R2 for some object
o.�

A role R1 transitively conflicts with a role R2

(R1 �∗ R2) iff o ⇒ R1 ⇒∗ R2 and o � R2 for some
object o. A role R1 is compatible with a role R2 (R1

� R2) iff R1 � R2 does not hold. Neither the con-
flicting relation � nor compatible relation � is sym-
metric. That is, R2 � R1 and R2 � R1 may not hold
even if R1 � R2 and R1 � R2, respectively. In addi-
tion, the conflicting relation � and compatible relation
� are neither transitive nor reflexive. Suppose a role
R1 conflicts with another role R2 (R1 � R2). Let T1

and T2 be transactions with roles R1 and R2, respec-
tively. Suppose the transaction T1 derives some data
in an object o through a method t1, i.e. Input(t1) and
then writes the data into another object o1 through a
method t2, i.e. Output(t2) (o ⇒ R1 ⇒ o1). The other
transaction T2 derives data from the object o1 (o1 ⇒
R2), but is not allowed to derive data from the object o
(o � R2) [Figure 3]. Thus, if T2 is performed after T1,
illegal information flow might occur. The transaction
T2 might get data in the object o by manipulating the
object o1 even if T2 is not allowed to derive data from
o. On the other hand, if T2 is performed before T1, no
illegal information flow occur. Thus, R2 is compatible
with R1 (R2 � R1) even if R1 � R2. This example
shows it depends on the computation order of trans-
actions whether or not illegal information flow might
occur.

R1

x

o o1

:

:

granted

not granted

R2

Figure 3. R1 conflicts with R2 (R1 � R2).

[Properties] If a role R1 conflicts with another role
R2 (R1 � R2),

1. R3 � R2 if R1 ⊆ R3.
2. R1 � R3 if R3 ⊆ R2 and R1 ⇒ R3.�
Let us consider a pair counter objects a and b. Let

R1 and R2 be a pair of roles {<a, check>, <b, inc>}
and {<b, check>, <b, dec>}, respectively. R1 con-
flicts with R2 (R1 � R2) as discussed here. Let R3 be
another role {<a, check>, <b, inc>, <b, check>}.
Here, R3 � R2 since R1 ⊆ R3. Let R4 be a role {<b,
check>}. R1 � R4 since R1 ⇒ R4.

The conflicting relation � ⊆ R2 is obtained by
searching an object-role graph for R:
[Conflicting relation �]

� For every pair of roles R1 and R2 in R, first as-
sume that R1 � R2 and R2 � R1 held.

� For every Output role R in R,

3

研究会Temp
テキストボックス
－15－

for every object o such that o → R,
for every Input role R′ such that R →∗ R′

and R � R′, unless o → R′, R � R′ is
changed with R � R′.�

[Definition] A role R is safe iff R � R′ for every role
R′ in R.�

A transaction is safe iff the transaction is associ-
ated with a safe role. No illegal information flow oc-
cur if only safe transactions are performed. A pair of
safe transactions can be performed in any order. A
system is safe iff every role is safe. Safe systems
are restricted and most systems are unsafe. In this pa-
per, we discuss how to prevent illegal information flow
even in unsafe systems.

3 Role Locking Protocol

3.1 Role locks

Transactions have to manipulate objects so that no
illegal information flow occurs in a role-based access
control (RBAC) model. Suppose a transaction T is
associated with a role R. The transaction T manipu-
lates a role set variable T .role. Each object o also has
a role set variable o.role. Initially, T .role := φ and
o.role := φ. Suppose a transaction T issues an access
request <o, t> for an object o and a method t. The
role set variables T .role and o.role are manipulated
for the access request <o, t> as follows :
[Manipulation of access request <o, t>]

1. If Input(t), i.e. a transaction T derives data from
an object o through a method t, T .role := T .role
∪ o.role.

2. If Output(t), i.e. T brings data into an object o
through a method t, o.role := o.role ∪ T .role if
R1 � R (R1 is compatible with R) for every role
R1 in o.role. Otherwise, T is aborted.

3. The method t is performed on the object o.�

Suppose that a transaction T with a role R issues an
access request <o, t> where Output(t), i.e. T would
like to derive data from an object o. If every role R1

in o.role is compatible with the role R (R1 � R), the
access request t is performed on the object o. Then,
the role lock mode R is added to the role set variable
o.role of the object o, i.e. o.role := o.role ∪ {R}. If
some role R1 in o.role conflicts with the role R (R1

� R2) in the condition 2, illegal information flow to
the object o might occur by performing the method t.
Hence, the transaction T is aborted.
[Example] Suppose there are a pair of counter ob-
jects a and b. Let R1 and R2 be a pair of roles {<a,
check>, <b, inc>} and {<b, check>}, respectively.
Here, R1 conflicts with R2 (R1 � R2) as shown in
Figure 4. Suppose a pair of transactions T1 and T2 are

associated with roles R1 and R2, respectively. First,
the transaction T1 first issues an access request <a,
check> and then an access request <b, inc>. Here,
b.role = {R1}. Next, suppose the other transaction
T2 is performed while issuing an access request <b,
check>. Since a.role = φ and Output(check), i.e.
data is derived by check, roles in b.role are compared
with the role R2 of T2. Since R1 ∈ b.role and R1

conflicts with R2 (R1 � R2), the access request <b,
check> is rejected, i.e. T2 is aborted.

On the other hand, suppose the transaction T2 is
first performed on the object b before T1. Here, a.role
= φ and b.role = φ. Then, the transaction T1 is per-
formed. b.role = φ when T2 issues an access re-
quest <b, deposit>. Since there is no role lock in
b.role which conflicts with R2, T2 can issue inc on
the counter object b.�

This example shows that illegal information flow
might not occur even if transactions with conflicting
roles are performed. Hence, each time a transaction T
issues a method t on an object o, it is checked by using
role locks if illegal information flow might occur on
performing the method t in our approach.

T1(R1) T2(R2)

a b

a.role = b.role = { R1 }

1. check

2. inc

3. check
x

φ

Figure 4. Information flow.

3.2 Obsolete roles locks

A role set o.role of an object o is monotonically
growing since roles are just added to the role set o.role
each time an Output method is performed on the ob-
ject o. Here, suppose a transaction T1 with a role R1

derives data from an object o1 through a method t1
and then writes the data into another object o2. Here,
o1 ⇒ R ⇒ o2. Next, suppose a transaction T2 with a
role R2 derives data from the object o2 and then writes
the data into an object o3. Hence, a pair of role locks
R1 and R2 are held on the object o3, i.e. o3.role =
[R1, R2]. Suppose another transaction T3 updates the
object o1 [Figure 5]. The data derived from the object
o1 by the transaction T1 is obsolete now. Hence, the
role lock R1 can be released on the object o3.
[Reduction rule 1] If a role lock R on an object o is
obsolete, R is released, i.e. removed from o.role.�
[Definition] A role lock R held on an object is
obsolete iff an object o1 is updated where o1 ⇒ R
⇒∗ o.�

4

研究会Temp
テキストボックス
－16－

T1(R1)

o1

T3(R3)

T2(R2)

o2 o3

1 2

3

Figure 5. Information flow.

From properties of the conflicting relation, follow-
ing roles in the role set o.role can be removed :
[Reduction rule 2] For every pair of roles R1 and R2

in o.role, R1 is released, i.e. removed from o.role if
R1 ⊆ R2.�

4 Implementation

4.1 One-server model

We discuss how to lock objects in role modes and
release obsolete role locks. First, suppose that no lock
is held on every object o. A transaction T with a role
R issues an access request <o, t> at time τ . An object
o is locked in a mode R. Here, the role lock R on the
object o is uniquely identified in a tuple <o, R, τ>.
Even if another transaction T ′ with a role R issues a
same access request <o, t> at time τ , the lock is iden-
tified in a tuple <o, R, τ ′> where τ �= τ ′. In addition,
each role lock <o, R, τ> is assigned with a unique
identifier id. A tuple <id, o, R, τ> is stored in a role
set. new id() is a function which creates a new iden-
tifier in the system. OaddRlock and TaddRlock are
functions by which a role lock is stored in the role sets
o.role and T.role, respectively. The method t issued
by the transaction T with a role R is performed on an
object o as follows:
perform (t, o, T)

1. Input(t): a method t is an input type.
if some role lock R′ in o.role conflicts with the
role R (R′ � R), then T is aborted;
else {OaddRlock(o, R, τ ,);

for every <id′, R′, τ ′, id′′> in T.role,
OaddRlock (o, R′, τ ′, id′);}

2. Output(t): a method t is an output type.
for every <id′, R′, τ ′, id′′> in o.role, {

TaddRlock (T , R, τ ′, id′);
OaddRlock (o, R, τ , id);
for every <id′, R′, τ ′, id′′> in o.role,

if R′ = R and τ > τ ′, {
<id′, R′, τ ′, id′> is removed from o.role;
delRlock (id′);}}

3. The method t is performed on the object o.�

The functions TaddRlock, OaddRlock, and delR-
lock are realized as follows:
TaddRlock(o, R, τ , id){ a tuple <new id(), R, τ ,

id> is added to o.role;}
OaddRlock(T , R, τ , id){ a tuple <new id(), R,

τ , id> is added to T.role;}
delRlock(id){ for every object o, {every tuple <id′,

R′, τ ′, id> is removed from o.role;
delRlock(id′);}}
In the one-server model, all objects are stored in

one computer. Objects are locked in role locks by
using a role lock table RL(rlid, object, role, time,
p rlid, tid) as shown in Figure 6. The attribute rlid
shows an identifier of a role lock. The attribute tid
shows an identifier of a transaction which issues a role
lock request. Suppose an object o is locked in a mode
R by a transaction T at time τ . A tuple <id, o, R, τ , ,
T> is stored in the RL table where id is an identifier
of the role lock <o, R, τ>. In the meantime, another
transaction T ′ with a role R′ derives data from the ob-
ject o and then writes the data into another object o′.
Hence, the object o′ is locked in a role lock R′, i.e. a
tuple <id′, o′, R′, τ ′, , T ′> is added to the RL ta-
ble. Here, “ ” shows null value. At the same time, the
role lock R on the object o is also held on the object
o′ [Figure 7]. That is, a tuple <id′′, o′, R, τ , id, T ′>
is added to the RL table. Here, id′′ is the identifier of
the tuple. The attribute p rlid shows the identifier id
of the role lock R held on the object o.

RL rlid object role time p_rlid tid

id o R - T

id’ o’ R’ - T’

id’’ o’ R id T’

τ

τ’

τ

Figure 6. RL table.

T(R) T’(R’)

o o’

τ’τ

id <o, R, τ> id’ <o’, R’, τ’ >

id’’ <o, R, τ>

Figure 7. Role locks.

Suppose an object o is updated. Every role lock <o,
R, τ> in o.role is now obsolete. For every obsolete
role lock <o, R, τ>, the tuple <id, o, R, τ , , T>
showing the role lock <o, R, τ> held by a transaction
T is deleted from the RL table. At the same time,

5

研究会Temp
テキストボックス
－17－

every tuple whose p rlid is equal to id, i.e. <id′, o′,
R, τ , id, T ′> is removed from the RL table. Then,
every tuple whose p rlid is id′ is also deleted from
the RL table. Thus, the cascading removal of tuples is
realized by performing the function delRlock(id).

4.2 Multi-server model

In a distributed system, an RL table is maintained
in each computer to store role locks on local objects.
If a computer notifies the other computers of dele-
tions of role locks each time one object is updated, the
larger communication overheads are implied. Hence,
we take a following strategy if a transaction T with a
role R updates an object o in a computer c.

[Manipulation of access request <o, t>]
1. Each computer maintains a role lock (RL) table

for locking local objects.
2. The RL table in the computer c is updated if

some role lock R′ on an object o is obsolete.
Here, a tuple <id, o, R, . . .> is removed from
the RL table. The value id of the attribute rlid
of the tuple removed is stored in a file ID.

3. The computer c periodically sends the file ID to
all the other computers. ID := φ after sending
ID.

4. On receipt of ID, every tuple whose p rlid
is in ID is removed from the RL table by
delRlock(id) for every id in ID. If a tuple <id′,
. . ., id> is removed here, id′ is added to the file
ID in the same way as step 2.�

Even if a role lock R gets obsolete in a computer,
the role lock R is not soon released on every object in
another computer. The obsoleteness of the role lock R
is gradually propagated in networks. The shorter the
period, the more consistent the RL table are but the
more communication is required.

4.3 Commitment

A transaction takes the strict two-phase locking
protocol [2] for concurrency control. That is, every
object is locked before manipulated and all the locks
held by a transaction are released on commitment or
abort of the transaction.

Each time a transaction manipulates an object o,
role locks are stored in the temporary role set variable
o.temprole in stead of o.role. If the transaction com-
mits, role locks in o.temprole are merged into o.role
at the same time the lock on the object o is released. If
the transaction aborts, the role locks are just erased in
o.temprole.

5 Concluding Remarks

We discussed how to prevent illegal information
flow among objects in the role-based access control
(RBAC) model. We newly introduced role locks on
objects. An object is locked in a role lock before a
transaction manipulates the object. If the object can-
not be locked, the transaction is aborted since illegal
information flow might occur by performing the trans-
action. Role locks are not released even if the trans-
action commits. We discussed what role locks held on
objects are obsolete and how to release the obsolete
role locks. We also discussed how to implement the
role locks.

References

[1] D. E. Bell and L. J. LaPadula. Secure computer sys-
tems: Mathematical foundations and model. In Mitre
Corp. Report, pages 74–244, 1975.

[2] P. A. Bernstain, V. Hadzilaces, and G. N. Concurrency
Control and Recovery in Database Systems. Addison-
Wesley, 1987.

[3] D. E. Denning. A lattice model of secure information
flow. Comm. of the ACM, 19(5):236–243, 1976.

[4] D. Ferraiolo and R. Kuhn. Role-based access controls.
In Proc. of 15th NIST-NCSC Nat’l Computer Security
Conf., pages 554–563, 1992.

[5] A. Goldberg. Smalltalk-80: The interactive pro-
gramming environment. Reading. Addison-Wesley,
5(2):169–172, 1984.

[6] B. W. Lampson. A note on the confinement problem.
Comm. of the ACM, 16(10):613–615, 1973.

[7] Object Management Group Inc. The Common Object
Request Broker : Architecture an d Specification. Rev.
2.1, 1997.

[8] P. Samarati, E. Bertino, A. Ciampichetti, and S. Jajo-
dia. Information flow control in object-oriented sys-
tems. IEEE Trans. on Knowledge and Data Engineer-
ing, 9(4):524–538, 1997.

[9] R. S. Sandhu. Lattice-based access control models.
IEEE Computer, 26(11):9–19, 1993.

[10] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-based access control models. IEEE
Computer, 29(2):38–47, 1996.

[11] Z. Tari and S. W. Chan. A role-based access con-
trol for intranet security. IEEE Internet Computing,
1(5):24–34, 1997.

6

研究会Temp
テキストボックス
－18－

