0000 00oooooooog
IPSJ SIG Technical Report

200400 CSECO 250 (3)
2004050 21

L ocking Protocol for Information Flow Control

Ryung Chon, Tomoya Enokido, and M akoto Takizawa
Dept. of Computersand Systems Engineering

Tokyo Denki University
E-mail {den, eno, taki}@takilab.k.dendai.ac.jp

Abstract

This paper discusses a novel locking protocol to prevent illegal information flow among objects in arole-
based access control (RBAC) model. In this paper, we newly define a conflicting relation “arole Ry conflicts
with another role R,” to show that illegal info rmation flow may occur if atransaction with R; is performed befor
e another transaction with R,. Here, we newly introduce arole lock on an object to abort a transaction with R,
if another transaction with R, had been already performed on the object. Role locks are not released even if
transactions issuing the ro le locks commit. A role lock on an object can be released if information brought into
the object got obsolete. We discuss how to rel ease obsol ete role locks.

Jobooobooobuobbooboobooboooobuobn

oo oobod ood

0000000000000000000
E-mail {den, eno, taki } @takilab.k.dendai.ac.jp
00000000 (RBAQUODODODOOODODOOODDODOODOODOOODODOOOOOOOOOOoDOOOO
O0o00000d0o0ooooooooooooooooOooooo0 O00o0o0oOoooo Tyooo0oon
R, O0O0O0O0OO0ODOODOO T,OOOOOOOOOOoOooooOoOoOoOUOoOoOoOoOR O ROOOOOOOO
gdobobooodoooboooboodouoboodoooouobDobOooUobOooooo
gdobobooodboodoodboodouoooob oo uob oo UobOooooo
gdoboododoodoboboooooboobodoouoboooouooboon
1 Introduction Suppose arole includes a pair of access rights < f,

In access control models, con finement problem
[6] occurs. That is, illegal information flow might oc-
cur even if only authorized requests are performed on
each object. In order to resolve the confinement prob-
lem, mandatory access control (MAC) [1] and lattice-
based access control (LBAC) [3, 9] models are dis-
cussed for traditional read and write methods on sim-
ple objectslike files and tables. Information flow con-
trol in object-based systems is discussed in the paper
[8]. However, information flow control for only read
and write methods is discussed. An object-based sys-
tem [7] is composed of objects which are distributed
in a network. Objects support more abstract methods
than read and write ones. In the paper we discuss
access control in object-based systems.

In arole-based access control model (RBAC) [10,
11], arole shows ajob function in an enterprise. A
roleis specified in a set of access rights [4, 10]. Each
accessright isa pair <o, t> which means that an ob-
ject o is alowed to be manipulated by a method ¢. If
a subject is granted a role including an access right
<o, t>, the subject can issue a request ¢ to an object
o. A subject can be granted multiple roles. A subject
initiates a transaction with role granted to manipulate
objects. A transaction is modeled to be an atomic se-
guence of methods issued to objects.

read> and <g, write> and a transaction first is-
sues a method read to afile object f and then write
to a file object g. Here, data in a file object f is
derived through the method read and then the data
is brought into the file object ¢ through the method
write. SuUppose a role Ry includes another access
right <g, read> where datain the object ¢ is derived
through the method read. Here, atransaction T, with
R, can obtain data in the object f from the object ¢
even if Ty is not alowed to manipulate f. If the role
R5 includes an access right < f, read> where data
in f can be derived through a method read, informa-
tion flow from f to the transaction 7% is not illegal.
Otherwise, the information flow isillegal. Thus, we
discuss how information flow to occur by performing
transactions with roles. In addition, information flow
depends on in what order methods are performed in a
transaction.

In order to check if illegal information flow might
occur on performing a method of a transaction, we
newly introduce an asymmetric con flicting relation
among roles. A role Ry con flicts with another role
R, iff illegal information flow might occur by per-
forming a transaction with a role R, before another
transaction with arole R,. We newly introduce role
locks on objects. A transaction T' with arole R locks
an object o with arole lock of mode R before manip-

0 130

研究会Temp
テキストボックス
－13－

研究会Temp
テキストボックス
社団法人 情報処理学会　研究報告IPSJ SIG Technical Report

研究会Temp
テキストボックス
2004－CSEC－25　(3)

研究会Temp
テキストボックス
2004／5／21

ulating the object o. If no role lock conflicting with
role R is held on the object o, the transaction T' can
manipulate the object 0. Otherwise, the transaction
T isaborted because illegal information flow with the
object o might occur if 7" manipulates the object o.
Here, al role locks held by the transaction T" are re-
leased. However, even if atransaction commits, role
locks held by the transaction are not released differ-
ently from traditional locking protocols[2]. Thus, role
locks are monotonically accumulated on each object
each time a transaction commits. Suppose a trans-
action with arole R derives data from an object o .
In the meantime, another transaction updates the ob-
ject o1. Here, the role lock R on another object o- is
obsolete since the value brought into the object os is
obsolete, i.e. different from the current valuein the ob-
ject o1. We discuss how to rel ease obsol ete role locks
on objects.

In section 2, we discuss a conflicting relation
among roles. In section 3, we discuss how to lock
and release objects in roles. In section 4, we discuss
implementation of role locks.

2 Conflicting Relation on Roles
2.1 Roleson objects

An object-based system is composed of objects.
Each object is an encapsulation of data and methods
for manipulating the data [5]. Methods are more ab-
stract than primitive methodslike read and write ona
simple object like table since methods are procedures
realized by primitive and other methods. For example,
acounter object a supports methodsinitialize(init),
increment(inc), and decrement(dec). The counter
object a is manipulated only through these methods.
Objects are distributed in servers which are intercon-
nected with high-speed networks.

A method is characterized in terms of two types
Input and Output with respect to whether data is
derived from an object or brought into an object. A
method ¢ is an Input type if data in an object o
is derived through the method ¢. A method ¢ is an
output typeif datais brought into an object o through
the method ¢. Here, Input(t) and Output(t) indi-
cate propositions that a method ¢ is an Input and
Output type, respectively. For example, Input(inc),
Input(dec), and Output(check) hold in a counter
object.

An accessright (or permission) isspecified inapair
<o, t> of an object 0 and amethod ¢ supported by the
object 0. Only a subject s who is granted an access
right <o, t> isallowed to manipulate an object o only

through amethod ¢. A role R isacollection of access
rights. Each role R shows ajob function in an enter-
prise. A subject performing a job function is granted
arole R showing the job function in the enterprise. If
a subject performs multiple job functions, the subject
is granted multipleroles. A subject initiates a transac-
tions to objects to do some work. A transaction isa
unit of work which isa sequence of access requests. A
transaction is associated with one of roleswhich the
subject is granted. A transaction T associated with
arole R is allowed to issue a method ¢ on an object o
if <o, t> € R. Otherwise, the access request <o, t>
isrejected, i.e. thetransaction T isaborted. An access
request ¢ on an object o is also written as a pair <o,
t>.

Information in an object o isderived inarole R (o
= R) if and only if (iff) <o, t> € R and Input(t).
Informationinarole R isbrought into an object o (R
= 0) iff <o, t> € R and Outpuit(t). Supposearole R
includes accessrights <a, inc> and <a, check> on a
counter object a. Here, a = R since sometransaction
with role R may issue amethod inc which brings data
into an object a, i.e. Input(inc). R = a sincedatain
the object a is derived by check, i.e. Output(check)

[Figure 1].

\ / — information flow.
|:| . object

a O : method
Figure 1. Information flow.

Information in an object o; flow into an object o,
inarole R (01 =g 02)iff o, = Rand R = 05. Leta
and b be apair of counter objects. Suppose there are
apair of roles Ry = {<a, check>, <b,inc>, ...} and
Ry = {<a, dec>, <b, check>, ...}. If atransaction
T with R, issues amethod check to the object a (a =
R,) and then incto b (Ry = b), counter information
in the object a might be brought into the other object
b,i.e.a=pg, b. b=pg, a Sinceb = Ry in check and
Ry = aindec. Information inan object 01 flow into
an object 02 (01 = 02) iff 01 =g 0o for somerole R.

2.2 Conflicting relation on roles

Suppose counter object a supports a method
check and another counter object b supports a pair
of methods check and inc where Output(check),
Output(check), and Input(inc). Let Ty and Ty be
apair of transactions with roles R; = {<a, check>,
<b,inc>, ...} and Ry = {<b, check>, ...}, respec-
tively. Suppose that the transaction T} issues a pair

0140

研究会Temp
テキストボックス
－14－

of access requests <a, check> and <b, inc>. Here,
information in a counter object a flow into another
counter object b (a = b). Then, the transaction T5
issues an access request <b, check>. If therole Ro
includes an access right <a, check>, the transaction
T isalowed to derive data from the object o;. Other-
wise, 17 cannot issue the access request <b, check>
because 77 might obtain data in the counter object a
from another object b. That is, illegal information flow
might occur. This is shown in a directed object-role
graph [Figure 2]. Here, there are two types of nodes,
role and object nodes. Directed edges“o — R” from
an object node o to arole node R and “ R — 0" mean
0= Rand R = o, respectively. o —* R, and R —*
o,a—*Band R —* R iff o=* R, R =* o, respec-
tively. @« —* (3 shows apath from anode o to 5 inan
object-role graph. A role R is referred to as Output
and Input typesif R — o and o — R for some object
o, respectively. In Figure 2, the roles R; and R, are
Output types and R, and R3 are Input types.
[Definition] Informationin arole Ry flow into arole
Ry (Ry = Ry)iff Ry = 0 = Ry for some object 0.0

Information in arole Ry transitively flow into
another role Ry (Ry =* Ry) iff Ry = Ry Of Ry =
R3 =* R, for somerole R3. In Figure 2 arole R3
is {<b, check>. Here, Ry =* Rj3 since R; = R»
and R, = R3. Datawritten to the counter object a in
the method inc by atransaction with arole R, might
be derived in check by another transaction with arole
Rs.

A following property holds for the subsumption re-
lation:
[Property] R3 = Rsif Ry = Ry and Ry C R3.0

R R R

<a, check>

|:| + counter object — . information flow

O :role

Figure 2. Object-role graph (R; = Ry =
R3).

Let R be a set of rolesin a system. A role R, is
referred to as connected to another role Ry in R (R
— Ry) iff Ry = Ro or Ry — R3 — Ry for some
role R3 inR. Ry — R means that some data written
into objects by a transaction with arole R; might be
derived by another transaction with arole R;.
[Definition] A role Ry con flicts with arole Ry (R
> Ry) iff o = Ry = Ry and o & R for some object
0.0

A role Ry transitively conflicts with arole R
(R1 >* Ry) iff o = Ry =* Ry and 0o % R, for some
object 0. A role R, is compatible with arole Ry (R;
O Ry) iff Ry > R, does not hold. Neither the con-
flicting relation > nor compatible relation O is sym-
metric. That is, R, > Ry and R, O R; may not hold
evenif Ry > Ry and Ry O Ry, respectively. In addi-
tion, the conflicting relation > and compatible relation
O are neither transitive nor reflexive. Suppose a role
R, conflicts with another role Ry (Ry > Ro). Let T3
and T>» be transactions with roles R, and R», respec-
tively. Suppose the transaction 7 derives some data
in an object o through amethod ¢4, i.e. Input(t;) and
then writes the data into another object o, through a
method ¢5, i.e. Output(ts) (0 = Ry = 01). The other
transaction T derives data from the object o (01 =
R»), but isnot allowed to derive datafrom the object o
(0o # Ro) [Figure3]. Thus, if T, isperformed after 77,
illegal information flow might occur. The transaction
T> might get data in the object o by manipulating the
object o; even if Ty isnot allowed to derive data from
0. On the other hand, if T is performed before T, no
illegal information flow occur. Thus, R iscompatible
with Ry (Re O R,) even if Ry > R,. Thisexample
shows it depends on the computation order of trans-
actions whether or not illegal information flow might
occur.

R, R,

— . granted

—%—> : not granted

Figure 3. Ry conflicts with Ry (R1 > Ry).

[Properties] If arole Ry conflicts with another role
Ry (Rl > RQ),
1. R3> Ry if R1 C Rs.
2. Ri> R3if R3C Ryand Ry = R3.0
Let us consider a pair counter objects a and b. Let
R, and R, beapair of roles { <a, check>, <b, inc>}
and {<b, check>, <b, dec>}, respectively. R, con-
flictswith Ry (R > R2) asdiscussed here. Let R3 be
another role {<a, check>, <b, inc>, <b, check>}.
Here, R3 > Ry since Ry C Rs. Let Ry bearole {<b,
check>}. Ry > Ry since Ry = Ry.
The conflicting relation > C R? is obtained by
searching an object-role graph for R:
[Conflicting relation]
. For every pair of roles R, and Rs in R, first as-
sumethat R, O Ry and R, O Ry held.
. For every Output role RinR,

0150

研究会Temp
テキストボックス
－15－

for every object o such that 0 — R,
for every Input role R’ suchthat R —* R’
and RO R, unlesso — R/, RO R’ is
changed with R > R’.O
[Definition] A role Rissafeiff R O R’ for every role
R'inR.O
A transaction is sa fe iff the transaction is associ-
ated with a sa fe role. No illegal information flow oc-
cur if only safe transactions are performed. A pair of
safe transactions can be performed in any order. A
system is safe iff every roleis safe. Safe systems
arerestricted and most systems are unsafe. In this pa-
per, we discuss how to prevent illegal information flow
even in unsafe systems.

3 RoleLocking Protocol
3.1 Rolelocks

Transactions have to manipulate objects so that no
illegal information flow occurs in a role-based access
control (RBAC) model. Suppose a transaction 7' is
associated with arole R. The transaction 7' manipu-
latesarole set variable T'.role. Each object o also has
arole set variable o.role. Initidly, T.role := ¢ and
o.role := ¢. Suppose atransaction 7" issues an access
request <o, t> for an object o and a method ¢. The
role set variables T'.role and o.role are manipulated
for the access request <o, t> asfollows:
[Manipulation of access request <o, t>]

1. If Input(t), i.e. atransaction T' derives datafrom
an object o through amethod ¢, T.role := T'.role
U o.role.

2. If Output(t), i.e. T brings datainto an object o
through a method ¢, o.role := o.role U T .role if
R, O R (R, iscompatible with R) for every role
Ri ino.role. Otherwise, T is aborted.

3. Themethod ¢ is performed on the object 0.0

Supposethat atransaction 7" with arole R issuesan
access request <o, t> where Outpui(t), i.e. T would
like to derive data from an object o. If every role R;
in o.role is compatible with therole R (R; O R), the
access request ¢ is performed on the object 0. Then,
the role lock mode R is added to the role set variable
o.role of the object o, i.e. o.role := o.role U {R}. If
some role R; in o.role conflicts with the role R (R,
> Ry) in the condition 2, illegal information flow to
the object o might occur by performing the method ¢.
Hence, the transaction 7" is aborted.

[Example] Suppose there are a pair of counter ob-
jectsa and b. Let Ry and R, be apair of roles {<a,
check>, <b, inc>} and {<b, check>}, respectively.
Here, R; conflicts with Ry (Ry > R3) as shown in
Figure 4. Suppose apair of transactions 7 and 75 are

associated with roles Ry and R, respectively. First,
the transaction T first issues an access request <a,
check> and then an access request <b, inc>. Here,
b.role = {R1}. Next, suppose the other transaction
T is performed while issuing an access request <b,
check>. Since a.role = ¢ and Output(check), i.e.
datais derived by check, rolesin b.role are compared
with the role R, of Ty. Since Ry € b.role and R,
conflicts with Rs (R; > R3), the access request <b,
check> isrejected, i.e. T; isaborted.

On the other hand, suppose the transaction 75 is
first performed on the object b before T} . Here, a.role
= ¢ and b.role = ¢. Then, the transaction 77 is per-
formed. b.role = ¢ when T, issues an access re-
quest <b, deposit>. Since there is no role lock in
b.role which conflicts with Ry, T, can issue inc on
the counter object b.0

This example shows that illegal information flow
might not occur even if transactions with conflicting
roles are performed. Hence, each time atransaction T’
issuesamethod ¢ on an object o, it is checked by using
role locks if illegal information flow might occur on
performing the method ¢ in our approach.

arole = ¢ b.role={R,}

Figure 4. Information flow.

3.2 Obsoleteroleslocks

A role set o.role of an object o is monotonically
growing sincerolesarejust added to therole set o.role
each time an Output method is performed on the ob-
ject o. Here, suppose atransaction 7; with arole R;
derives data from an object o; through a method ¢,
and then writes the data into another object o,. Here,
01 = R = 0o. Next, suppose atransaction 7, with a
role R, derives datafrom the object o, and then writes
the datainto an object o3. Hence, a pair of role locks
R, and R, are held on the object o3, i.e. o3.role =
[R1, R2]. Suppose ancther transaction T3 updates the
object o; [Figure 5]. The data derived from the object
01 by the transaction T} is obsolete now. Hence, the
rolelock R can be released on the object os.
[Reduction rule 1] If arolelock R on an object o is
obsolete, R isreleased, i.e. removed from o.role.0
[Definition] A role lock R held on an object is
obsolete iff an object o, is updated where 0, = R
=* 0.0

0 160

研究会Temp
テキストボックス
－16－

Figure 5. Information flow.

From properties of the conflicting relation, follow-
ing roles in the role set o.role can be removed :
[Reduction rule 2] For every pair of roles R, and R»
ino.role, Ry isreleased, i.e. removed from o.role if
R1 C Ry.O

4 Implementation

41 One-server model

We discuss how to lock objects in role modes and
release obsolete role locks. First, suppose that no lock
is held on every object 0. A transaction T" with arole
R issues an accessrequest <o, t> at timer. An object
o islocked in amode R. Here, the rolelock R on the
object o is uniquely identified in atuple <o, R, 7>.
Even if another transaction 7" with arole R issues a
same access request <o, t> at time 7, thelock isiden-
tifiedinatuple <o, R, 7/> where 7 = 7'. In addition,
each role lock <o, R, 7> is assigned with a unique
identifier id. A tuple <id, o, R, 7> isstored in arole
set. new_id() isafunction which creates a new iden-
tifier in the system. OaddRlock and TaddRlock are
functions by which arolelock isstored in therole sets
o.role and T'.role, respectively. The method ¢ issued
by the transaction T" with arole R is performed on an
object o asfollows:
perform (¢, o, T)

1. Input(t): amethod ¢ isan input type.
if some role lock R’ in o.role conflicts with the
role R (R’ > R), then T isaborted,;
else {OaddRlock(o, R, T, -);
for every <id’, R', 7/, id"> in T.role,
OaddRlock (o, R/, 7', id');}
2. Output(t): amethod ¢ is an output type.
for every <id’, R', 7/, id"> in o.role, {
TaddRlock (T, R, 7/, id’);
OaddRlock (o, R, T, id);
for every <id’, R', 7/, id"> in o.role,
if " =Rand 1 > 7', {
<id', R, 7', id’"> isremoved from o.role;
delRlock (id'); }}
3. Themethod ¢ is performed on the object 0.0

The functions TaddRlock, OaddRlock, and delR-
lock arerealized as follows:

TaddRlock(o, R, T, id){ atuple <new_id(), R, 7,
id> isadded to o.role;}
OaddRlock(T, R, T, id){ atuple <new_id(), R,

7, 4d> isadded to T.role;}
delRlock(id){ for every object o, {every tuple <id’,

R, 7', id> isremoved from o.role;

delRlock(id’);}}

In the one-server model, all objects are stored in
one computer. Objects are locked in role locks by
using a role lock table RL(rlid, object, role, time,
prlid, tid) as shown in Figure 6. The attribute rlid
shows an identifier of a role lock. The attribute tid
shows an identifier of atransaction whichissuesarole
lock request. Suppose an object o islocked in amode
R by atransaction T at time 7. A tuple <id, o, R, 7, -,
T> isstored in the RL table where id is an identifier
of the role lock <o, R, 7>. In the meantime, another
transaction 7" with arole R’ derives data from the ob-
ject o and then writes the data into another object o'.
Hence, the object o’ islocked in arolelock R', i.e. a
tuple <id’, o', R', 7/, ., T'> is added to the RL ta
ble. Here, “_" shows null value. At the same time, the
role lock R on the object o is aso held on the object
o' [Figure 7]. That is, atuple <id”, o/, R, 7, id, T'>
is added to the RL table. Here, id” istheidentifier of
the tuple. The attribute p_riid shows the identifier id
of therolelock R held on the object o.

RL | rlid | object| role time p_rlid tid
id o R T T
id o) R’ T T
id o) R T id T

id<o, R, ©>- _ _

id' <o, R", 7' >

T * id”"<o,R, >
Figure 7. Role locks.

Suppose an object o isupdated. Every rolelock <o,
R, 7> in o.role is now obsolete. For every obsolete
role lock <o, R, 7>, the tuple <id, o, R, 7, _, T>
showing therolelock <o, R, 7> held by atransaction
T is deleted from the RL table. At the same time,

g1iro

研究会Temp
テキストボックス
－17－

every tuple whose p_rlid is equal to id, i.e. <id', o,

R, 7, 4d, T'> is removed from the RL table. Then,
every tuple whose p_rlid is id’ is also deleted from
the RL table. Thus, the cascading removal of tuplesis
realized by performing the function delRlock (id).

4.2 Multi-server model

In a distributed system, an RL table is maintained
in each computer to store role locks on local objects.
If a computer notifies the other computers of dele-
tions of rolelocks each time one object is updated, the
larger communication overheads are implied. Hence,
we take afollowing strategy if atransaction 7" with a
role R updates an object o in a computer c.
[Manipulation of access request <o, t>]

1. Each computer maintains a role lock (RL) table
for locking local objects.

2. The RL table in the computer ¢ is updated if
some role lock R’ on an object o is obsolete.
Here, atuple <id, o, R, ...> isremoved from
the RL table. The value id of the attribute rlid
of the tuple removed is stored in afile I D.

3. The computer ¢ periodically sendsthefile ID to
all the other computers. ID := ¢ after sending
ID.

4. On receipt of ID, every tuple whose p_rlid
isin ID is removed from the RL table by
delRlock(id) for every id in ID. If atuple <id',
..., id> isremoved here, id’ is added to thefile
1D inthe same way as step 2.0

Even if arole lock R gets obsolete in a computer,
therolelock R isnot soon released on every object in
another computer. The obsoleteness of therolelock R
is gradually propagated in networks. The shorter the
period, the more consistent the RL table are but the
more communication is required.

4.3 Commitment

A transaction takes the strict two-phase locking
protocol [2] for concurrency control. That is, every
object is locked before manipulated and all the locks
held by a transaction are released on commitment or
abort of the transaction.

Each time a transaction manipulates an object o,
role locks are stored in the temporary role set variable
o.temprole in stead of o.role. If the transaction com-
mits, role locks in o.temprole are merged into o.role
at the sametime the lock on the object o isreleased. If
the transaction aborts, the role locks are just erased in
o.temprole.

5 Concluding Remarks

We discussed how to prevent illegal information
flow among objects in the role-based access control
(RBAC) model. We newly introduced role locks on
objects. An object is locked in a role lock before a
transaction manipulates the object. If the object can-
not be locked, the transaction is aborted since illega
information flow might occur by performing the trans-
action. Role locks are not released even if the trans-
action commits. We discussed what role locks held on
objects are obsolete and how to release the obsolete
role locks. We aso discussed how to implement the
role locks.

References

[1] D. E.Bel and L. J. LaPadula. Secure computer sys-
tems. Mathematical foundations and model. In Mitre
Corp. Report, pages 74-244, 1975.

[2] P A.Bernstain, V. Hadzilaces, and G. N. Concurrency
Control and Recovery in Database Systems. Addison-
Wesley, 1987.

[3] D.E. Denning. A lattice model of secure information
flow. Comm. of the ACM, 19(5):236-243, 1976.

[4] D.Ferraiolo and R. Kuhn. Role-based access controls.
In Proc. of 15th NIST-NCSC Nat'| Computer Security
Conf., pages 554-563, 1992.

[5] A. Goldberg. Smalltalk-80: The interactive pro-
gramming environment. Reading. Addison-Wesley,
5(2):169-172, 1984.

[6] B.W. Lampson. A note on the confinement problem.
Comm. of the ACM, 16(10):613-615, 1973.

[7] Object Management Group Inc. The Common Object
Request Broker : Architecture an d Specification. Rev.
2.1,1997.

[8] P. Samarati, E. Bertino, A. Ciampichetti, and S. Jajo-
dia. Information flow control in object-oriented sys-
tems. |EEE Trans. on Knowledge and Data Engineer-
ing, 9(4):524-538, 1997.

[9] R. S. Sandhu. Lattice-based access control models.
IEEE Computer, 26(11):9-19, 1993.

[10] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-based access control models. |EEE
Computer, 29(2):38-47, 1996.

[11] Z. Tari and S. W. Chan. A role-based access con-
trol for intranet security. |EEE Internet Computing,
1(5):24-34, 1997.

0 180

研究会Temp
テキストボックス
－18－

