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Abstract In this paper, we show that there exists a cheater identifiable (k,n) threshold secret sharing scheme for
a quantum secret. Suppose that there are at most t cheaters (k 2 3t + 1), k or more participants can identify who

are cheating. Our scheme utilizes authentication codes based on an orthogonal array and stabilizer codes, which are
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unconditionally secure. Moreover, we discuss the relation between n and t.
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1. Introduction

Suppose that the president of a bank needs to leave a signif-
icant information (e.g., the combination of a vault) with two
vice presidents and he knows that one of them is dishonest,
but does not know which is. He may well desire to distribute
the secret to them such that no single person can read it, but
two together can. How should he implement this? In clas-
sical cryptography, the answer is known as a secret sharing
scheme. In 1979, Shamir [10] addressed a more generalized
setting and showed how to construct schemes that divide a
secret into n shares such that any subset of k or more shares
can be reconstruct the secret and no subset of k or fewer
cannot be obtain some information about the secret.

Such efficient threshold schemes can be very helpful in

the management of cryptographic keys and in other applica-
tions which have a tradeoff between safety and convenience
of management.

Recently, many researchers studied various quantum se-
cret sharing schemes [2]~[4], [6]~(8]. Most of those propos-
als basically focus on the detection of eavesdropping or the
efficiency in the use of quantum state [6]~(8].

From the aspect of fault tolerance, we focus on the cheater
identifiability of the quantum secret sharing in this paper.
In the classical setting, the cheater identifiable secret shar-
ing scheme is proposed by Kurosawa et al.[9]. Basically,
our scheme is based on thier scheme. Kurosawa’s method
successfully uses the message authentication based on an or-
thogonal array to identify which share is tampered, however,

it is inconvenient to adapt to a quantum secret. Then, we
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interlock the quantum message authentication [1] which uti-
lizes stabilizer codes [5], which is unconditionally secure.

Our scheme is a threshold scheme in which a secret is di-
vided into n shares such that just k shares are enough to
retrieve the secret and any subset of k — 1 or fewer shares
contain no information about the secret at all. This is called
a k-out-of-n or (k,n) threshold secret sharing scheme. Some
papers [2], [8] propose such a threshold scheme. In partic-
ular, Cleve et al.[2] showed the theorem that a stabilizer
[2k — 1,1,k], if any, can be used as a (k,2k — 1) threshold
scheme.

In this paper, we consider a threshold quantum secret shar-
ing model in which there are at most t cheaters and show that
there exists a t-cheater identifiable (k,n) threshold scheme,
where k 2 3t + 1, with high probability.

2. Cheater identifiable threshold secret
sharing

2.1 Formulation
Informally, (k,n) threshold secret sharing schemes for

quantum secret with cheaters are described as follows.

Threshold secret sharing

Let S be the set of quantum secrets. Dealer D produces n
shares (v1,...,vn) on a given quantum secret in S and dis-
tributes them to n participants Pi,..., P, respectively, such
that any k or more shares can be used to retreive the secret,
but any set of k — 1 or fewer shares contains no information
about the secret at all. We assume that (i) the dealer is
honest, that is, if the shares produced by him are not tam-
pered, any subset of more than k shares always reconstruct
the original secret, and (ii) there are at most ¢t cheaters in n

participants and they may collude.

In other words, a t-cheater identifiable (k,n) threshold se-
cret sharing scheme is summarized as follows.
-Completeness: Any set of participants containing at least
k honest participants can reveal the original secret with high
probability.
-Soundness: No subset of less than k participants can de-
termine any partial information on the secret.
-Identifiability: There exists a Turing machine M which de-
tects who are cheating with high probability if k£ or more

participants open their shares.

Cheater identifiability

Suppose that P, ..., P; are cheaters without loss of generality
and they open 11, ..., %;. Successful cheating occurs if either
one of the following two cases is satisfied;

(Case 1:) M cannot detect who are cheaters while the fact

of cheating are detected, and the reconstruction of the secret
fails.
(Case 2:) Participants reconstruct an incorrect secret from

(1, ..., Ut, Ve41, ..., Um), where m 2 k.

[Definition 1] We say that a (k,n) threshold secret sharing
scheme is t-cheater identifiable if there exists a deterministic
Turing machine which identifies ¢ cheaters in any set of m
(2 k) participants, where the cheating fails with high prob-
ability.

2.2 Proposed scheme

Our scheme is outlined as follows. A dealer randomly
chooses a secret sharing scheme, Q, for a quantum secret. He
devides the secret into n shares by a quantum (k,n) thresh-
old secret sharing scheme @ and then each share is authen-
ticated by a quantum message authentication code (QMAC)
in order to detect tampering. This is the quantization of the
scheme proposed by Kurosawa et al. [9]. In|[2], it is shown
that a stabilizer code [n,1,n—k+1], where n < 2(n—k+1),
can be used as a threshold secret sharing scheme for a quan-
tum secret. We use their scheme as Q. A stabilizer code can
also be used as a QMAC([1]. Participants share additional
secrets, the keys of QMACs and “which scheme is used as Q
from a given set”, which are classical information. The keys
of QMAG:s are shared in the way that they are reconstructed
by k or more participants even if they contains at most ¢
cheaters. A linear code implements this. @ is shared by a
classical (k,n) threshold secret sharing scheme, which iden-
tifies cheaters by the authentication based on an orthogonal

array, as in [9]. Finding of Q needs at least k honest shares.

[Definition 2] An orthgonal array OA(t + 1,np,q) is a
t+
q

of the array, every one of the possible ¢'*

! x np array of ¢ symbols such that, in any ¢+ 1 columns
! ordered tuples of

symbols occurs in exactly one row.

Let us start the concrete explanation of our scheme. Let
C = {C1,Cs,...} be a finite set of stabilizer codes [n,1,n —
k + 1]. The orthogonal array OA and the set C are pub-
licly known. Let |so) be a quantum secret of single-qubit
state. For each participant P;, dealer D produces a share
vi = (lai), Biy¥iy 0iy (i1 o0y Giyn )y (Ris1y ooey Bin)) as fol-
lows. (Note that only ket-notation denotes a quantum data.)

(P1) D randomly chooses a stabilizer code Cj, from C
and encodes |so) to an n-qubit codeword |w) according to
C,.

(P2) As in Shamir’s scheme, D chooses a (k — 1)-th order
random polynomial over GF(p), where p = |C| and p is a

prime power:
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Fi(z)=lo+aqnz+ a(x.z)ﬂlf2 +- 4+ a(l.k—l)zk_l-

Let B; = Fi(i) fori=1,...,n.

(P3)
g is a prime power. D chooses a random number ¢, where
1< ¢ £ ¢**!. Let +; be the c-th row and the (i — 1)p + 8;
th column element of OA(t + 1,np, q).

Let OA(t+1,np, q) be an orthogonal array such that

(P4) D chooses a t-th order random polynomial over
GF(¢"*"):

Fy(z) =c+a@yc+ 0-(2,2)-’132 +-+ a(z.:)zl-

Let 6; = F(i) fori=1,2,...,n.

(P5) D randomly chooses n pairs (Ci,,e1),...,(Cl,,en)
such that Cj; is a stabilizer code in C and e; is an error
in E;, where E; is the set of correctable errors of Ci; and
|E;| is a prime power. Without loss of generality, e; can
be substituted with a number, e.g., an error syndrome. For
j =1,...,n, D chooses t-th order random polynomials G; over
GF(p) and t-th order random polynomials H; over GF(|E;|):

GJ($) = lj + a(ljvl)z + a(,jvz)mz +- 4 a(l].‘g)mt.
Hj(z) = € + ae, )T+ a(e, 2T + - +a(e, )"

Let g;,; = G;(i) and h;,; = H;(i) fori,5 =1,...,n.
(P6) Let |s), be the i-th qubit state of |s). D encodes
|s); to an n-qubit codeword |a;) according to Cy; with error

syndrome e;.

Put simply, v; consists of the shares of the secret and the
authenticators for it. |a;) is a share of the very secret, and
authenticators of |a;) are reconstructed from g;; and h; ;.
Bi is also a share of the secret in the sense that lo, which
can be retrieved from S;’s, is an immediate key to obtain the

original secret. «; and d; are the authenticators of 3;.

[Theorem 1] The above scheme is a t-cheater identifiable

(k,n) threshold secret sharing scheme for a quantum secret
ifk23t+1.

[Proof 1] Consider that Pi,.

shares vy, ..., um, where m 2 k. Without loss of generality, we

.., Pm open their holding

suppose that P, ..., P; are cheaters and they open v, ..., v;.
We show that there exists a deterministic Turing machine M
which detects who are cheaters on o = (41, ..., U¢, Ve 41, -, Um)
which does not satisfy (P2),...,(P6). (Clearly, if ¥ satisfies
(P2),....(P6), the original secret is reconstructed determinis-
tically.)

Suppose that ¥ does not satisfy (P5) or (P6). That is,

34,5, Giy % G;(i) or hij % H;(5).

{(G;(1),...,Gj(m))} is a linear code with the Hamming dis-

tance d = m — t. In our case,

m2k23t+1
d22t+1

There is a deterministic algorithm which identifies ¢ or fewer
errors (i.e., cheaters) in §1.j, ..., gm.; and iu,j, oy hm ; for €v-
ery j. Therefore, the algorithm recovers G;(z) and H;(z).
Note that cheaters obtain no information about G;(z) and
Hj(z) at all, even if they collude. Once l; and e; is re-
trieved, the result of the error syndrome measurement on
the disclosed |d:) decides whether falsification occurs with
high probability.

Suppose that © does not satisfy (P2), (P3), or (P4). By
the same token, if &, does not satisfy (P4), the falsification is
detected deterministically. Once c is recovered, it is easy to
detect which set of 8; and +y; violates (P3) from the nature
of orthogonal array. If it is confirmed that there is k or more
(3;’s which are not tampered, lo is reconstructed. It is obvi-
ous that the recovery of Fi(z) needs at least k honest 3;’s,
and thus this quantum secret sharing is a (k,n) threshold

scheme. ]

Our scheme uses a stabilizer [n, 1, K], where K = n—k+1,
to split a secret of single-qubit state into n shares. The code
is tolerant of at most K — 1 = n — k located errors, namely,
just k shares are enough to correct the erasure errors and
retrieve the original state, and k — 1 or fewer shares obtain

no information about the secret at all [2]. In our case,

k23t+1
=>n-K23t

Here, let K =an (0 <a < 1).

= Q;—‘”ngt (1)

If, in the model of cheater identifiable threshold quantum
secret sharing, the upper bound of a number of cheaters be-
comes clear, equation (1) may give a lead for the relation
between K and n on a stabilizer code [n, 1, K]. This is chal-
lenging and requires further investigation. Calculating the

cheating success probability is also a future work.
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