#HHEEAN BRAEYES BIERE
IPSJ SIG Technical Reports

2006—CSEC—30 (39)

2005./7,/22

ElGama 5% AW - ERIEEEIZ DWW T

WA @Y FE e

ToHE =Yy A MM

SAREREST AL &

t BAGEESHSH
) BRBRARTROE 1-1

HoFEL MIEElGamal 5% AV REHEFROKBZRET 5. REFRIL, MBBRY OFHFEDFRUC

AT, HEROBATHRIZENS.

¥—7—F ElGamal B§5, v VF /-5 1+ —3E, fumstE

On a secure circuit evaluation protocol using ElGamal encryption

Go YAMAMOTOY, Koji CHIDA!, Anderson NASCIMENT!, Kouratou SUZUKI!, and
Shigenori UCHIYAMA!

1 NTT Corporation
1-1 Hikarinooka, Yokosuka, Japan

Abstract We propose a protocol for implementing secure function evaluation based on the homomorphic

threshold ElGamal encryption scheme. To the best of our knowledge, our solution is more efficient in terms

of computational complexity than previous solutions existent in the literature.

Key words ElGamal encryption, multiparty computation, secure function evaluation

1. Introduction

1.1 Background

Two-party secure function evaluation consists of a pro-
tocol which allows n players, to compute a function f(-),
which depends on inputs from the players, such that at
the end of the protocol: the parties are sure that the re-
sult of the computation is correct; no party has learned
more about each other’s input than what can be com-
puted from the output itself; dishonest players did not
obtain significant knowledge about the output of the pro-
tocol while preventing the honest parties from receiving
the result of the computation.

Secure function evaluation (SFE) is a central problem
in the theory of cryptography and has received consid-
erable attention since its introduction in[19]. Several
different solutions, based on a wide range of models and
assumptions, were proposed, e.g. [2], [11], [19]

However, it is still a big challenge to design proto-

cols which are secure and efficient. Most of the pro-

posed works till now aimed at proving the impossibil-
ity /possibility of SFE in principle, rather than in prac-
tice.

With the advent of ubiquitous computing and the big-
ger role played by low-computational powered devices
in security protocols, the search for efficient protocols,
in terms of computational complexity, for implementing
SFE becomes a crucially important topic.

In this contribution, we give an efficient protocol for
implementing secure function evaluation based on the
DDH assumption which, to the best of our knowledge,
possesses better computational and communication com-
plexities than previous solutions in the literature attain-
ing a similar level of security.

1.2 Previous Work

Many function evaluation protocols were presented in
the literature in several different forms and flavors. The
problem was first considered by Yao in [19], who proved
that given the existence of one-way functions, any dis-

tributed computation can be securely implemented.

—281—

研究会temp
長方形

Subsequently, several researchers tried to obtain more
efficient protocols by using different computational as-
sumptions.

In (5], Cramer et al. proposed a generic and very ef-
ficient protocol, in terms of communication complexity,
implementing secure distributed computation based on
homomorphic encryption. They also proved that their
protocol is secure when implemented with the Paillier
encryption scheme.

It would be desirable to replace the Paillier encryp-
tion used in [5] by the elliptic ElGamal encryption since
the former can be implemented with much less compu-
tational effort and its key generation process is much
This goal was achieved in [17],

where a SFE protocol was proposed which has its se-

simpler and efficient.

curity based on the homomorphic ElGamal encryption.
The proposed scheme is secure against active adversaries,
and the computational and communication complexities
of the protocol are linear in the number of players. How-
ever, two prices were paid to obtain this improvement:
(i) the round complexity of the protocol depends on the
number of players (what is not a big problem if the num-
ber of players is not large) and (ii) the scheme of [17] is
optimistic, that is, its performance degrades if the par-
ties engaged in the protocol misbehave.

1.3 Our Contribution

This paper proposes a protocol for secure function
evaluation which is as secure as the protocol proposed
in[17], but achieves an improved communication and
computational complexities while being non-optimistic.

‘We achieve this improvement by modifying the original
protocol for computing conditional gates proposed in [17]
so as to remove cheating parties from the computation
without any need to re-start it and by using slightly mod-
ified versions of known zero-knowledge proofs ([6],[3],
and (16]).

1.4 Road Map

Our paper is organized as follows. In Section 2 we
present our security model, definitions and assumptions.
In Section 3 we present our protocol, its security and
performance analysis. Conclusions and open problems
are given in Section 4. Some proofs of knowledge used

in the main protocol are stated in an Appendix.
2. Security Model

Our model is very similar to the ones presented in [5]
and [17].

We assume that there are n players connected by au-
thenticated channels and a broadcast channel. We as-
sume synchronous communications among the players.
No more than t < n players are corrupted by a static
malicious adversary (thus, the adversary has to choose
which parties are to be corrupted before the beginning
of the protocol and does not corrupt any more players
once the protocol starts). All the parties, including the
adversary, are polynomial time Turing machines.

The goal of the protocol is to evaluate a certain func-
tion F represented as a binary circuit composed of addi-
tion and multiplication gates.

To define security, we introduce a trusted third party,
which is connected by private and synchronous channels
to all other players. A protocol secure in the ideal world
is one where all the players give their respective inputs
to the trusted party which them computes the outputs
of all the players and distribute them to the respective
parties.

A protocol secure in the real world is one which effi-
ciently emulates the ideal protocol previously described.
That is, any adversary attacking the real protocol can
be simulated in polynomial time, given only the view of
an adversary attacking the ideal protocol. For further
details we refer to [5].

We assume the hardness of the decisional Diffie-
Helmann problem (DDH problem) and the existence of
random oracles, as in [17].

We note here that, in the case a majority of the play-
ers is dishonest, there are certain attacks which are un-
avoidable. For instance, if t > n/2 players are dishonest,
always a subset n — t of ,playérs will be able to abort
the protocol. Thus, in the case of dishonest majority
we always consider a non-aborting adversary. Moreover,
if t > n/2 nothing prevents cheating parties from leav-
ing the protocol after they have obtained their desired
output, even if the honest parties have not yet received
theirs. Thus, strong fairness is never achieved in this
scenario. Therefore, in our work, in case of dishonest
majority, we aim at a weaker form of fairness, where
cheating parties can leave the protocol with some, but

not significant, advantage over honest parties.
3. Proposed Protocols

3.1 Preliminary
In our protocol we use the threshold ElGamal encryp-

tion scheme. For the sake of simplicity, we first introduce

—282—

its non-threshold version.

Consider a cyclic group G of order g generated by G
where the DDH problem is hard. Consider the ElGamal
public key (G, H = uG) and its secret key u.

An encryption of a € {0, 1} is defined as:

E(a,r) ¥ (G, (a + r)H), (1)

where r €r Z/qZ.

a can be obtained from E(a,r) by dividing (a + r)H
by urG and then computing the discrete logarithm of
the result. This is infeasible in general. However, in our
case, because a is always taken from a small (binary)
domain, this task can be performed efficiently.

Note that this encryption scheme is homomorphic,
that is, E(a,r) x E(&,7)* = E(a + \a,r’), for a pub-
licly known value A. Thus, linear operations are easily
implementable on ciphertexts. Also, it is easy to see
that, given E(a,r), E(@,7) and), a party A can prove
in zero-knowledge to a verifier B that E(a+ A,) is in-
deed a valid encryption of a + Ad. For further details,
please see Appendix.

In the multi-party setting in this paper, players keep
shares of the secret key u in advance. We can use key
generation schemes as the ones proposed in[14] and k-
out-of-n verifiable secret sharing schemes as[8] to se-
curely distribute shares of an unknown and randomly
chosen secret key u.

Our goal in the subsequent sections is to securely im-
plement an operation @ on a € {0,1} and b taken not
necessarily from a binary domain, such that:

(a=0)
1-b (a=1)

It is obvious that @ stands for the ordinary XOR if
a,b € {0,1}. A gate implementing a @ b was called a
conditional gate in[17], where they, together with ad-
dition gates, were proven to be sufficient for realizing
secure function evaluation. In the next section we give
a new, more efficient protocol for obtaining conditional
gates.

3.2 Proposed Protocol for Implementing Con-

ditional Gates

Here we give a new, more efficient protocol for imple-
menting conditional gates. Compared to the protocol
proposed in [17] our solution is non-optimistic while pre-
senting a slightly better computational performance.

Hereafter, E(') stands for the threshold homomorphic

ElGamal encryption with its secret key shared among n
players. We start with input bits a,b € {0,1} C Z/qZ
(not necessarily known to any of the players) and ran-
dom numbers 7, s €r Z/qZ. The proposed protocol uses
E(a,r) and E(b, 5) as input, and computes E(a®b, t) for
some t €g Z/qZ while keeping a and b secret through its
entire execution. Denote the n players participating in
the protocol by Pi, P, - , P,.

The basic idea of the protocol is close to that of [17],
but the scheme is different. The proposed profocol
requires no translation from {0,1} to {-1,1} for in-
put/output bits, and no Pedersen commitments in the
process, what overall results in a more efficient protocol.
We assume that at a setup phase, the players generated
a public key 7 and secret shares of a private key o of an
ElGamal encryption scheme, for instance, by using the
protocols proposed in [14].

Our proposed protocol is described in Table 1. It is
easy to verify the correctness of our protocol. First check
that

e1D(e28b) = (e1De2) B,

where e1,e2 € {0,1}, b € Z/qZ, and @ stands for

def b (a=0)
1-b (a=1).

a®b

The output of Protocol Z is E(an @ bs,r"”) for some

"

r’. Since an = e1 D e2® - De, Da and b, =
e1dPex®---Den, @b, thus

G Bbn = (102 BenDa)D (1B 2D Den D)
(61682@“'@en@a@ex€Bez®~~~®en)$b

I

=adb,

hence E(an @ bn, ") = E(a ® b, 7").

3.3 Security Analysis
[Theorem 1] In protocol Z, when less than t < n play-
ers are corrupted, the adversary does not learn any non-
negligible information about a, b under the DDH as-
sumption and the random oracle model.
(Sketch)

Since we assume that, in the case t > n/2 corrupted

PROOF

adversaries do not abort the protocol, and the thresh-
old of the ElGamal encryption is always set to be larger
than ¢, we know that protocol Z does not abort and that
unauthorized ciphertexts are never decrypted.

The proof will follow from two facts: the secu-
rity of the proofs of knowledge presented in the ap-

pendix and the fact that during the entire protocol,

—283—

研究会temp
長方形

Parties: players {P;}i=12,.. ,n-

Output: ciphertext E(a @ b, ") for some random r".

(1) Let E(ao,r0) & E(a,r), E(bo, s0) < E(b, 5).
(2) Repeat the following steps for i = 1,2,...,n.

Denote (4, B) = E(ai-1,7i-1), (X,Y) = E(bi_1,8i-1).

(AI,BI) - {(A:B)*‘(tiG,t,‘H). (ei =0)
(A, =B)+ (LG, (ti + 1)H) (es=1)

(X +Y)+ (w:iG,u; H) (ei=0)

X'\ Y')= {
(=X,-Y) 4+ (wiG, (ui + 1)H) (es=1)

step. Set

and exclude him from the remaining of the protocol.

xY) (=0

(C,D)= {
(-X,-Y —H) (an=1)

Common input: ciphertexts E(a,r), E(b, s), where a € {0,1}, b € Z/qZ

(a) P; generates a random bit e; and a random number t;,u; €g {0,1,2,--- ,p—1}.
(b) P; takes E(ai—1,7i—1), E(bi—1,si—1) as input, computes E(ai, ;) = (A/, B'), E(b;,s;) = (X’,Y’) according to
the equations below. If i & n then P; sends this result to P;11, otherwise move to Step 3.

(¢) P; proves in zero knowledge (by using protocol B described below) that he has acted honestly in the previous

((G,p,G, H), (Go, Ho), (G1, H1),

(Go, Hp), (G, Hi), (e, t,1))
((G,p,G,H),(A' -~ A,B' — B),(A+ A, B+ B' - H),
X'=X,Y' -Y),(X+X',Y +Y' — H), (ei, ti, u)).

(d) In case P; fails to prove he acted honestly in the previous step set his output to E(ai—1,7i—1), E(bi-1, Si—1)

(3) The players decrypt E(an,n) using verifiable ElGamal distributed decryption, and open an publicly.
(4) Define (X,Y) = E(bn,sn). (C,D), the output of the protocol, is:

()

(&)

4

Table 1 Protocol Z (Conditional Gate).

sends (2o, 21,¢0,¢1) to V.
(2) V verifies

or reject.

Common input: (G, H,Go, Ho, G1, H1, G, H), G}, H}) € G1°, where (Gq, G, H) «— GP-(1%).
Private input to P: b € {0,1}, s,t € Z/qZ s.t. Gy = sG, Hy = sH, G} = tG, and H} = tH.
Statement to prove: (G, H,Go, Ho, G1, H1, Gy, H), G, H{) € ANDORDL.

(1) P chooses r,v,c1_5 €r Z/qZ and computes R%
RY® = vH + c1p(eH1—p + H]_4), & = H1(RE||IRY|IREIIRY) — c1-p, 25 = 7 — cp(se + 1), and z1p = v, where
e = Ho(G||H||Go||Ho||G1||H1||G}||H||G}||H]) and Ho and Hy are hash functions that map {0,1}* — Z/qZ. 1t then

o +¢1 = H1(20G + co(eGo + Gh)||z0H + co(eHo + Hp)||21G + c1(eG1 + GY)||z1H + c1(eH1 + H})) and returns accept

rG, Ry = rH, Ré.”b = vG + c1_p(eG1-p + G|_,),

Table 2 Protocol B: a protocol for honest verifier zero-knowledge proof of knowledge

for a witness on the membership of ANDORDL(see Appendix).

only data indistinguishable from random is presented
to the adversary. In detail, the input for Protocol B
is computationally indistinguishable from a random in-
put from the point of view of the adversary because
((Go, Ho), (G1, Hy), (Go, Hy), (G1, H1)) = (A’ = A, B' -

B),(A+A',B+B'—H),(X'-X,Y' -Y),(X+X',Y +
Y’ — H)), while A, A’, X, X' are randomly chosen and
we have that DDH assumption holds. So according to
Proposition 4, if the active adversary corrupts a player,

and the corrupted player generates input/output with no

—284—

knowledge of e, t:, ui, Protocol B will reject this player.
Since the rejected player is immediately excluded from
protocol, the only action that the active adversary can
take is to control the choices of (ei,t:,u:). It is obvious
that Protocol Z outputs E(a @b, ") even when some of
the players are corrupted.

Without loss of generality we assume that a single
player j is uncorrupted.

To see that Protocol Z leaks no information on a, b,
we configure a simulator for the protocol that has no de-
cryption oracle but takes E(a,r), E(b,s), E(a ® b,r")
as input. Without loss of generality we may assume all
players are corrupted except for a player j.

For the simulation of corrupted players, the simulator
execute the protocol as described in Protocol Z, while
setting e;, t;, u; as the adversary chooses.

For the simulation of player j, the only uncorrupted
player, the simulator choose e; €r {0,1} and outputs
E(e;,t;), E(e; ®a®b, s;) in place of E(aj,r;), E(b;, uj)
respectively, where E(e; @ a @ b, s;) is obtained by

E(a @b, T") + (u_‘iG, ujH)

E(ej @a@b,Sj)Z (4120)
—E(a®b,r") + (u;G, (u; + 1)H)
(a=1).

To authenticate its input/output by Protocol B, the sim-
ulator execute the simulation of Protocol B as in Propo-
sition 1.

For simulating the decryption stage, the simulator out-
puts @ = P j €, and generates the proof by executing
the simulation for the verifiable decryption protocol.

Since the output of the simulated player k is
E(D;_; ei,™m) and E(a® b @7, ei, 5x), one obtains
E(an ®bn,r") = E(a®b,r") as the output of the simu-
lation, successfully simulating Protocol Z.

To see the simulated view of the adversary is indis-
tinguishable from that of the real protocol it suffices to

see

viewr = ({(E(ai,r:), E(bi, 5:), 1L}, IT', @),
and

views = ({(E(as, i), E(bs, s:), IL}, I, ain),

are indistinguishable. Here II; is the proof of protocol Z
in Step 2, and IT' is the proof in Step 3, E(as,), E(bi, s:)

are the outputs of simulated players, I1, II’ are simulated

proofs for Step 2 and Step 3 respectively.

It is obvious that E(a;,r:) and E(a:,r;) are computa-
tionally indistinguishable because of the DDH assump-
tion and so for E(b;, s;) and E(b;, s;). II; and IT; for each
i, II' and IT are zero-knowledge proofs, thus they cannot
help distinguish viewr and views. a, is a random bit
since at least one of the players in the real protocol is not
corrupted. dn = €D]_; e: is also a random bit because
player j is not corrupted in the simulation. Hence viewg
and views are computationally indistinguishable under
the DDH assumption. B

3.4 Secure Function Evaluation

First note that in the case we restrict our inputs a and
b to be binary in protocol Z, it is easy to show that con-
ditional gates can be used to securely evaluate any logic
gate, while keeping the the logic gate itself hidden.

Consider a “quadratic form”
frvzw(a,b) = (a®2)+ (0@ y) + (a®b) B 2+ w, (5)

where z,y, z,w € Z/qZ.

It is easy to see that fs,y .. can be configured to be
any logic gate if one choose z,y, z,w € Z/qZ appropri-
ately.

By having encrypted values E(z,r.), E(y,ry),
E(z,r.), and E(w,r,) the inputs E(a, r), E(b,s),
E(z,1:), E(y,ry), E(z,7:), and E(w,r,), one can se-
curely evaluate fsy;w. Additions are performed by ex-
ploiting the homomorphism of the underlying encryption
scheme, whereas XOR operations can be performed by
using our protocol Z. Thus one can apply any logic gate
to encrypted plaintexts while hiding the gate itself.

Informally speaking, a computation is said to be se-
cure if it is private, correct and fair [12], informally these
properties are:

Private: No party learns anything more than what can
be computed from the output.

Correct: The output received by each party is guaran-
teed to be the output of the specified function.

Fair: Corrupted parties should receive an output iff
honest parties do.

The fairness requirement is usually relaxed in the
faulty majority scenario. We assume that the additional
unfair information a corrupted party has about the com-
putation’s output can be made arbitrarily small in a se-
curity parameter k.

A secure computation usually has three stages:

Input Stage: Here the parties enrolled in the protocol

—285—

研究会temp
長方形

commit to their inputs.

Computation Stage: In the computational stage, the
parties evaluate the circuit which describes the function
to be evaluated gate by gate. We consider only AND
and negation gates, since they are universal.

Output Stage: In this stage, the parties receive their

correspondent outputs.

In our protocol we assume an extra stage which hap-
pens before the input stage, it is called Setup phase.
S'éi:up Phase: During the setting phase, the players
generate the public/private keys for the threshold ElGa-
mal encryption scheme used subsequently in the compu-
tation stage.

A Protocol Implementing Secure Multi-Party
Computation Our protocol is similar to the one pre-
sented in[5] and the security analysis there presented
can be straightforwardly modified to show the security
and correctness of our protocol.

(1) Setup Phase - In this stage, all the players gen-
erate the private/public keys of the threshold encryption
schemes used in the subsequent stages.

(2) Input Stage Each player encrypts his own in-
put by using the ElGamal threshold encryption scheme
agreed on during the Setup phase. The players prove in
zero-knowledge that they have behaved correctly.

(3) Computation Stage During the computation
stage, the players evaluate the circuit being computed
gate by gate. AND gates can be evaluated by using pro-
tocol Z. Negation gates can be easily implemented by
exploiting the linearity of our encryption scheme (the
players should prove in zero knowledge that they behave
correctly).

(4) Opening Stage Here, all the players recon-
struct the result of the computation. If the number of
corrupted players is larger or equal to a half of the play-
ers, then fairness becomes an important issue. However,
we note that a solution proposed in [17] equally applies
to our setting and can be straightforwardly used here to
achieve weak fairness.

3.5 Performance Analysis

In this section, we study the performance of the pro-
posed protocol in terms of computational and communi-
cation complexities.

We compare our protocol with the other protocols pos-
sessing linear communication and computational com-
plexities in the literature that are secure against active

adversaries, namely [5] and [17). We compare the costs of

implementing a conditional gate with our protocol and
the protocol proposed in [17] to the cost of implementing
a multiplication with the protocol proposed in [5].

Table 1 shows a comparison of the required computa-
tional effort, and Table 2 shows a comparison of the com-
munications complexities for each XOR gate (multiplica-
tion gate in the case of [5]). Here n is the number of par-
ticipants in the protocol, MLT is the amount of computa-
tional effort required for computing XOR (multiplication
gates) with honest-but-curious adversaries (without any
kind of verification), PRF is the computational cost of
the proofs for making the XOR (multiplication) secure
against active adversaries and VRF is the cost of veri-
fying those proofs. Mpai, MEiG are the times required
for computing the modulo exponentiation operation in
the Paillier encryption and the elliptic multiplication by
scalars in the elliptic ElGamal encryption, respectively.
We take the protocol proposed in [10] as the distributed
decryption scheme in [5].

The modulo exponentiation in Paillier encryption is
executed on Z/N?Z, the bit length of N is 1024. The
elliptic ElGamal encryption is executed on an elliptic
curve over Fpe. ¢ is the order of the base point. We con-
sider that the resulting primitives have about the same
level of security. Regarding elliptic exponentiation on
OEF(Optimal Extension Fields), 174 bit elliptic multi-
plication by scalars is computed in 0.254 ms on a 500
MHz Alpha 21264 processor if we optimize it according
to[1] etc. Regarding modulo exponentiation, the library
evaluation by [18] indicates that 1.6 GHz AMD Opteron
processor took 28.41 ms to compute 2048 bits RSA de-
cryption. If we take this value as a rough approxima-
tion, we may consider Mpai ~ 200MEic. Hence the pro-
posed protocol seems to be the most efficient homomor-
phic encryption based scheme in terms of computational
communication complexities (but it should be remarked

that [5] has a better round complexity).
4. Conclusions and Future Works

In this paper, we proposed a protocol to perform secure
distributed computations based on the DDH assumption.
The performance of our protocol was superior when com-
pared to a previous construction [17] while, at the same
time, being non-optimistic. Our solution seems applica-
ble when the number of players engaged in the computa-
tional is no so large, e.g. secure two-party computations.

The biggest open problem left by this work is to im-

—286—

Table 3 Computation time for XOR gate(worst case)

MLT PRF VRF
[5] | 4nMpaj | 15nMpg; | 13nMpy;
[17]) | 6nME\g | 18nME)g | 2TnMEg 1
ours | 5nMEgg | 10nME)c | 16n Mg

Table 4 Communications traffic for XOR gate(outbound, worst case)

MLT PRF
[5] 3n|N?| |4n|N?|
(17] | 6n(jp*| +1) | 1in|q|
ours | 5n(|p*| +1) | 6nlq|

prove the round complexity of the protocol, while pre-

serving its computational efficiency.

(1

[2]

(3]

[4]

(5]

6]

(7]

(8)

9]

[10]

(11]

(12]

References

K. Aoki, F. Hoshino, and T. Kobayashi, “A Cyclic Win-
dow Algorithm for ECC Defined over Extension Fields,”
S. Qing, T.Okamoto, and J. Zhou (Eds.), Proceedings
of International Conference on Information and Commu-
nication Security (ICICS 2001), LNCS 2229, pp. 62-73,
Springer-Verlag, 2001.

D. Chaum, C. Crépeau, and I. Damgard, “Multiparty un-
conditionally secure protocols,” STOC ’88.

D.L. Chaum and T.P. Pedersen, “Wallet databases with
observers,” Advances in Cryptology - CRYPTO 92, LNCS
740, pp. 80-105, Springer-Verlag, 1993.

H. Cohen, A. Miyaji, and T. Ono, “Efficient elliptic curve
exponentiation using mixed coordinates,” K. Ohta and D.
Pei (Eds.), Advances in Cryptology - ASIACRYPT '98,
LNCS 1514, pp. 51-65, Springer-Verlag, 1998.

R. Cramer, I. Damgérd and J.B. Nielsen, “Multiparty com-
putation from threshold homomorphic encryption,” Basic
Research in Computer Science (BRICS) RS-00-14, Jun.
2000.

R. Cramer, I. Damgard and B. Schoenmakers, “Proofs of
partial knowledge,” Advances in Cryptology - CRYPTO
'94, LNCS 839, pp. 174-187, Springer-Verlag, 1994.

Y. Desmedt and Y. Frankel, “Threshold cryptosystems,”
G. Brassard (Ed.), Advances in Cryptology - CRYPTO ’89,
LNCS 435, pp. 307-315, Springer-Verlag, 1990.

P. Feldman, “A practical scheme for non-interactive verifi-
able secret sharing,” In Proc. of the 28th IEEE Symposium
on the Foundations of Computer Science (FOCS), pp. 427—
437, IEEE Press, Oct. 1987.

A. Fiat and A. Shamir, “How to Prove Yourself: practi-
cal solutions of identification and signature problems,” A.
M. Odlyzko (Eds.), Advances in Cryptology - CRYPT 86,
LNCS 263, pp. 186-194, Springer-Verlag, 1987.

P.-A. Fouque, G. Poupard, and J. Stern, “Sharing decryp-
tion in the context of voting or lotteries,” Financial Cryp-
tography '00, LNCS 1962, pp. 90-104, Springer-Verlag,
2000.

O. Goldreich, S. Micali, and A. Widgerson, “How to play
any mental game,” STOC '87, pp. 218-229, 1987.

O. Goldreich, “Secure Multi-Party Computation,” Work-
ing Draft, Version 1.1, 1998. Available at
http://wwv.wisdom.weizmann.ac. i1/"oded/pp.html.

(13)

[14]

[15)

[16]

(17)

(18]

(19]

D. Grigoriev and I. Ponomarenko, “Homomorphic public-
key cryptosystems over groups and rings,” arXiv:cs.CR/0309010
vi, 8 Sep. 2003.

T. P. Pedersen, “A threshold cryptosystem without a
trusted party,” Advances in Cryptology - EUROCRYPT
'91, LNCS 547, pp. 522-526, Springer-Verlag, 1991.

T. P. Pedersen, “Non-interactive and information-theoretic
secure verifiable secret sharing,” J. Feigenbaum (Ed.), Ad-
vances in Cryptology - CRYPTO '91, LNCS 576, pp. 129—
140, Springer-Verlag, 1991.

D. Pointcheval and J. Stern, “Security Proofs for Signa-
ture Schemes,” U. Maurer (Ed.), Advances in Cryptology
- EUROCRYPTO '96, LNCS 1070, pp. 387-398, Springer-
Verlag, 1996.

B. Schoenmakers and P. Tuyls, “Practical Two-Party Com-
putation Based on the Conditional Gate,” P.J.Lee (Ed.),
ASIACRYPT 2004, LNCS 3329, pp. 119-204, Springer-
Verlag, 2004.

W. Dai, http://www.eskimo.com/ weidai/benchmarks.html,
2004.

A.C. Yao, “How to generate and exchange secrets,” In
Proc. of the 27th IEEE Symp. on Foundations of Com-
puter Science (FOCS '86), IEEE Press, pp. 162-167, 1986.

Appendix

In this appendix our goal is to present Protocol B,

which is essential to prove the security of Protocol Z.

Roughly speaking, through Protocol B the players en-

gaged in Z can prove in zero-knowledge that they acted

correctly. Our protocol is a modification of earlier results
in the literature (mostly [6], [3], and [16]).
AND-OR Proof: Consider the language defined by

ANDORDL ' {(G, H, Go, Ho, G1, H, G, Hy, G}, H}) € G1° |

(logg Go = logy Ho Alogg Go = logy Hy)V

(logg G1 = logy Hi Alogg Gy = log, Hy)}.

This is the language that the discrete logarithms of G

and G to the base G are respectively equal to the

discrete logarithms of H, and H; to the base H for
be{0,1}.

—287—

研究会temp
長方形

The Protocol B illustrates an honest verifier zero-

knowledge proof of knowledge for a witness on the mem-
bership of ANDORDL. For the convenience of the readers
here we describe Protocol B again.
[Proposition 1] (Simulatability) Define viewr =
(20,21,¢0,¢1). There exists a simulator that, on in-
put (G, H, Go, Ho, G1, H1, Go, Hj, G1, Hy) € ANDORDL,
outputs views which is perfectly indistinguishable from
viewr in expected polynomial time in x under the ran-
dom oracle model.

PRrROOF

A simulator performs the following procedure for in-
put
(G, H, Go, Ho, G1, H1,Go, Hp, G1, Hi) € ANDORDL.

(1) Choose 7,9,¢é,8 €r Z/qZ.

(2) Generate
e = Ho(G||H||Go||Ho||G1||H1||Gol| Ho| |G || H1).-

(3) Compute RE = #G + &(eGo + Go), Ry =
FH + G(eHo + H}), Ry = 9G + &1(eG1 + G1), Ry =
UH + ¢1(eH1 + Hy), 20 =7, %1 = 1.

(4) Output views &f (30, 71,80, &)

Here we assume Hop is an ideal random function that
maps {0,1}* to Z/gZ. We also assume H, is a random
function that maps {0, 1}* to Z/qZ, however, it returns
& + &1 when the string R%||RY||RL||RY is input. Then
it is clear views is accepted by V and viewgr and views
are perfectly indistinguishable. B

[Proposition 2] (Soundness) If P is successful in pro-
ducing (zo,21,¢0,c1) accepted by V, P has witnesses
b€ {0,1} and s,t € Z/qZ st. Go = sG, Hy = sH,
G, = tG, and Hj = tH with overwhelming probabil-
ity assuming the hardness of discrete logarithm problem
under the random oracle model.

PROOF

Set a; = logg Gy, Bi = logy Hi, ai = logg G, and
B, = logy Hi for i = 0,1. Then, it is considered the
following three cases;

Case 11 aw = Bo(= s)Aah = Bi(=1) for b € {0,1}, that
is, P is honest.

Case2: (a0 F BoAar+B)V (a0 F Bo Aoy £ BY),
but ave + o = Bre + B for b € {0,1}.

Case 3: (a0 % foAcn +B1)V (ab + iAoy F B1) and
aoe + b F foe + By A ae + o F Poe + Bo-

In Case 3, it is obvious from Lemma ?? that V' rejects
the proof generated by P. In Case 1, if the proof gener-
ated by P is acceepted, b and se+t can be extracted by

the knowledge extractor in Lemma 3. Thus we separate

the analysis of Case 1 in two subcases. The first is the
case where P has all of witnesses b, s, and t. The other
is when P does not have s and t though it has se + t.
We show that a probabilistic polynomial-time adversary
A breaks the discrete logarithm problem using P who
outputs the correct proof for ANDORDL assuming the
latter case.

Let (Gg,G,G) — GP'(1%) be an instance of the dis-
crete logarithm problem. Denote logg G by z. Let Ho
be an ideal random function that maps {0,1}* to Z/qZ.
A and P are allowed to access to Ho. Without loss of

generality, we can see that P is an oracle that inputs

(G, H,Go, Ho,G1, H1,Go, Hy, ', Hy) € ANDORDL,
(6)

which is the input of Protocol B, and e € Z/qZ and
outputs w = se + t with non-negligible probability in x,
where s = logg Gb = logy Hs, t = logg Gy, = logy H,
and b € {0,1}. A performs the following procedure.

(1) Inputs (Gq,G,@).

(2) Chooses b €r {0,1} and 2,#,35,t €r Z/qZ.

(3) Computes H = G, G; = 3G, Hy = Gy,
é;—, =1G, and f{i = EC:';;.

(4) Chooses Gl_g, ﬁl—Evéll—S’ ff{_s €r Gq.

(5) Sendsinsa def (G,ﬁ,éo,ﬂo,él,ﬁl,é{),flé, G, Hi)

to Ho and obtains € € Z/gZ from it.

(6) Sends ins4 and é to P and obtain @ € Z/qZ

from it.
Then, since @ is equal to (5z)é + tz with non-negligible
probability, A can obtain z with high probability. Pal-
ways works because ins4 € ANDORDL and e and € are
perfectly indistinguishable.

Finally, we show the success probability of probabilis-
tic polynomial-time adversary A’ that aims at generating
Case 2 is negligible. Let Op be an oracle that executes
Protocol B. We denote by gu the maximum number of
access that A’ has to Op. Note that, gu is polynomially
bounded in k. Since challenge e is randomly chosen by
Ho after aw, Bb, b, and By are publicly committed, the
success probability of an adversary A’ that is allowed to
access Op only once is exactly 1/¢g. Namely, the success
probability, Win 4/, of A’ that access to Op gu-times is
at most 1 — (1 — 2)™. Thus, it is obtained

WinAr =].-—(1——':;)‘1H
= 1_(1_2(;:14_2;1_(_2%—_1_)_...)

q
< ou,

and this is negligible. B

—288—

