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Performance of Prime Order Elliptic Curve Generation based on y-twist

Mayumi OBARAT, Yasuyuki NOGAMI!, and Yoshitaka MORIKAWA
T The graduate school of natural science and technology, Okayama University

Abstract This paper proposes a new twist technique and then shows some necessary conditions for prime order
curves in the form y% = 2% + a. Then, by combining z-twist and y-twist, we consider six elliptic curves. For these
six elliptic curves, when the characteristic p of the definition field F, satisfies that p > 3 and 3 | (p - 1), we show
that it is possible for only two elliptic curves among the six curves defined over F,,q= pzisj to have prime orders,
where 4, j are non-negative integers. Then, we show an example of prime order curve. After that, compared to the
complex multiplication method, we evaluate the performance of the proposed method.
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. a lot of secure curves, we often use twist technique[1]. Us-
1. Introduction . . . .
ing twist technique, if we compute the order #E(F,) of the

In the modern information-oriented society, various de- elliptic curve;
vices are connected via the Internet. Information security

E ) =a° b— 2 =4, 1b 3
technology has played a key role in protecting the devices or @y =z +az+ v =0 abek, (12)

important information from evil Internet users. Especially,  then we can also know the order #E(F,) of its twisted curve;
the public-key cryptosystem has many uses such as to sign
digitally. The Rivest Shamir Adleman (RSA) cryptosystem

has been the most widely used, but its key for ensuring se- as #E(F,) = 2q+2 —#E(F,), where A is a quadratic power

curity is approximately 2000 bits in length. On the other ;.. residue in the definition field F,. For the order #E(F,),
hand, since the elliptic curve cryptosystem(ECC) attains the

E(z,y) =1 +aA’z +bA> —y* =0, A€ F}, (1b)

we do not need another order counting computation. Our
same security level with an approximately 7-fold smaller key

length as compared to the RSA, the ECC has received much

motivation comes from this technique that effectively uses

a quadratic power non-residue, this paper proposes a new

attention and has been implemented on various processors. twist technique that is closely related to complex multiplica-

For ensuring sufficient security and constructing the ECC,  tion method and then shows some necessary conditions for

we have to compute the order of the elliptic curve and then prime order curves in the form Eq.(2a).

check the order. Some fast order counting algorithms have This paper particularly deals with elliptic curves in the

been proposed (1], [2]; however, in general these algorithms form
take a lot of computation time and the computation is quite

3 2 .
complicated, in general. In order to systematically generate E(z,y)=z"+b-y" =0, beF,. (2a)
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In this paper, we refer to the previously introduced twist

technique Eqs.(1) as z-twist and we propose y-twist as fol-

lows;
E'(z,y) = 2* +bB* —¢y* =0, (2b)
E'(z,y) = > +bB* —y* =0, (2¢)

where B is an element in Fy. First, we show some proper-
ties of the order of y-twisted elliptic curve corresponding to
whether or not B is a third power residue in the definition
field F;. Then, by combining z-twist and y-twist, we can
consider six elliptic curves. For the orders of these six el-
liptic curves, a lot of considerations have been already given
from several theoretical viewpoints such as complex multi-
plication [3]. In this paper, when the characteristic p of the
definition field Fy satisfies that p > 3 and 3 | (p — 1), from
fhe viewpoints of z-twist and y-twist, we show that it is pos-
sible for only two elliptic curves among the six curves defined
over Fg, q = pz‘.z’j to have prime orders, where i, j are non-
negative integers. Then, we show an example of prime order

curve.

Throughout this paper, ¢ = p™ and p is the characteristic.
Fq and Fy~ mean a finite field and its n-th extension field,
respectively, where m and n are positive integers. Fy and

F,;» mean their multiplicative group, respectively.

2. Fundamentals of elliptic curve

In this section, we go over the fundamentals of elliptic
curve.

2.1 Power residue and non residue in finite field

For two elements a, 3 in finite field Fy, if the relation o =
B? holds, it is said that « is a quadratic power residue(QR)
in F,, otherwise it is said that « is a quadratic power non
residue(QNR) in F;. In the same, if o = B2 holds, it is said
that o is a third power residue(TR) in Fy, otherwise it is
said that o is a third power non residue(TNR) in Fg. In
this paper, if a is a QR and a TR in Fy, we say that a is a
sixth power residue(SR) in Fy; however, if o is a QNR and
a TNR in F,, we especially say that « is a quadratic power
and third power non residue in F; and we use QTNR as its
abbreviation.
- 2.2 Coefficient field and definition field

In this paper, we particularly deal with the following ellip-

tic curves;
3 2
22 +b+y*+y=0 whenp=2
E(z,y) = » (3
2 +b-y2=0 when p 2 3
where b € F; and p is the characteristic of Fg. In other

words, E(z,y) in this paper has only the third-degree term

z3 with respect to the variable z. The solutions (z,y) to

Eq.(3) are called Fy-rational points when the coordinates of
z and y lie in F,. This paper deals with elliptic curves whose
coordinates lie in some extension field but coefficients a, b lie
in its proper subfield. In order to distinguish these fields, we
call the field of a,b coefficient field and that of coordinates
z,y definition field. In what follows, we use Fy and Fy» as
the coefficient and definition field, when n = 1, it means that
these fields are same.

2.3 Weil’s theorem

F,-rational points on an elliptic curve form an additive
Abelian group. In this paper, we denote this group and its
order by E(F,) and #E(F,), respectively. When the coeffi-
cient and definition fields are F; and its extension field Fy~,
respectively, the order #E(Fg-) is given by using #E(Fy) as
follows;
[Theorem 1] Let the coefficient and definition fields be Fy
and its extension field Fyn, respectively. Let t = ¢+ 1 —
#E(F,) be the trace of E(Fy), then we have

#E(Fp)=q"+1-t", M =a" 47, (4)

where a and 3 are complex numbers such that af = q and
a+ B =t, and t{" is the trace of E(Fy»).

In this paper, we call the above order #E(F,) the base or-
der and correspondingly we call its trace t the base trace.
Theorem.l indicates that, when the coefficient field is a
proper subfield of the definition field, we can obtain the or-
der #E(F,») by using the base trace t or the base order
#E(F,).

When the coefficient and definition fields are a finite
field F, and its extension field Fy», respectively, the or-
der is given by Eq.(4). By using the base trace ¢, that is
t = q+1— #E(F,), ") shown in Eq.(4) is given by

Ln/2]

-3t

=0

in-iCi(—q)it"_Zi, (5)

where |n/2]| means the greatest integer less than or equal to
n/2. It is well-known that #E(Fgn) is divisible by the base
order #E(Fy) as

#E(F) | #E(Fon). (6)

2.4 Conventional twist

2.4.1 whenp=2

For an original defining equation E(z,y) as shown in
Eq.(3), the following ¢rE(x,y) is called the twist or twisted

curve of E;
B y) =2 +b+kA+y’ +y=0, k=01, (7

where A is a non-zero element in the definition field Fj.

When k = 1, corresponding to whether Tr(A) is zero or one,
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where Tr(z) = x+2P 4 - - z”"_l, the order #¢1 E(Fy) of the

twisted elliptic curve ¢; E(z,y) becomes as follows:

q+1—ts,  when Tr(4) =0
#$1E(Fy) = . (8)
q+1+ts, when Tr(4) =1

where tg, = g+ 1 — #poE(Fy).

In what follows, we refer to this twist operation Eq.(7) as
additive twist.

2.4.2 whenp=23

In this case, the following ¢ E(z,y) is the twisted curve;

$xE(z,y) = A*E(A7*2,0) - *
2+ A%b—y? =0, k=01, 9)

where A is a non-zero element in the definition field F,.
When k = 1, corresponding to whether 4 is a QR or QNR,
the order #¢,E(F,) becomes as follows;

qg+1—ts, when Aisa QR

#61E(F,) = ,(10)

q+1+ty, when A is a QNR

where tg, = g+ 1 — #¢oE(Fy).

In what follows, we refer to this twist operation Eq.(9) as

z-twist.

3. y-twist for elliptic curves in the form
Eq.(3)

In this section, let the extension degree n be 1, in other
words, both the coefficient and definition field are F,.

3.1 y-twist

For an original defining equation E(z, y) defined as Eq.(3),
we consider the following elliptic curve ¥, E(z,y), [ = 0,1,2;

hiE(z,y) = z° + B E(0, B'y)
2 +B¥+y*+ By (p=2)

Il
-
=

z3 4 B'p — 2

where B is a non-zero element in the definition field Fy. In
what follows, we particularly deal with the case that g — 1
is divisible by 3 and the other cases such as p = 3 are
shown in Sec.4.. When 3 divides ¢ — 1, corresponding to
whether E(0,y) is irreducible or reducible over the definition
field Fy, the orders #vo E(F,), #¢1 E(F,), and #Y2 E(Fy) of
YoE(z,y), Y1 E(x,y), and ¢ E(z,y) over F, are written as
follows;

when E(0,y) is irreducible over Fy,

#YoE(Fy) = 3Ny, + 1.
#Y1E(F) = 3Ny, +1,

(12a)
(12b)

#E(F;) = 3Ny, + 1. (12¢)
when E(0,y) is reducible over Fy,

#UoE(F,) = 3Ny, +2 +1, (13a)
#E(Fy) = 3Ny, +2+1, (13b)
#UE(F,) = 3Ny, +2+1. (13c¢)

Nyo, Ny,, and Ny, shown in the above equations are the

numbers of non-zero TRs in the following sets, respectively;

{$oE(0,3), Vi € F,}, (14a)
{¢1E(0,3), Vi € F,}, (14b)
and {¢2F(0,1), Vi € F,}. (14c)

In addition, corresponding to whether B is a TR or TNR. in
Fy, the following relation holds for Ny,, Ny,, and Ny,;

when B is a TR in F,

Nyo =Ny, = Ny,, (15)

when B is a TNR in F, and E(0,y) is irreducible,

Ny + Ny, + Ny, =g, (16)

when B is a TNR in F; and E(0,y) is reducible,
Nyo+ Ny, + Ny, +2=¢q. 17)

The proofs for these relations are shown in Appendix.A. In
what follows, we refer to the operation Eq.(11) as y-twist.
From the above viewpoint, we can also consider additive
twist and z-twist. In the case that 3 does not divide q — 1,
the orders are uniquely determined [3].

3.2 The orders of y-twisted curves

In this section, we consider y-twist as shown in Eq.(11)
that uses a TNR B in Fy. From Weil’s theorem and Eq.(6),
we have the following relations;

#YE(F,) | #0E(Fps), 1=0,1,2. (18)

Since a TNR in F, becomes a TR in Fy3 (see Appendix.B),
the TNR B becomes a TR in Fs, this is the reason why we
consider the third extension field F,s. Therefore, as intro-

duced in Sec.3.1 and as shown in Eq.(15), we have
#YoE(F3) = #1 E(Fys) = #¢2 E(F ), (19)
accordingly we have
#YE(F) | #4oE(Fps), 1=0,1,2. (20)

Fig.1 is an image of this relation. Let tyo, ty,. and ty, be
the traces of elliptic curves 9o E(F,), 11 E(F,), and o E(F,),

respectively, as follows;
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teo = ¢+ 1— #YoE(Fy), (21)
tyy = g+ 1 — #P1 B(F), (22)
ty, = g+ 1— #2E(F). (23)

From Weil's theorem and Eq.(5), we have

#YoE(Fp) = ¢ +1 - (t}, — 3qty,) (24a)
=¢* +1—(t}; —3aty) (24b)
= ¢® +1— (t}, — 3aty,)- (24c)

Noting that these traces ty,,ty,,ty, are not equal to 0
(¢f. Appendix.E), from Egs.(24) we find that the following
f(t) = 0 has solutions t = tyq, by, tys;

f@®

1

3 —3gt — ¢° — 1+ #YoE(Fys)
3 — 3qt — (t3, — 3qtyo)- (25)

These solutions ty,, ty, , and ty, are easily computed by Cor-
nacchia’s algorithm (see Sec.4., Sec.4.2). We can also show

the following relations;

#PE(Fys) = #YoE(F)#h1 E(Fo)#$: E(F,),  (26)

3
tEp[], typolyitys (27)

4. Prime order elliptic curves in the form
Eq.(3)

In what follows, we particularly consider the case that the
characteristic p > 3 and 3 | (p — 1). By combining z-twist
and y-twist, we can consider six varieties of elliptic curves in

the form Eq.(3) as follows;

Let b, be a non-zero element in the prime field Fp. By
using a QTNR C in the definition field Fy, we can consider

the following six curves;

Eoo(z,y) = ° +b, —y* =0, (28a)
Eoi(z,y) = ° +C%bp —y” =0, (28b)
Eos(z,y) = «° +C*, —y* =0, (28¢)
Eio(z,y) = 2° + C%, —y* =0, (28d)
Eu(z,y) = 2° +C°p —y* =0, (28¢)
Era(z,y) = &>+ Cby —y* = 0. (28f)
For these six elliptic curves Eqo, - - - , E12, the following re-

lations hold from the viewpoints of additive twist(z-twist)
do, ¢1 and y-twist 1o, 1, P2;

Eoo = Eoo, (29a)
Eo1 = v¢1Eoo, (29b)
Eo2 = Y2E00, (29¢)

E10 = ¢$1Eoo0, (29d)

Eiu = Y1E10 = ¢1E01 = $1(31Eo00), (29e)

Ei2 = Y2E10 = ¢1E02 = ¢1(¥2E00). (291)
Therefore, the five curves Eo, -, E12 are given from Ego

by combining additive twist(z-twist) and y-twist operations.

Fig.2 shows an image of these relations.

additive twist (z-twist)
Eoo “ Eqo

y-twist  { Eo1 En  § y-twist
Eo2 E12

Figure 2 additive twist(z-twist) and y-twist relations among the

six curves

Accordingly, there are six varieties of orders as follows;

#Eoo(Fy) = g+ 1 —too, (30a)
#Eo1(Fy) = ¢+ 1—toy, (30b)
#Eo2(Fy) = ¢+1 —toz, (30c)
#Ew0(Fy) = ¢+1—tio=g+1+to, (30d)
#Eu(F) = q+1-tu=q+1+to, (30e)
#E12(Fy) = g+1—tiz=q+ 1+, (30f)

where too, - - -, t12 are the traces of Eoo(Fy),- - -, E12(Fy), re-
The right hand sides of Eq.(30d), Eq.(30e),
and Eq.(30f) are given from the viewpoint of additive

spectively.
twist(z-twist). Therefore, if we know one of the orders
#Eoo(Fy), -+, #E12(Fy) or one of the traces too,- - -,t12-
We can also show that too, - - -, t12 are different to each other
when 3 | (p — 1).

4.1 Prime order curves

In this section, let g be equal to p™, we show that it is
possible for only two elliptic curves among the six curves
defined over Fy, ¢ = pziaj to have prime orders, where i, j
are non-negative integers. We note that the constant term

b, = E0o(0,0) is a non-zero element in the prime field Fj.

In this case, if we know the base trace tp or the base order
#Eoo(Fyp) as

tp =p+1— #Eo(Fp), (31)

from Weil’s theorem and Eq.(5), we obtain #Foo(Fy) as

#Eoo(Fy) = g+ 1 —too, too
Lm/2) m ) )
— ——_m—lci _ lt MA21. 32
_}; —— (-p)'ts (32)



Definition field Fy

#on(Fq)
#Y1E(Fy)
#Y2E(Fy)

7 #YoE(F3)

as shown in Eqs.(20), Eq.(26), for example.

F 3

Figure 1 Order relations among six curves over Fs

For this problem, we can obtain the base trace tg by com-
puting the base order #FEqo(Fp); however, as shown in
Sec.4.2, we can easily compute tp by Cornacchia’s algo-
rithm, accordingly we can calculate the six traces too, - - -, t12
by Eq.(32). By using #FEqo(F,) or too, from the viewpoints
of z-twist and y-twist we can determine the other orders
#Eo1(Fy),- -, #E12(F,) as follows;

Let us prepare the six elliptic curves Eqs.(28) with a SR
b, € F; such that b "/® = 1 mod p. In this case, since
Eqo(z,0) and Eoo(0,y) are reducible over F, [4], #Eoo(F,)
is divisible by 6. On the other hand, the other five orders
are not divisible by 6. Table 1 shows the irreducibility of
Eii(z,0), that of Exi(0,y), and whether or not #E(F,) is
divisible by 2 or 3, where k = 0,1 and I =0,1,2. According
to Table 1, we can find that it is possible for only two curves
E©1(Fy) and Ei2(F;) to have prime orders. In addition, if
the extension degree m has a factor m' # 2 or 3, we can find
a QTNR C in F /s [4], where F m/m: is a proper subfield
in Fpm, accodingly from Weil’s theorem we have

#EII(FPMIW-’) | #Ell(FP"‘)7
#E12(Fmjmt ) | #E12(Fpm). (33)

Therefore, it is obvious that both E;;(F,) and Ey3(F,) are
not prime numbers. Otherwise, we cannot find a QTNR C
in any a proper subfields [4], accordingly we cannot deduce
such a relation and it is possible for two curves E1;(F;) and
E12(Fy) to have prime orders. In other words, it is necessary
for prime order curves in the form Eq.(3) to be defined over
sz.aj, where i and j are non-negative integers.

4.2 How to compute the base trace tg

In this section, let the coefficient and definition fields be
the prime field Fy, of course we consider a QTNR C in Fp,
and let us consider three elliptic curves Eoo(F},), Eo1(F,),
and Eo2(Fy,) as shown in Eqs.(28). From the viewpoint of
y-twist, their traces too, to1, and to2 are the solutions of the

following equation;

F(£) = ¢ — 3pt — (t30 — 3ptoo) (34a)
= > — 3pt — (3, — 3pto1) (34b)
= t° — 3pt — (t52 — 3ptoa). (34c)

We can also say that to; and to» are the solutions of the

following equation;
f'(#) = f(©)/(t — too) = t* — toot + (tho — 3p). (35)

Therefore, denoting the discriminant of f'(t) by D(f'), since
the equation f'(t) = 0 has two integer solutions, D(f’)
should be written as

D(f') =3(4p — o) = X*, X € Z, (36)
to be more detailed with X = 3X’,
4p—t3y=3X" X' €z (37)

Eq.(37) is given by using too; however, we can consider the
same equations by using the other traces such as to1, conse-

quently too, - - -, t12 must satisfy
4p=1t>+3s% se 2. (38)

In addition, we can easily compute ¢ that satisfies Eq.(38)
by Cornacchia’s algorithm [1], accordingly we can calculate
the six solutions tgo, - - -, £12 by Eq.(25) and Eqgs.(30). In this
case, tp = tqo, therefore, from the six candidates we can dis-
tinguish tp by checking whether or not p+1 —tp is divisible
by 6. Our proposal, that is y-twist, is closely related to the
well-known complex multiplication; however, our proposal is
not so complicated as compared to the complex multiplica-
tion, therefore, we can easily extend y-twist for hyper elliptic
curves in the form 4> = 2° +q, a € F, by using 5-th power
residue/non-residue.

4.3 An example of prime order curve

Let the characteristic p be a prime number 1073831833
and let the definition field be the third extension field Fys.

In this case, we have the following prime order curve;

E(z,y) = 2°+6—y* =0, § € Fys, (39a)
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Table 1 Irreducibility and divisibility

E;d(:b,y)'f Ey(z,0)* Eri(0,y)* divisible by not divisible by
Boo | «®+bp -9’ e @) 6 -
Eo z3 + C%bp — y? x O 3 2
Eo2 z3 + C%b, — y? X O 3 2
E1o 23 + C3bp — y? @) X 2 3
En z® 4+ C%b, — y? X X - 6
Ei2 2% + Cbp — y? X X - 6

tb, is a SR in Fp and C isa QTNR in Fy. k=0,1and !l =0,1,2.

*(O and x mean reducible and irreducible over Fj, respectively.

#E(F,3) = 1238251385318443332895282339 (39b)

(93bits prime number),

2 20 . s
where 0 = w + 2w? + 5w?" . {w,w?,w? } is a normal basis in

F,s and w satisfies

w=T+77}, (40)

where 7 is a zero of f(z) = z° + 2° +:.l:4 +el 42+ +1
and f(z) is an irreducible polynomial of degree 6 over Fj.
Table 2 shows the average computation times needed for
generating a prime order elliptic curve by using complex
multiplication-based algorithm, y-twist over Fy, and y-twist
over F,s. The authors used Pentium4(3GHz), C language,
and the library for doing number theory(NTL). From the
table, we find that the proposed method is enough practical.

5. Conclusion

This paper has particularly dealt with elliptic curves in the

form
E(z,y)=2+b—y’ =0, beEF,. (41a)

In this paper, we referred to the conventional twist technique
as z-twist(additive twist) and we proposed y-twist as follows;
E'(z,y) = ° +bB* —y* =0,
E'(z,y) = ° +bB* —y* =0,

(41b)
(41c)

where B is an element in F,. First, we showed some prop-
erties of the order of y-twisted elliptic curve corresponding
to whether or not B was a third power residue in the def-
inition field F,. Then, by combining z-twist and y-twist,
we considered six elliptic curves and we showed that it is
possible for only two elliptic curves among the six curves
defined over F,, ¢ = p2i3j to have prime orders, where i, j
are non-negative integers. Then, we showed an example of
prime order curve. Our proposal, that is y-twist, is closely

related to the well-known complex multiplication; however,

our proposal is not so complicated as compared to the com-
plex multiplication, therefore, we can easily extend y-twist
for hyper elliptic curves in the form y> = z° +a, a € F; by

using 5-th power residue/non-residue.
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Appendix

A. The orders of y-twisted curves

If YoE(0,y) = E(0,y) is irreducible over Fy, ¥1E(0,y)
and v2E(0,y) are also irreducible. On the other hand, if
1oE(0,y) is reducible over Fy, 1 E(0,y) and 2 E(0,y) are
also reducible. In addition, each ¥oE(0,y), ¥1E(0,y), and
12 E(0, y) has two distinct zeros in F, because b # 0 and the
characteristic p is not equal to 3. In what follows, [ = 0,1,2
and note that —1 is a TR in Fy.

When E(0,y) is irreducible over Fy, we have the following
rational points;
- For i € F, such that ¥, E(0,1) is a TR in Fy,

z3 = —1, E(0, i) generates three rational points on the curve.
- For i € F, such that ¥, E(0,1) is a TNR in Fg,
23 = —1y E(0,1) generates no rational points on the curve.

Therefore, when E(0, y) is irreducible, the orders are written
as Egs.(12). On the other hand, when E(0,y) is reducible,
we have the following rational points;

. For i € F, such that ¢, E(0,%) is not equal to 0 and a TR

in F,, 28 = —y, E(0, 1) generates three rational points.



Table 2 Average computation time for generating a prime order elliptic curve

[unit:sec]

complex multiplication

y-twist over Fpt

y-twist over Fpsth

160 bits* 30.1 0.23 0.02
180 bits* 41.5 0.29 0.03
200 bits* 59.3 0.50 0.04

* The size of the order of elliptic curve.

t The sizes of the characteristic p are 160, 180, 200 bits, respectively.

tt The sizes of the characteristic p are 54, 60, 67 bits, respectively.

- For i € Fy such that ¥, E(0,1) is not equal to 0 and a TNR
in Fy, 2% = —41 E(0, ¢) generates no rational points.
- For i € Fy such that ¢, E(0, ) is equal to 0, z° = —, E(0, 1)

generates one rational point (z,y) = (0, 7).

Therefore, when E(0,y) is reducible, noting that E(0,y)
has two distinct zeros in F,, the orders are written as
Eqs.(13).

Let Ny, be the number of ¢’s such that E(0,1),i € F, is
a non-zero TR in Fy, let Ny, and Ny, be the numbers of
i’s such that E(0,1),7 € F; is a Typel and a Typell TNR in
Fy, respectively. The notations Typel and Typell TNR
are defined in Appendix.B. First, we consider oE(z,y),
V1E(z,y), Y2E(z,y) as

E(z,y) : z° = —E(0,y), (42a)
¥1E(z,y) : z° = ~B*E(0,B™y), (42b)
Y2 E(z,y) : 2% = ~B*E(0,B™%y). (42c)

We can easily understand that the following three curves has
the same order;

2® = —E(0,y), ' (43a)
z® = —E(0,B"'y), (43b)
z* = —E(0, B~%y), (43c)

because y = B~ 'y and y = B~ %y are isomorphic variable

transformations. In other words, the following relation holds;

{E(0,7),¥i € F,} = {E(0, B™%),Vi € F,}

= {E(0,B7%),Vi € F,}. (44)

Therefore, if B is a TR in F,, by multiplying B? and B* as
shown in Egs.(42), TRs in {E(0,:),Vi € F,} become TRs
in Fg and TNRs in {E(0,:),Vi € F,} become TNRs in F,
again. Consequently, we have the relation Eq.( 15).

Let us denote {E(0,i),Vi € F,} by R. When B2 is a

Typell TNR in F, and E(0,y) is irreducible over F,, for ex-
ample, by multiplying B? as shown in Eq.(42b) and Fig.3(b),

we find

- Ny, non-zero TRs in R become Ny, Typell TNRs in F,,
- Ny, Typel TNRs in R become Ny, non-zero TRs in F,,
- Ny, Typell TNRs in R become Ny, Typel TNRs in F,.

In the same, by multiplying B* as shown in Eq.(42c) and
Fig.3(c), we find
- Ny, non-zero TRs in R become Ny, Typel TNRs in F,,
- Ny, Typel TNRs in R become Ny, Typell TNRs in Fy,
- Ny, Typell TNRs in R become Ny, non-zero TRs in Fy,
where in this case we should note that B* becomes a Typel
TNR in F,. Consequently, we have the relation Eq.(16).
Fig.3 shows an image of these relations. On the other hand,
when B? is a TNR in Fy and E(0,y) is reducible over Fy,
B?E(0,1) and B*E(0,i) also become 0 for i € Fy such that
E(0,i) = 0. Therefore, noting that E(0,y) has two distinct
zeros in Fy, we have Eq.(17).

C. A TNR in F; becomes a TR in Fs

When 3 divides g — 1, non-zero TRs and TNRs in F, are
given as follows;

non-—zero TRs‘u{ga", j=0,1,~~—,(q—4)/3}, (45a)
Typel TNRs--- {g¥*', j=0,1,---,(¢— 4)/3}, (45b)

Typell TNRs--- {g®*?, j=0,1,---, (¢ - 4)/3}, (45c)

where g is a generator of F;. These notations are also used
in Appendix.A.

Let us consider a TNR z in F,. We can check whether
z is a TR or a TNR in Fqs by calculating :1:("3‘1)/3, the

calculation result becomes as follows;

2
£@®-1/3 _ (Iq—l)(q +a+1)/3 _ 1, (46)

where we note that z9~1) = 1 and (¢®-1)/(g—1) = ¢®+q+1
is divisible by 3 [4]. Consequently, it is shown that a TNR in
F, becomes a TR in Fs.
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(a) {E(0,%), Vi € Fg}

(G

Typel TNRs

x1 Typell TNRs

(b) {B2E(0, B~%4), Vi € Fy}

{E(0,4), Vi € Fg}

Ny, { non-zero TRs Typell TNRs

x B2
Nm{ Typel TNRs —_— N%{/W

Typel TNRs

Ny, { Typell TNRs

(c) {BAE(0, B—2i), Vi € Fy}

4
xB Typel TNRs

Typell TNRs
7/ Each non-zero TR corresponds to
% three rational points. Ny, { W

Figure 3 The relation among Ny, Ny, , and Ny, when B? is a Typell TNR in Fy




