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Abstract We present a countermeasure for protecting modular exponentiations against side-channel attacks. Our
countermeasure is well-suited for tamper-resistant implementations of RSA or DSA, without significant penalty in
terms of speed compared to commonly implemented methods. Thanks to its high efficiency and flexibility, our
method can be implemented on various platforms, from smartcards with low-end processors to high-performance

servers,
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1. Introduction

With the rise of electronic communications, and in partic-
ular, electronic commerce, public-key cryptography has be-
come an essential component in our daily life. The de-facto
standard for public-key encryption and digital signatures is
RSA, and with the development of miniaturization, RSA is
now implemented not only on high-performance servers, but
also on various mobile devices such as smartcards or mobile
phones.

It is believed that with a bitlength of 1024 bits, RSA is
secure for middle-term applications, and with 2048 bits, for
long-term applications. However, protecting against math-
ematical attacks is not sufficient in the real world. In-
deed, it has been shown that practical implementations of
cryptosystems often suffer from critical information leakage
through side-channels: timings [4], power consumption [3] for
instance. Such side-channel attacks are no theoretical works
that researchers secretly run in laboratories with expensive
hardware, but practical threats to virtually any application
where secrecy matters.

On the one hand, there are numerous countermeasures for
defeating side-channel attacks on elliptic curve cryptosys-
tems [2], [5], but on the other hand, there are few of them
for RSA. At first sight, it seems that the keylength of RSA
is so long that even when side-channel information partially
reveals the secret, exhaustive searches often remain ineffec-
tive. However, when a sufficiently large part of the secret
key is known, RSA can be broken(l]. Thus, despite long
secret keys, RSA also needs a decent protection against side-
channel attacks.

Unfortunately, many countermeasures that have been de-
veloped for elliptic curves cannot be transposed to the case
of RSA: on elliptic curves, signed representations of the ex-
ponents are heavily used because they yield faster exponen-
tintion algorithms when inversions are cheap. But unlike
elliptic curves, RSA does not benefit from cheap inversions,
and therefore, unsigned representations are the only option.
In other words, countermeasures which are efficient on el-
liptic curves are generally not practical at all in the case of
RSA.

Our contribution is as follows: we show how to transform -
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a countermeasure based on a signed representation [5] into a
countermeasure based on an unsigned representation. Then,
we improve the flexibility of our countermeasure with a frac-
tional width technique(7}: with the improved methad, the
size of the pre-computed table can be freely chosen. Our
countermeasure is not anly highly flexible, and therefore well-
suited for a wide range of platforms, from constrained envi-
ronments such as smartcards to high-performance servers,
but in addition, can compete with the commonly imple-
mented exponentiation techniques. In practical situations,
our method is only about 5% slower than commonly used
methods. And most importantly, cur method thwarts sev-
eral types of attacks, power analysis and cache attacks in
particular. Finally, we refine attacks against fractional width
techniques and introduce a new taol to evaluate the quality of
our countermeasure in the sense of resistance to side chan-
nel attacks. We demonstrate that in the SPA meadel, our
countermeasure can prevent information leakage.

2. Side Channel Attacks

We briefly discuss side channel attacks and their counter-
measures.

2.1 Methodology of Side Channel Attacks

Side channel attacks take advantage of the correlation be-
tween secret values and physical emanations such as tim-
ings [4] or power consumption [3]. On smartcards, which do
not have any embedded power supply, the most powerful ap-
proach is probably to measure the power consumption of the
device supplied from the outside [3]. One can classify power
analysis attacks into two main classes: simple power analysis
(SPA) and differential power analysis (DPA). The approach
of SPA is to identify regions of a power trace which directly
depend on the secret key. For example, in the frame of an
RSA exponentiation computed with the binary method, the
binary representation of the (secret) exponent is scanned; for
the bit-value zero, a square is computed, whereas a square
and a multiplication are calculated when the bit-value is one.
Thus, it is easy to see that the knowledge of the operation
sequence (square or square-multiplication) is equivalent to
the knowledge of the secret exponent. A similar problem
also exists in the case of elliptic curves, where the ability of
distinguishing the two types of elliptic operations, namely
point doublings and point additions, also leads to the secret
scalar. DPA is more sophisticated: the idea is to guess the
value of the secret bit-by-bit, and try ta confirm or infirm
the guess for each bit thanks to statistical analysis of several
power traces.

2.2 Countermeasures

It is not that difficult to protect cryptosystems against
DPA. By definition, DPA requires that the same secret is

used to perform several cryptographic operatiais with each
time a different input value. Signature schemes such as DSA
and EC-DSA use a new random ephemeral as exponent for
each new signature, and as a consequence, are naturally im-
mune to DPA. In the case of RSA, a well-known technique
to defeat DPA is to blind the secret exponent, that is, to add
a random multiple of the group order to the secret. Because
A+ = ¢/ mod n, blinding does not change the result
of the exponentiation, but in the same time, changes the
axponent itself and the side-channel information that arises
from multiple power traces is not correlated. On the con-
trary, despite the relative simplicity of the idea behind SPA,
it is not easy to design secure and efficient SPA countermea-
sures. However, SPA-resistance is always necessary, and is
a prerequisite to DPA resistance. For instance, if only one
random ephemeral exponent of DSA or EC-DSA is revealed,
the secret key of the signature scheme can be easily inferred.
Similarly, from the point of view of the attacker, a blinded
RSA exponent d +r¢(n) is as good as the secret itself.

On elliptic curve cryptosystems, it is common to use rep-
resentations of the scalar with a large digit set and to pre-
compute some small multiples of the base point in order to

) speed up the scalar multiplication. In particular, thanks

to window methods with digit set {0,1,2,...,2 — 1}, one
can reduce the computational cost of the scalar multiplica-
tion given that small multiples of the base point P are pre-
computed: 2P, 3P,...,(2" —1)P. Although standard win-
dow methods aim at greater efficiency only, they can also
be enhanced to SPA-resistant scalar multiplication schemes,
where the secret is recoded with a fixed pattern, using a
signed representation with digit set {-2“,1,2,...2% — 1},
where 0 is absent {5]. More precisely, an additional conver-
sion step is applied in each window in order to remove zero
digits: (1) replace the digit 0 with ~2*, and add a carry of
+1 to the next window when scanning the scalar from right
to left, (2) replace the digit 2 with —2", and add a carry of
+2 to the next window, (3) replace the digit 2*+1 with 1 and
add a carry of +1 to the next window, (4) otherwise leave
the digit as it is. Thanks to this conversion technique, the
scalar can be recoded with a fixed pattern: nonzero digits are
always followed by exactly w— 1 zero digits. The advantage
of this approach is that the aperation pattern becomes regu-
lar as well: point additions are always followed by exactly w
point doublings, which makes SPA impractical. Because the
point —2* P must be readily available, the scheme requires
that computing inversions in the group (in that case, elliptic
point negative) is easy. Unfortunately, this is not the case
for RSA.,
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3. SPA-Resistant Unsigned Techniques

We show how to construct an SPA countermeasure for
RSA, where the computation of inverses is too costly.

3.1 SPA-Resistant Unsigned Integral Width

Our approach is to extend Méller’s recoding to the un-
signed case. To obtain the unsigned digit set {1,2,...,2"},
the key idea of our method is to use negative carries rather
than positive carries: (1) replace the digit 0 with 2*, and add
a carry of —1 to the next window when scanning the scalar
from right to left, (2) replace the digit ~1 with 2 — 1, and
add a carry of —1 to the next window, (3) otherwise leave
the digit as it is.

On the one hand, it is easy to see that Maller's algorithm
terminates, and that if the original bitlength of the scalar
was £, the recoded scalar has at most £ + 1 digits. On the
other hand, in the case of the above rules for generating an
unsigned representation with a fixed pattern, the situation is
different: there is no guarantee that the algorithm will termi-
nate because a carry can propagate indefinitely. To ensure a
correct termination, we treat the case of the most significant
bit separately: if a carry remains at the end of the recoding,
we use the most significant bit to neutralize it, and reduce the
length of the exponent. If instead of d, a blinded exponent
d+r¢(n) with random r is used as DPA countermeasure, this
approach is safe¢ ¥, But if not, there is a direct information
leakage, because the length of the recoded exponent depends
on the value of some secret bits. To remave this leakage,
we extend the bitlength of the exponent by 2, and fix the
value of the 2 most significant bits dg4+1 = 1 and de = 0.
This is always possible because c?+*(™) = ¢4 mod n: in other
words, adding ¢(n) to the exponent does not change the
value of the exponentiation medulo n. By repeatedly adding
#(n), one can always set dc4s to 1 and de to 0 (because
d < ¢(n) < n < 2). If the value of d and n are fixed (which
is typically the case when d is a secret key), this calculation
can be performed once for all at the key generation stage.
Now, since dz = 0, independently from the value of the pre-
vious bits, the corresponding receded digit is uz 4 0 and a
carry 7 is generated. Finally, uc4: = de41 = 1 = 0, there-
fore the length of the recoded expansion is always reduced
by one.

3.2 SPA-Resistant Unsigned Fractional Width

A disadvantage of the previous method, and more gener-
ally, of table-based exponentiations, is that there are only
limited choices for the table size. Since the table size and
the cost of pre-computations grow exponentially with the

( $#1): DBlinding ulone is not sufficient, bocuuse it protects ouly aguinst
DPA, not SPA.

Algorithm 1: Conversion to unsigned representation

INPUT: £ 4+ 2-bit exponent d = (10dz-) . ..do)2, width w;
OuTpPUT: Recoded exponent (uc...un);

(1)
(2)

=00
whilei £ £ ~wdo
(a) ui+—({digw—1-.-&)2-7
( b) ifu;i SOthen yu; «— u;+2¥; v+ 1;elsey —0;
() g1 =0, 8ipw—1 — O i —itw;
if i <L then
(a) ui+~(dcoa...di}2—7;
( b) If ui £0then u; — u; + 2% 7+ 1; else y —0;
(¢) uip1 —0,...,uc—_) «—0;
ug +— 2 —7; return (uc...un);

(3)

(4)

width w, number of bits which are scanned simultaneously,
large values of w become quickly impractical. However, it
would be useful to be able to select any table size. Frac-
tional width recodings make this possible, thanks to a de-
generated width-w pre-computed table where some values
are missing[6]. In addition, SPA-resistant fractional width
mathods exist in the case of elliptic curves, where it is advan-
tageous to use signed representations 7). We show that our
unsigned (integral width) SPA-resistant recoding technique
(Algorithm 1) can also be enhanced to an unsigned fractional
width recoding.

The principle of our technique is the same as in the original
signed SPA-resistant fractional width recoding[7]: compute
simultaneously the digits z and y, where z correspond to the
width w and y to the width w—1. The core idea in Algerithm
2 is that the choice of recoding a sequence of bits with the
width w or w — 1 looks random to the attacker. Recall that
B is the set of exponents of the pre-computed values, define
the width w = [log,(k)] and the probability p = k/2¥~ —1.
Then, for z computed with width w and y with widthw—1,
we apply the following rules; (1) if z £ 2*! then choose
z with probability p or y with probability 1 — p, (2) else if
z € B (in other words, g° is pre-computed), chocse z (this
occurs with probability p), (3) else choose ¥ (in that case, g*
is not pre-computed, this happens with probability 1 — p).
Therefore, for randomly chosen exponents, the width w is
chosen with probability p and w — 1 with probability 1 — p.
Additionally, since the set B is randomized for each new re-
coding, the two patterns can actually appear for the same
sequence of bits.

3.3 Efficiency and Comparisons

Next, we describe the advantages of ocur fractional tech-
nique in terms of speed and memory, and compare its perfor-
mances with that of commenly used exponentiation methods.
For a table size k and a bitlength n, k elements of n bits (in-
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Algorithm 2: Conversion to unsigned representation

INPUT: L + 2-bit exponent d = (10dc-) ...dp)2, table size k, in-
dex set B;
OuTtruT: Recoded exponent (uc...up);

(1) ie0;7 0w« [logg(k)];
( 2) whileiSL—-wdo
a) ze(disw-1..-di)2 -7 ¥y~ (diguw-2...di)a -7
b) ifz£0thenz— z+2% v + 1;else v + 0;
c) ify<Otheny—y+29" 49 « 1 elsey, —0;
d) ifz£2¥"! then
i. rnd « generate w ~ 1 random bits;
ii. if rnd < k—2¥"1 then uj — ;7 — 72; r — w;
jii. elseuje—yre—pPir—w-1
e) elseifz€ Bthenuj — ;7 — 72} 7 — w;
f) elsewj—pyyr—mir—w-1;
8) w1 +0,.. ,ugr1 —0jie—idr;
if i < L then
a) uie—(de-r...di)2-
b} if u; O then u; ~ u; +2°7% 7+ 1; else y — 0;
c) Uipl —OpuiyuLmy —0;
( 4) ug e~ 2-; return (uz...un);

3

—_ o~ o~

cluding the basis of the exponentiation g are pre-computed
and stored in RAM. In contrary to other methods, which
only allows 1, 2, 4, ...,2%,... as table size, the fractional
window method is much more flexible: any table size can
be chosen. This is not only an advantage to fully accupy
the available memory on constrained environments, but also
means that the optimal table size k can be chesen on large-
memory profiles: in that case, the fractional width method
yields an exponentiation methad which is faster than integral
width techniques,

Recall that the upper width w is defined as w = [log,(k)],
and that probability of choosing the width w rather than
w~—1is p= zk7 ~ 1. Multiplications accur only when there
is & nonzero digit in the representation, therefore, for an n-bit
exponent, there are on averagé n/(w — 1 +p) multiplications.
Then, the memory and average computational cost of expo-
nentiatfons based on the unsigned fractional representations
are as follows:

{ Mp = k- L bits

1
Cr=(2"2+L) S+ (k=22 -1+ 5 M (

)

where S and M stand for the cost of squares and multiplica-
tions, respectively, w = [log,(k)] and p = 2“,—"_,- -1

The sliding window methad is often utilized for practical
implementations of exponentiations; for instance, OpenSSL
uses the sliding window with 16 pre-computed values
{9,9°,9%...,8%}[9]. The idea of the sliding window is to
consider odd pre-computed values only, reducing the size

of the table and the number of multiplications. For the
same memory, the sliding window is faster than the SPA-
resistant fractional window. However, our fractional window
method benefits from a higher flexibility. We implemented
both techniques with the NTL library [10] and compared the
algorithms running with their optimal parameters on cur
platform; Table 1 summarizes our implementation results.
It comes out that, although the fractional width is slightly
slower than the sliding window, the performance drop is very
small in practice: only 5% for 512-bit and 1024-bit exponen-
tiations and when the algorithms run in their optimal set-
tings. For the same memory consumption, our methed is 7%
slower than the sliding window 512-bit exponentiation, and
5% than the 1024-bit exponentiation.

# 1 Memory and cost of 1024-bit exponentiation methods
Binary method O bytes  15.05 ms
Sliding window, w =6 4,096 bytes 11.49 ms
Our technique, k =32 4,096 bytes 12.09 ms
Our technique, k =53 6,784 bytes 12,05 ms

4. Security Analysis

We now analyze the security of the unsigned SPA-resistant
fractional width technique in the sense of SPA.

4.1 Non-uniform Digit Distribution

It has been shown that the signed fractional width recod-
ing leaks some information about the secret [8]. The reasan
for this (relatively small) information leakage is the degen-
erated width w pre-computed table: the fact that some pre-
computed values are missing in the table can be used to
speed up attacks. Obviously, since it uses exactly the same
principle for its recoding (but with a different digit set), the
unsigned fractional width algorithm (Algorithm 2) can be
targeted by this kind of attack as well. In the following, we
refine the technique described in[8] by considering the in-
fluence of the degenerated table not only on blocks of bits
recoded with the width w but also w - 1.

4.1.1 Non-uniformity when w is selected.

The first point is that when the width w is selected rather
than w—1, some digits do not appear in the recoding [8]. In-
deed, to construct a length-k pre-computed table, one takes
a length-2" table and remove some values at random from
its upper half part. Therefore, the exponents of the removed
pre-computed values are absent from the representation. In
other words, each time the width w is selected, there are only
k possible digits instead of 2*. For instance, consider k = 3;
from the length-4 table {g*, 9% g% 9%}, one value is chasen
among ¢ and g%, and removed from the table. In our ex-
ample, we remove g°. Then, our representation admits the
following digit set: B = {1,2,4}.
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4.1.2 Non-uniformity when w — 1 is selected.

The second point is that the distribution of digits recoded
with the width w — 1 is not uniform. This problems occurs
because when a missing digit is scanned in the secret (case
where 2 > 2¥~! and z ¢ B), the width w—1 is selected. But
this event occurs only for some digits =, and the correspond-
ing value of y is uniquely determined by the relationship
z = y+ 2¥ 'di4u-1. Since there are only 2 — k for = ¢ B,
there are also 2 — k possible values for y (instead of 2™},
Therefore the case where > 2*¥~! and z ¢ B introduces
non-uniformity in the distribution of digits recoded with the
width w — 1. Assume for instance a table size k = 5 and
digit set B = {1,2,3,4,5}. Suppose that during the recod-
ing, £ = 6 is computed. Now, there are two possibilities:
either (di+2di41di)2 = 6 and the carry is zero (y = 0), or
(di+2dis1di)2 = 7 and the carry is not zero (y = 1). In
both case, (di+1di)2 —v = y = 2. But when z £ 4 and
w— 1 = 2 is (randomly) selected, the distribution of the four
digits {1,2, 3,4} is uniform. Consequently, the digit 2 has a
higher probability than 1, 3 and 4 when the widthw—1=2
is selected. Note that although we concentrate on the case of
the unsigned SPA-resistant fractional window in this paper,
the signed technique shares similar properties.

4.2 Side-Channel Information and Entropy

Although the non-uniformity of the digit distribution is
intuitively a problem, even when the bias is known, it is dif-
ficult to evaluate how serious the threat is. To explicitly
evaluate SPA-resistance of the fractional width techniques,
the calculation of the entropy of such representations is help-
ful.

[ Definition 1] ( Side-Channel Entropy) Let p be a prob-
ability function p {0,1,...,2° — 1} — 0.1 with
Ese(n.l .... 2¢-1) P() = 1, representing a bias in the sea r
ch space {0, 1,..., 2¢ —1} obtained by side-channel analysis.
We call side-channe] information entropy the term:

=- > P(8)1og, (p(5))- 2)
se{0,1,...,28 ~1},p(8)#0

Assume for example that an attacker tries to find a se-
cret d € {0,1,2,3}. Without the help of side-channel anal-
ysis, all candidates in the search space are equiprobable:
2(0) = p(1) = p(2) = p(3) = 1/4 and the entropy is § = 2
bits. But imagine now that the attacker identified a fen-
ture in side-channel information which is more likely to oc-
cur for § = 3 than for the other candidates. For instance,
p(3) = 1/2, and p(0) = p(1) = p(2) = 1/6. In that case, the
entropy is reduced to S = 1.79 bits. More generally, when
all values for d are equiprobable even when SPA information
is available, the entropy reaches its maxima, namely S = L

bits. In that case, the representation is a perfect SPA coun-

termeasure. When the values are not uniformly distributed
(some values are forbidden or simply less probable), S < £
bits. One interpretation of the entropy is the number of bits
that remain secure (unknown to the attacker) despite side-
channel information leakage.

Note that fractional window methods have two distinct
groups of events. First, the selection of the pre-computed ta-
ble; in this case, we assume that the 25 possible choices for
the pre-computed table are equiprobable and indistinguish-
able by SPA. And second, the recoding itself, where scme
choices between the widths w and w — 1 are random. We
call Sy, and Sy,—1 the entropy of w-blocks (that is, a block of
bits recoded with width w) and w—1-blocks. Then, we abuse
notations and call “entropy of the fractional width recoding”
the term S = log, || + LwSw + Lw—Sw-1, where £, and
L1 are the number of u~blocks and w — 1-blocks. In other
wards, we define the entropy of the fractional width recoding
as the sum of the entropy of the pre-computed table and the
entropy of each block. For an £-bit secret key recoded with
our fractional width method, the average entropy Sr and the
worst entropy S are:

w-14p (3)

E-‘. = 1032 IQBl + o5 (psw + (1 - p) Sw-l)
S-F = l°g2 |nB| + min (ﬁswx ﬁsw—l)

We first evaluate the contribution of the randomized
pre-computed table to the entropy of the fractional width
method. There are k — 2“~! exponents randomly chosen
in the set of 2°~! elements {2¥~! + 1,2%7! +2,...,2%}.
Therefore, the entropy of the pre-computed table is:

aw-t 2%~k
log, Q8= Y. logyi— Y logyi. @
i=k~2w—1 i=1

Then, we study the entropy of digits recoded with the
width w. We consider the digits from the upper half ta-
ble £ > 2%~! first. If z > 2¥~! (probability 1/2), since w
has been chosen, z € B: there are only k—2*"! digits in the
upper half table. Thus, when w is selected, the probability
of a digit from the upper half table is ?(k_—%w—-r) Next, we
consider digits from the lower half table (z £ 2“~!). When
 £2¥! (probability 1/2), since the lower half of the table
is full, there are 2“~! possible digits. Therefore, in the lower
half table, the digits have a probability of zzl=
digits in the upper half table have a greater probability than
digits in the lower half table. This difference is the origin of
entropy loss when w is selected. Mare precisely, the entropy
of a block of width w is:

. Clearly,

Sw =2 4 1log, (k—2v") (5)

Note that in the case of a perfect countermeasure, we have
Su = w bits,
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The case of the width w — 1 is slightly different. When
z £ 29! (probability 1/2), the choice among the 2! dig-
its is uniform. But when z > 2*~! (probability 1/2), among
the 2! possible digits, only 2" —k can be selected (because
z ¢ B). Therefore, k- 2%~! digits have a probability of ap-
pearance of 1 3 2‘,_ , whereas 2 — k digits have a probability
of appearance of 2[,—.}:; + 2,.,—‘_,;). As a consequence, the
entropy of a block of width w—1 is:

Sw-1= u"_"w_ Lﬂulog, (zm + m) (6)

NITTIITITIL

[mrcore @ .Mﬂ umauu]

B 1 Average and worst entropy, 1024 bits

4.3 Consequences on Security

Despite the entropy loss of the unsigned fractional win-
dow method, we claim that the representation is still a good
SPA countermeasure. Indeed, one can interpret entropy as
the equivalent bitlength of the secret when the SPA infor-
mation can be fully utilized. Therefore, in practice, an SPA
countermeasure is at least as strong as its SPA information
entropy. As a consequence, if the worst-case entropy is large
enough, we know for sure that the secret data is safe. With
our technique, if the table length k is carefully chosen, the
entropy granted by the unsigned fractional width method
is sufficient to thwart all known attacks against partially-
compromised RSA secret keys. In particular, we remark that
in Fig. 1, for from k = 37 to k = 61, the worst-case entropy
is greater than 800 bits. Additionally, there is currently no
attack which can take advantage of the bias of the fractional
width technique: typically, to be effective, such attacks re-
quire the knowledge of the upper or lower bits, or consecutive
bits. Thus, we argue that in practice, the security level of
the unsigned fractional width technique is even higher than
its SPA entropy.

Unfortunately, this is not the case for other exponentia-
tion methods. The binary exponentiation has an entropy of
0 bits, because distinguishing squares from multiplications
allows to fully revealing the secret key. In the case of the
sliding window method, it is possible to distinguish blocks
of consecutive zeros, where no multiplication accurs. Thus,
the average entropy of the sliding window representation is

Ssw = L£/2 bits. And in the worst case, the entropy can go
as low as 0 bits.

5. Conclusion

We presented a new countermeasure for protecting modu-
lar exponentiations against side-channel attacks. Our coun-
termeasure is inspired by the signed fractional width tech-
nique, but has an unsigned digit set, which is necessary for
achieving high efficiency with RSA or DSA. Our countermea-
sure is not only highly secure, but is also efficient; thanks to
its higher flexibility, our method is about as fast as commonly
used exponentiation techniques such as the sliding window
method. In fact, in optimal settings and in a practical situa-
tion, our methad is only 5% slower than the sliding window
exponentiation for 512-bit and 1024-bit moduli.
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