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Abstract Applications of an iterated hash function such as HMAC require that the compression function of the

hash Function is a pseudorandom function, that is, it is computationally infeasible to distinguish between the com-

pression function and a random function. This paper shows that it is easy to distinguish between the 22 step-reduced

SHA-256 compression function and the random function.

Key words

1. Introduction

As the SHA-256 hash function [6] has gotten attention re-
cently by the cryptanalysis community, the analysis on the
SHA-256 hash function has developed remarkably. For ex-
ample, Mendel et al. [5] showed an 18-step collision in 2008.
Sanadhys and Sarkar [7] presented differential paths for 19 —
23 steps of SHA-256 in 2008. Indesteege ei al. |4] showed
collision attacks on SHA-256 reduced to 23 and 24 steps
with complexities 228 and 2% in 2008. In addition, they also
pointed out, the non-rgndom behavior of SHA-256 in the form
of pseudo-near collision for up to 31 steps[4]. Thus, previ-
ous results are related to the security of collision-resistance
or that of non-random behavior based on the collision. We
note that the collision-resistant property is important, but it
is not all.

Applications such as HMAC require that a (keyed) hash
function behaves as if it is a random function when the key is
unknown. Thia property is called the pseudorandom-function
property, which is closely related to the security of such ap-

plications. The pseudorandom-function property and the

SHA-256, compression function, pseudorandom function

collision-resistant property are independent in the sense that
there is no general reduction between them. Indeed, the at-
tack model on the coilision-resistant property differs from the
attack model on the pseudorandom-funetion property. In the
attack model on the collision-resistant property, an adversary
can search it only by himself, without other’s help. Besides,
in the attack model on the pseudorandom-function property,
an adversary cannot obtain a hashed value without making
queries to an oracle that knows a secret key. Accordingly,
a collisipn-resistant hagh function ig not necessarily a hash
function with the pseudorandorn-function property, and vice
versa. In particular, the pseudorandom-function property of
SHA-256 is not studied from the viewpoint of actual attacks.

On the other band, the pseudorandom-function property
of a hash function has been discussed in the context of do-
main extension [1] [2] [3]. Specifically, under the assumption
that an underlying compression function is a pseudorandom
funetion, methods for constructing a hash function that be-
haves as if it is the pseudorandom function have been studied.
Hence, since the pseuderandom-function property of such

a hash function is reduced to that of the underlying com-
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pression function, it is worth studying the pseudorandom-
function property of the compression function.

In this paper, we show that the 22 step-reduced SHA-256
compression function with the key-via-IV atrategy la distin-
guishable from the random function. This is the first re-
sult on the preudorandom-function property of the SHA-258
compresgion function. Qur distinguishing attack ia practical
in the sense that the probability that the attack succeeds in
distinguishing them is large with the reasonable number of
queries and low complexity.

This paper is organized as follows. Section 2 describes the
algorithm of the SHA-2 compression function and the key-
via-IV strategy to transform a non-keyed compression func-
tion into a keyed compression function, and defines the prf-
advantage to measure the indistinguishability of a function.
Section 3 shows an algorithmn for distinguishing between a 22
step-reduced SHA-256 compression function and a random
function. We demonstrate that the prf-advantage of this al-
gorithm is large, that is, this algorithm is computationally
feesible. Furthermore, we show the differential path used by
this algorithm and evaluate the probability that the algo-
rithm succeeds in distinguishing them. Section 4 concludes
this paper.

2. Preliminaries

2.1 SHA-266 Compression Function

We here describe the algorithm of the SHA-256 compres-
sion function (Fig. 1). In the following, all variables are 32
bits, an operation ‘+’ denotes an addition modulo 2%, an
operation ‘@’ denotes the bitwise exclusive-or, and N repre-
sents the number of steps. The SHA-256 compression funec-
tion consists of 64 steps, that is, N = 64.

Firgt, prepare expanded message blocks wy for given mes-
sage blocks mop, my,...,mis.

my if<ixs 15,
wi = o1 (wy—a) + Wiy + To{Wi-15) + Wi-16 (1)
fl6£igN-1.

In Eq. (1), functions gq,a, are defined as

oo(z) = ROTR(7,z) ® ROTR(18, z) & SHR(3, z),
o1(z) = ROTR(17,z) & ROTR(19,2) ® SHR(10, z),

where ROTR(n, z) is a circular shift of z by » positions to
the right and SHR(n, ) is a shift of £ by n positions to the
right.

Next, suppose that (a_1,b_1,...,h_y) are given, for ex-
ample, a8 initial values. For i = 0 to ¥ — 1, compute the

variables as rules where a and 3 are intermnediate variables.

o = To(ai-1} + Maj{ai—1, b1, €-1),

B=hi1 + Bi{ei—1) + Chleioy, fio1) gim1) + ki + wy,

e =a+j, be = 0ie1, G =bic, d =gy,

ei=di1+8, fi=e1, gi=fi-1, hi=gio,
where ky is a constant value and functions Eo, I, Ch, and
Maj are defined as

(2

Eo{z) = ROTR(2, =) ® ROTR(13,z) ®@ ROTR{22, z),
Ly(z) = ROTR{6, z) ® ROTR(11,z) @ ROTR{25, 1),
Chiz,y,z) =(x Ay) & (~xz A 2), 3
Maj(z,12) = (AR D (zA2) B (y A 2).

Finally, add the initial values to them.

by = an—1 +b_1,
dy =dy. +d_1,
In=fn-a+ o,
hy = hN—l + h_y.

aN = 4aN— +6-1,

CN = CN-1 T Con,

ey =Een-1++e€e-1,

gN =gn-1 +9-1,
The result (aw,bn,...,hx} is output of the compression
function.

In this paper, we discuss the step-reduced compression
functions of SHA-256. We denote by SHA-256/N the SHA-
256 compression function reduced to NV steps. Note that the
step-reduced compression function includes the final addi-
tion of the initial values, which is often ignored in collision
attacks.

Although SHA-256/N is not a keyed compression function,
it is possible to use SHA-256/N as the keyed compression
function by replacing {a_y,b-1,...,h—1) with a 256-bit key.
The replacement is often called the key-vio-IV strategy. This
paper argues this type of keyed SHA-256/N.

2.2 Pseudorandom-Function Property

Let Fi.4 be the set of all functions from {0, 1}* to {0, 1}™.
A function f is called a random funetion il f is randomly
chosen from F¢n. Consider a function ¢(k,z) : {0,1}" x
{0,1}*—={0,1}". After k was fixed, ¢(k, ) can be consid-
ered s a function it Frn. Such a funetion Is denoted by
¢e(x). The Function ¢(k,z) is called a pseuderandom func-
tion if it i9 infeasible for an adversary who does not know k
to distinguish between ¢ (z) and & random function f(z) in
Firn. Formally, the indistinguishability is measured by the
pri-advantage of an adversary A that is defined as

AdviH(A) = Pr [k {0,155 4% = 1]
~Pr [f & Fomi Al = 1] (4)

where A has access to ¢ (or f) and returns a bit[1). It
should be noted that ¢{k,z} is public, that is, anyone in-
cluding A knows the description of ¢(k,z) and is capable for
given values k, x of computing ¢(k, z}, but A does not know
k. If the pri-advantage is negligibly small, then ¢(k,z) is
called the pseudorandom function.
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Fig. 1 SHA-256/N.

3. 22-Step Reduced SHA-256 Compres-
sion Function

3.1 Distinguishing Algorithm

Suppose that an adversary A has access to an oracle &
that is the keyed SHA-256/22 ¢x or a random function f in
Friz,256- The goal of A is to determine whether G is ¢ or
f. We define an algorithm of A as follows.

1. Set a counter ¢ to 0.

2, Fori=0,1,...,11,14,15, choose a message block m,
randomly and independently. Set another message block m;
tom,; fori=0,1,...,11,14, 15.

3. Fori=12,13, set my, m} as follows.

myz = 00000000,
mq3 = £, (80000000),

m1, = 80000000,

2= ®)
myz = 00000000,

where sans-serif fonts are used to represent hex digits.

4. Send message blocks (mo, mi,...,mus) to the oracle G,
and receive its hash blocks (a,b,..., k).

5. Send another message blocks (mb,m),...,mis) to G,
and receive its hash blocks (a’,t',...,A").

6. Compute the modular difference of 4’ and h, that is,
Sh =k — hmod 2%%. (6)

7. If the following conditions are satisfied, then increment
¢ by one.

Shii) = { °

where Sh[{] denotes the i-bit value of §h. Note that the least
significant bit is the 0-th bit.

04572,

it i =3, (n

8. If the number of queries is less than g, then go to step
2, otherwise go to step 9.

9, Ifc 2 [(g/2)e:] where ¢ = (273 + 273%1)/2, then A
outputs 1, otherwise A outputs 0.

Section 3.2 will show that the probability of Eq. (7) is
2391 §f (7 is SHA-256/22, and it is 2% if G is the random
function. Let Esm and Exr be an event that G is SHA-256/22
and an event that G is the random function, respectively.
For each case, the probability that A outputs 1 is calculated
as follows.

q/2
E q,'gcc(2_3'91)°[1 _ 2m3.91)q,’2—c

e=[(a/2)ec]
9/2

2

e=[(g/2)et]

Pr [A%= 1[Esu]

Pr [AG=>1|EM] q;ch(T")c(l - 2—4)q.’2—c

Therefore, the pri-advantage of A is given by

Advy(4) = Pr[A®=1[Em] - Pr[A%=1[Ee] . (8)

We here give a numerical example to demonstrate the prf-
advantage of the adversary 4. Suppose that the number of
queries ¢ is 2'7, that is, A obtaing 2'% difference dh’s. Since
[{g/2)}c:] = 4228, probabilities are calculated as follows.

2!6

Pr [AG=>1|Bm:l — Z _chc(ra.m)c“ _ 2-3.91)2‘ﬁ-c

c=4228

= 0.981203,

218

Pr[AC=1lEw] = 3 aCe(@™)°(1—2797" "
c=4218
~ 0.0172595.

Hence, the prf-advantage of A is approximated by

Advi(A) =~ 0.981203 — 0.0172595
= 0.9639435,

which means that distinguishing between SHA-256/22 and
the random function is easy.

3.2 Analysis

This subsection explains why Eq. (7} holds with probabil-
ity 273®! when the oracle G is SHA-256/22. Suppose that
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Table 1 Differential path for SHA-256/22.

Step 1| Awy Day Dby Hey | Ady | Aey | Afi | Agi | Al | Prob.
0-11 0 4] 1} 0 0 0 0 D 0 -
12 Awis | Awig v] 0 Dwyg 0 0 0 1
13 | Awngs Awia 1} m Awiy o a 9-4.268
14 a Axig Aayy | Awqa n 0 Awgg 0 2-1
15 i} * Aarq | Aarg | Awie n 0 0 Awyg 9-1
16 0 * * Ay | Aaga [} 0 0 0 1
17 1] « * » Aayry | Aeyy 0 0 4] -
18 i} * * x Aeyg | Aeyr [t 0 -
19 * * * * * Aern | Aerr 0 -
20 ® * * . * * Aeig | Aerr -
21 * * ¥ * * * « Aeig -

G is BHA-256/22. The algorithm in Sect. 3.1 is based on = & {v + 80000000)

the differential path shown in Table 1. Unlike & of Eq. {6),
A in Table 1 means the bitwise exclusive-or difference. For
example, Aw; denotes the bitwise exclusive-or difference of

aw; and wi, that is,
Awy = ux B wi,
where uw; is computed from message blocks m; (j =

0,1,...,15) according to Eq. (1) and wj is done from m)

similarly. Since wnz = mi2 and wi, = mi,, Eq. (5) yields

Awnyz = mya @ mys
00000000 & BOOOD000
= 80000000.

]

Similarly, Awna is given by

!
Aung = myz By

= ;(80000000).

First, consider step 12 in Table 1. The intermediate vari-
ables a,  in Eq. (2} are calculated by

a = Dolan) + Majlen, b, en),
o' = Bolay,) + Maj{aly, b1, €11),
8 = ki + Di{en) + Chiews, fir, g11) + kiz + wne,
B = Ry + T(en) + Chiely, fii.ghh) + kaz + wia

Since @11 = aj,, b1 = b}y, etc., @12 and a}; are given by
P I
a1z = 7+ wnz, 4y =7+ wi,
where

v = Dplenn) + Maj(ar, b1, 011)
+hi1 + Er(en ) + Chier, fi1, q11) + Faa.

Since w;z = 00000000 and w), = 80000000, Ag)2 is

’
Aayz = @128 ay2

80000000 = Aungs.

Note that the modular addition of 80000000 is identical to
the bitwise exclusive-or of 80000000. In a similar way, we
obtain Ae;z = Awnj. Hence, the difference in step 12 occurs
with probability 1.

Second, et us consider Aeis in Table 1. Using the inter-

mediate variable 3, €13 and e} are given by
ea=diz+8, ea=d2+5,
where intermediate variables are
B = kia + Ei{e12) + Chiess, fia, m2) + kiz + uns,
&' = k2 + Ei{e12) + Chiels, fla, 912} + ks + whs.
Notice that the following equalities hold.
diz = dig
hiz = ki,
L1 {ela) = E1(e12) @ £.(80000000)
Chielz, f12.812) = Chiei2 @ BODODONO, f12,912)
wia = £, (80000000)
w}a = 00000000
Hence, if the following equations hold, then Aejs becomes 0
because 4= /.

Ch{eiz, f13, ;12) = Ch{eys @ 80000000, f1a, g12) )]
¥, {e1z) + £,{80000000)

= 5y (e1z2) & L, (80000000) (10)
Here, Eq. (9) is equivalent to
Fi2[31] = g12[31], {11)

where 4|¢] denotes the i-bit value of a variable 9, and Eq. (10)
is equivalent to

Ti(e12)[25] = T4 (e12)[20] = B (er2)[6] = 0. (12)
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the probability of Ea when the oracle G is SHA-256/22 as

follows.

Pr [Equ[Eqm] = 27141 . 978288 | 9-4() _ 56208

P 2~3.91 .

On the other hand, if G is the random function, then the
probability that Eq. (7) holds is 274, that is,

Pr [Eox[Ene] = 27%,

These two probabilities provide the validity to the algorithm
described in Sect. 3.1.

As shown by the numerical example of Sect. 3.1, distin-
guishing between SHA-256/22 and the random function is
reduced to distinguishing between the binomial distribution
with probability 2739 and that with probability 2~*. In
the algorithm of Sect. 3.1, the output ‘1" implicitly means
that G is SHA-256/22, and the output ‘0’ means that G is
the random function. Hence, in order to distinguish them
with high probability, the judgment condition in step 6 of
the algorithm should be chosen so that the following error

probability is minimum.
Pr (Eere| = Pr[A=>1(Eae] + Pr [A=>0}Equ) (19)

Notice that minimizing the error probability of Eq. (18} is
not equivalent to maximizing the pri-advantage of Eq. (8).

4. Concluding Remarks

The previous analysis of hash functions focused on
collision-resistance. However, applications ofter require that
hash furctions have not only the collision-resistant property
but also the pseudorandom-function property. These two
properties are independent in the sense that the collision-
resistant property does not follow the pseudorandom-
function property and vice versa. The collision-resistant
property of the SHA-256 compression function has been ex-
tensively studied, but its pseudorandom-function property
has not been done.

This paper provided the first result on the pseudorandom-
function property of the SHA-256 compression function. We
showed the practical attack for distinguishing between the
22 gtep-reduced SHA-256 compression function and the ran-
dom function. Since the attack is based on the differential
path, the success probability of the attack can probably be
evaluated from the differential path theoretically. Since the
differential path, however, involves complicated conditions,
we partially used the result of computer experiments to eval-
uale the success probability. Additionally, a similar distin-
guishing attack is applicable to the step-reduced SHA-512

compression function.
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