E=NALNAVEa—F 47 6-10

(1998. 9. 18)

A Modal Proof System for Mobile Processes

ATsusHI ToGASHIt and FUMIAKI KANEZASHIt

To promote rapid development of computer systems, concurrent / parallel processing is one
of the promising research items. For the mathematical description for concurrent processes,
there have been several proposal as process calculi, formal systems for concurrent processes,
such as CCS, CSP, ACP, LOTOS, w-calculus. In this paper, we will propose a modal proof
system for the w-calculus, introduced by Milner, Parrow and Walker in 1989. w-calculus is
an extension of CCS or CSP, to express mobile agents. Purpose in this paper is to offer a
proof system for the m-calculus based on propositional modal logics. A partial soundness and
completeness is discussed. An extension of the resulting system is also considered.

1. Introduction

In this paper, we will propose a modal proof sys-
tem for the r-calculus, one of the promising cal-
culus for mobile processes, introduced by Milner,
Parrow and Walker in 1989, m-calculus is an exten-
sion of CCS or CSP, to express mobility for agents.
The main purpose in this paper is tooffer a rigoroim
proof system for the w-calculus based on pI‘OpOSl-
tional modal logics.

The 7-caleulus'® has achieved a remarkable sim-
plification by focusing on naming and allowing the
communicated data along channels (names) to be
names themselves. The calculus .is .sufficiently ex-
pressive to"describe mobile systems and the ‘abil-
ity of natural embeddings of both lazy and call-by-
value /\-ca]cuii into the m-calculus®?

it may form an appropriate foundation for the de-

suggests that

sign of new programming languages. It ,.has been
shown that higher-order processes can ‘be faith-
fully encoded in the m-calculus'®. The polyadic
m-calculus by Milner'? is a straightforward gener-
alization of the monadic 7-calculus'®, in which fi-
nite tuples of names, instead of single names, are

t Depmment of Compﬁtér Science, Shizuoka University
tt Graduate school of Science and Engineering, Shizuoka
< University :

the atomic unit of communication. Furthermore,
the fact that a tuple of names is exchanged at each
communication step suggests a natural discipline of

sorting. ‘
Let us consider the followmg processes:
AE 1Ca@0
BY 1(X).(X|m(z) mmsg(z).0)

c¥ m(y).ay.0
" In this example, a process A commumcates with a

process B along a logical link !, a process C is trans-
mitted from A to B. The entire behavior of the
communication is expressed as the following tran-

sitions:
o A|B
= 1IC. a(a:) | UX).(X|m(z). mmsg(z))
— afz) | (Cim(2).mmsg(z))
= a(x) | mr.m(y).ay | m(z).mmsg(z)
— a(z) | m(y).ay | mmsg(r)
— a(z) | amsg(r)
— 0
In this paper, we w1ll propose a proof system
for mobile agents based on the pr0p051t10nal modal
log1c The]propertles of processes are expressed as
formulae As an example, let us consider the prob-
lem that the process
= Iy. Q + wy.R
satlsﬁes the property

A = (Zy)true A [zy] false.
This can be proved via the proof

P true
Zy.P F (Zy)true

names) and the set bn{P) of names with bound oc-
currences (bound names) are defined in the usual
way as follows:

zy.P F (2y] false wy.Q+ [Zy] false

zy.P + wy.Q F (Zy)true 2y.P + wy.Qt [2y] false

Zy.P + wy.Q k- (Zy)true A [2y] false
The proof is constructed by inference rules.

The outline of the paper is as follows: Section 2
presents the monadic m-calculus to a certain extent
needed for the study. Section 3 introduces a modal
proof system system and discusses sound and com-
pleteness of the system. An extension of the result-
ing system is considered in Section 4. This paper
is concluded in Section 5.

2. w-calculus

This section introduces the r-calculus'® to a cer-
tain extent needed for the study.

Let N be a possibly infinite set of names through-
out this paper. The basic syntactic categories of the
m-calculus we consider in this paper are defined by
the following definition:

Definition2.1 A process in the = — calculus is
defined by the following grammar:

P == 0 tnaction
| P silent prefiz
| z(y).P input prefic
| zZy.P output prefiz
| P+P summation
| P|P composition
| [r=y|P match
| (vz)P restriction
| P replication
Let P denote the set of all processes. a

We use the metavariables P,Q, and R for pro-
cesses; a,b, ¢, z,y, z, etc for names.

Following Milner'®, we adopt the replication op-
erator ! instead of allowing systems of recursive def-
initions of process expressions; !P stands for the
parallel composition of infinite number of copies of
P. We don’t use the notational devices of abstrac-
tions and concretions'® to simplify the discussion.

Definition2.2 For a process P, the set fn(P)
of names with free occurrences (simply called free

P fn(P) bn(P)

0 0 0

TP fn(P) bn(P’)

e(y)-P (f(P)u{e}h) —{y} bn(P)U{y}
zy.P' fr(P)U{z,y} bn(F’)

b+ P fr(Pr)U fn(Pa) n(P1) U bn(Pz)
PP fn(P) U fn(Ps) n(P1) U bn(P2)
e=yP' fn(P)Ufz=y} ou(P)

va)P fn(P) - {a} bn(P) U {a}
1P’ fn(P) bn(P')

a

We formally identify processes P up to renam-
ing bound names in P, so that it is assumed that
fn(P)Nbn(P) = 0. This implies the usual con-
ventions about substitutions to avoid capturing
free names during substitution, a-conversion, side-
condition concerning freshness of names, etc. For
example, the substitution ¢ = {y/z} on a process
P, denoted by Po, is defined in the usual way.

0{y/z} E- |

(r.P){y/z} & P{y/z}
(z(y)-P'){y/z} :=: 2(y)-P' {y/z}
(zy.P"){y/z} = f(P)U{z,y}
(Pr+P){y/ey € Pi{y/s}+ Pafy/a}
(P P2){y/z} }: Pi{y/z}|Pa{y/z}
T = y|P’ = = y|P’
G S e
(\P'){y/x} & P{y/z}

The substitution is applied only to the free
names. The substitution does not modify bound
names; to avoid that a name free in P become
bound in Po we assume that the bound names of

P have been previously a-converted to fresh names,

so that bn(P) No(fn(P)) = 0.

Following Milner'®

, we present the operational
semantics of the calculus using two-relations: a
structural congruence on processes that permits
the rearrangement of summations, parallel com-
positions, replications, and restriction so that the

participants in a potential communication can be

brought into immediate proximity; and a reduction
relation that describes the act of communication
itself.

Definition2.3 We define a structural congru-
ence relation = to be the smallest congruence
relation over processes which satisfies the axiom
schemes listed below.

1. If P =, @ then P = Q: Processes are identified
if they differ only by a change of bound names.
2. M+(N+L)y=(M+N)+L.
M+N=N+M.
M+0=M.

3. PIQIR)=(P|Q)I[R.
PIQ=Q|P.
Plo=P.
4. [z=z|P=P.
5. (vz)P=P ifz¢ fn(P).
(vz)(vy)P = (I)y)(u:c)P.
(vz)P | Q = (v2)(P| Q) ifz & fn(Q).
6. P =P | P.

o

Note that the first axiom scheme in 5. induces
the usual axiom schemes:
(vz)0=0
(vz)(vz)P = (vz)P
Note also that the side condition of the last axiom
scheme in 5. can be viewed as a consequence of our
convention of regarding bound names.

labels Kind fn(a) bnla)

T silent 0 0 LE
Ty free input {z,y} 0 E
z(y) bound input {z} {y} L
Ty free output {z,y} 0 EL

Z(y) bound output {r} {y} EL

Definition2.4 The set of inference rules LATE
(late instantiation) consists of the following;

Tav TP p

L-INPUT 2(y).P o(y) P

OuTPUT

iy.P;li P
S PP
™ p +Q3 P
PSP
PAR = —a —— ()N fn(Q) =0
PIQ = P|Q
P i_g P QI_(i) Q/
L-COM S oo o
PIQ 5 P'IQ'{y/2}
23 r
RES £ -z ¢ n{a)

(vz)P = (vz)P

Py p

PP oy
REST ()P 2% (1g) P’

P=P P3Q Q=Q
STRUCT

Pl zQI
O

We write P 51 Q to mean that the transition
P 5 Q can be inferred from LATE.

Definition2.5 The set of rule EARLY (early in-
stantiation) is obtained from LATE by replacing the
rules L-INPUT and L-ComMm with the following two
rules:

EINPUT e
; z(y).P — P{w/y}

PP Q3qQ
B Trg L g

]

- We write P g @ to mean that the transition

P 5 Q can be inferred from EARLY.

Lemma2.1 . o
(1) PBgPiff P *% P for some P” such
that P’ = P"{z/y}.
(2) PBspPigPH, P
(3) PYWopiip™¥, p.
(4) PSgP if PSP

Proof: A standard induction over LATE and
EARLY.]]

Definition2.6 A binary relation S on P is a
late simulation if PSQ implies that

1. if P 5 P’ for some a = T, Zy, or Z(y) with
y & f(P,Q), then for some Q', Q@ = Q' and
P'SQ’;

2. if P™¥ P’ and y & f(P,Q), then for some Q’,
Q “Y @’ and for all 2, P'{z/y}SQ'{z/y}.

The relation § is a late bisimulation if both S and

87! are late simulations. We define late bisimi-

larity P ~1, Q to mean that PSQ for some late

bisimulation S. =]

Definition2.7 A binary relation S on P is an
early simulation if PSQ implies that
if P35 P’ for some o = T, zy, Ty, or &(y) with
y & f(P,Q), then for some Q’, Q = Q’ and P'SQ’;
The relation S is an early bisimulation if both S and
S~! are early simulations. We define early bisim-
ilarity P ~g @ to mean that PSQ for some early
bisimulation S. ‘ a

Definition2.8 A binary relation S on P is an
alternative simulation if PSQ implies that

1. if P % P’ for some a = 7, &y, or &(y) with
y € f(P,Q), then for some Q', Q - Q' and
P'SQ'; : |

2. if P "% p and y & f(P,Q), then for

any z, there is Q' such that Q i Q@' and

P'{z/y}5Q'{z/y}.
The relation § is an alternative bisimulation if both
S and 87! are alternative simulations. We define
alternative bisimilarity P < Q@ to mean that PSQ
for some alternative bisimulation §. a

3. Modal Proof System

In this section we introduce a modal proof sys-
tem for mobile processes based on the modal logic

introduced by Milner-Parrow-Walker92'®). Before
stating the proof system we introduce the modal
logic.

Definition3.1 Let £ denote the set of all for-

mulae defined by the following grammar:
A true

| false

| AAB

| AvVB

| (a)A a=rT,zy, z(y), Ty, or Z(y)
| [a]A a=r1,zy, =(y), Ty, or Z(y)
| (zy))!'A l=L,or E
| [z(®)'A l=L,or E
|

[z =yl4
m

In each of (Z(y))A, (z(y)) 4, (&(y)) " 4, (z(y))* A,
the occurrence of y in parentheses is a binding oc-
currence whose scope is A. The set of names oc-
curring free in A is written fn(A).

Definition3.2 The satisfaction relation be-
tween processes and formulae is defined by struc-

tural induction as follows:

1. P |=true, for all P.k
2. P=AAB »
< PlkAand P|=B.

3. PEAVB . ,

& PREAorPEB.
4. Pl={a)4, (a=T,zy, 3y, 5(y))
& 3P (PAP &P EA.
5. P = (o] A, (o= 7,1y 2y, 5(y))
& VP (P3P =P =4
6. P=(z(y)A '
& 3. YW P & 3 Py}
A{z/y})- ’ -
7. Pl=[z(y)]A
& VP (P P s Ve Py} E
A{z/y}).
8. Pk (z(y)*A
e AP (P Y P g v Pz/y} =
A{z/y})-

9. Pl=[z(y)]*A Play/y} - Alar/y} -+ Pfan/y} - A{an/y}

e vP. (PP = 3 Py E z(y).P+ (z(y))* A
A{z/y})- provided that fn(P)U fn(A) = {a1,--, an}.
10. P= (z(y))FA ([z(y)‘]E N P{a/y} - A{a/y}
& V23P. (PB P &P = Afz/y)). (y)-P F [z(y)] P4
11. Pl= [z(y)| A p Ple/urF Afz/v}
& 3z2.VP.(PEB P = P |=A{z/y})- (@y)) z(y).P F (zz)A

Plz/y} = A{z/y}

12. Plz=yA ([zy] 1)
© (z=y=>PEA). x(y)'ﬁtg;j
0 (@D oo A °7 Y
P+ [zy|A
(61D G s *#
Definition3.3 A modal proof system for m — P+ (B)A
calculus N'L is defined by the rules below, where (B +1) PrOF DA
we use the following notational abbreviations :- : Q+(B)A
o = 1lz(y)|zy By +1) m
B = alzylz(y) ‘ PHBlA QF[GA
(TRUE) $T4mms (0 or B4 v (B +D P+QF [B1A
(0 PHA
(Act) “PF A sub(a) # sub(f) P A
P+-A P+B | =n EEE A
S VYN | P;:‘A '
: , , (MI) :
“D pravs VD FrAvE (NMI)[“*’]P”“?’]:
PrA Pt A Prlz=y4 7"
D Tprma @D 3 ega : u)
PFHA = PHA)
D TFrhE D i |
P{a/y} - A{a/y} Theorem3.1 (Soundness and Completeness)

((z(yh1) .
‘ z(y)-PF (z(y)hA For a composition free process P and a formula F,

(@)D i we have P+ F f Pl=F O

Plai/y} - Afas/y} ---Plan/y} + A{an/y})
z(y).P+ [z(y)] A 4. Extension

provided that fn(P)U fn(4) = {(_11, R 3

In this section, an extension of the resulting proof
(=)D oo system is considered for agents instead qf processes.

4.1 "The Polyadic w-calculus
P{ai/y} - Alaa/y} -~ Plan/y} F A{an/y} o ‘ '
- a(y)-Pr(z(y)"A
provided that fn(P)U fn(A) = {a1, -+, an}.
P{a/y} - Ala/y}
(EWVD)P - k@) A

({e@)®I)

Definitiond.1 An agent in the polyadic m
calculus is defined by the following grammar:

P = 0 inaction
| TA stlent prefiz
| aA input prefi
| @A output prefix
| (Az)A abstraction
| Az application
| A concretion
| A+A summation
| AlA cbmpositz‘on
| [x=y]A match
| (vz)A restriction
| 1A replication
(fiz D.A) recursive agent
Let P denote the set of all processes. a

An input prefix and an output prefix in the
monadic 7 — calculus can be describe by agents,
e.g.

z(y).P = z.(\y)P
Zy.P = Z.[y|P
We need a notion of arity to distinguish abstrac-

tions and concretions.

Definition4.2 Assignment of arities for agents
can be done by the following rules:

A:0
0:0 TA:0
A:n n<0 A:n n>0
a.A:0 a.A:0
A:n n<0 A:n n<0
(M)A:n-1 Az:n+1
A:n n>0 A:0 B:0
[ZlA:n+1 A+B:0
A:0 B:0 A:n
A|B:0 [z=ylAd:n
A:n A:n D:n A:n
(vz)A:n Al:n fiz D.A:n

A process is an agent with arity 0, i.e. an agent
such that A : 0 can be proved. In the similar way,
we can say an abstraction is an agent with negative
arity; a concretion is an agent with positive arity.
0

According to the extension, the corresponding
structural congruence relation is changed. The

structural congruence relation = over agents can be

defied by the following equalities.

(1) Y A=, Bthen A= B:
Processes are identified if they differ only by
a change of bound names. B

(2) ((x)A)y = A{y/z}).

(3) A+(B+C)=(A+B)+C.

A+B=B+ A.
A+0=A

(4) AlB[C)=(P|B)|C.
A|B=B| A
A|0=A

(5) [z=1zx]A= A

(6) (wvx)A=A4A ifz¢ fn(A).

(vz)(vy)A = (vy)(vz)A. o

(vz)A| B=(vz)(A| B) ifz¢ fn(B).
(7) if z#y then, '

(vz)(Ay)A = (Ay) (v) A.

[2](vy) A = (vy)[a)A.

(8) IA=IA|A (fic D.A= A{fic D.A/D}).

Proposition4.1 Given any well-formed agent
A, there is a normal form B such that A= B,
where an agent A is a normal form if it is either
(1) an abstraction of the form (Az)B;

(2) a concretion of the form (vz)(z]|B or [z]B;
(3) a process P generated by the grammar

P == 0 inaction
| aP action prefiz
| P+P summation
I P|P composition
| [zx=yP match
| (vz)P restriction
| P replication.

a

We need a commitment relation instead of the
transition relation.

Definition4.3 The commitment relation over
agents can be defined by the rules:

A1 - B
AT Avad S™ IT4-B
ComM Ay > a.B; Ay > a.B,

A1 | Ag > T.(B1 'Bg)

A1 - a.B
A1 | Az > a.(B | A2)
A>aB
Res (vz)A > a.(vz)B z ¢ (o)
A=A" A>aB B =B
A>a.B

PAr

STRUCT

4.2 Modal Logic
We need the extension to the modal logic.

Definition4.4 Let M denote the set of all for-
mulae defined by the following grammar:

F true true
false false
=y match
rz#y dismatch
FAG
FvG
(a)F
X propositional variable

|
I
l
|
|
!
I lo]A
|
| vZ.F greatest fixed point
| pZF least fixed point
| Az.F abstraction
| Fr application
| Yz.F dependent sum
| Vz.F dependent product
| 3z F
Definition4.5 The assignment of arities for
formulae is defined by the rules:

true : 0 false : 0

z=y:0 z#y:0

F:0 G:0 F:0 G:0
FAG:0 FvG:0
F:0 F:0

(a)F: 0 [@] F:0

Z:n F:n
ocZ.F:0

F:n F:n+1
Az F:n+1 Fz:n

o€ {v,u}

F:n+1
Yz.F:n

F:n+1
Vr.F:n

F:in+1
Jz.F:n

a

Let p be a proposition environment, i.e. a func-
tion which given a propositional variable Z of ar-
ity m, an m-vector of names z1,...,Zm gives a set
pZzi,---,zm C A of agents. Given a proposition
environment p and a a sequence of names I, the
semantics of a formula F is defined as [F]pz C A
by structural induction over formulae F":

[true]pz = A
[false]pz =@
[[z=y]]pi={ A o=y

@ otherwise

- 0 ifz=y
[# vlpz = A otherwise

[F A G]pz = [F]pz N [G]pE
[F'VvG]pz = [F]pz U [G]pz
[(2)F]pz = {A|3B.A = a.B, B € [F]pi}

l[a] A]pz = {A| VB.A > o.B implies B € [F]pi}

[Z]pz = pZZ
[vZ.Flpz = U{® | @ C [F]p(Z — @]z}
[kZ.Flpz = n{® | [F]plZ — @]z C 3}
[Az.Flpyz = [F{y/z}]pZ
[Fylpz = [Flpyz
[Zz.F]pz = {A| A= [y|B or (vy)[y] B,

with y € fn(F) U {Z}, and B € [F]pyZ}

[Vz.Flpz = {A | Vy.Az € [F]poyz}
[3z.Flpz = {A| 3y.Az € [F]pyz}
4.3 Proof System
A definition list is a sequence of assertions
Delta =Uy +— F1,...,Up — Fp
such that
1. each U; is unique;
2. each constant occurring in A; is {U1,...,Ui-1}

Let consider the inference rules:

(EQ) Arale=9

(TRUE) Aka true z =1y

AFAF AFA G
AFa FAG

AbpA F
D AT Fve

(A)

A-A G
vI) AbA FVG

()]) ABT:A@% A> B
BibaF -+ BpbaF
(D) Ara [oF

provided that {B {> a.B} = {B1,..., Ba}
A l_A,Ub—vaZ.F Uz

(FIX) WUENC A

(FOLD) %j—ﬁ- A(U) =0Z.F
oy Ao Pl

(APpP) %EA(—iz—ii

(Conc-1) Tﬁ%

(Conec-2) ATa Fys : fresh

lyfAra (SaF) ¥

: fresh

(PROD) AFa (Vo.F)E 40T
Aba Fyz
(Ex1sT) il

Ara (3z.F)z

Theorem4.1 Let At F be asequent with A
an agent of finite control. A Fa F is derivable iff
Ala Fis true. O

5. Conclusion

In this paper, a modal proof system for processes
in the m-calculus was proposed with the discussion
on soundness and completeness. An extension of
the resulting system was also proposed for mobile

agents.
Acknowledgment

This paper was partially supported by The
Grand-In-Aid for Scientific Research (C)08680343,
The Grant-In-Aid for Scientific Research on Prior-
ity Areas 09245214, The Telecommunications Ad-
vancement Foundation, Tokai Foundation for Tech-
nology, and KAYAMORI Foundation of Informa-
tion Science Advancement.

References

1) Henrik Reif Andersen, Coling Stirling, Glynn
Winskel, A compositional proof system for the

modal p-calculus, Proc. of ninth Annual IEEE
Symposium on Logic in Computer Science,
1994.

2) Model checking mobile processes, Information
and Computation, 129, pp.34-51, 1996.

3) Dexter Kozen, Results on the propositional
pi-calculus, Theoretical Computer Science 27,
pp-333-354, 1983.

4) Coling Stirling, A proof-theoretic characteri-
zation of observational equivalence, Theoretical
Computer Science 39, pp.27-45, 1985.

5) Coling Stirling, Modal logics for communicat-
ing systems, Theoretical Computer Science 49,
pp.311-347, 1987.

6) Coling Stirling, David Walker, Local model
checking in the modal mu-calculus, Theoreti-
cal Computer Science 89, pp.161-177, 1991.

7) Glynn Winskel, A complete proof system for
SCCS with modal assertions, Lecture Notes in
Computer Science 206, pp.392-410, 1985.

8) Coling Stirling, An introduction to modal and
temporal logic for CCS, Lecture Notes in Com-
puter Science 491, pp.2-20, 1991.

9) Coling Stirling, David Walker, Local model
checking in the modal mu-calculus, Theoreti-
cal Computer Science 89, pp.161-177, 1991.

10) Milner, R., Communication and Concurrency,
Prentice Hall, 1989. o :

11) Milner, R., Functions as processes, ICALP’90,
Lecture Notes in Computer Science 443, 1990.

12) Milner, R., The polyadic m-calculus: A tu-
torial, Technical Report ECS-LF(CS-91-180,
LFCS, Dept: of Comput. Sci., Edinburgh
Univ., 1991.

13) Robin Milner, Joachim Parrow, David Walker,
A calculus of mobile processes, Information and

" Computation 100, pp.1-77, 1992.

14) Robin Milner, Joachim Parrow, David Walker,
Modal logics for mobile processes, Theoretical
Computer Science 114, pp.149-171, 1993. *

15) Sangiorgi, D., Expressing mobility in pro-
cess algebras: first-order and higher-order
paradigms, Ph.D. Thesis, Edinburgh Univer-
sity, 1992. . _

16) Coling Stirling, Modal and temporal logics for
processes, Dept. of Computer Science Univer-
sity of Edinburgh, 1995.

17) Togashi, A., On typing systems for the
polyadic m-calculus, to appear in Technical Re-
port, COGS, University of Sussex, 1996.

