FEFEN SR
IPSJ SIG Technical Report

W

2007—MBL—43
2007—1TS—31
2007,711,722

Software Architecture of a Dynamically Configurable IP Layer

Shinta Sugimoto“, Ryoji Katof, Toshikane Odal
Ryuji Wakikawa*, Keisuke Uehara”, Jun Murai*

"Ericsson Research Japan, Nippon Ericsson K.K.
*Faculty of Environment and Information Studies, Keio University
*Graduate School of Media and Governance, Keio University

Abstract
Today, the IP layer within the TCP/IP stack not only performs IP routing but also manipulates IP
datagrams in various ways to meet requirements such as security, mobility and multihoming. Due to
the contradiction between the original concept of the Internet and IP sub-layers, utilization of the IP

sub-layers in the current systems is only possible in a system-oriented way.

In this paper, the

limitation of the current TCP/IP system concerning utilization of IP sub-layers is demonstrated, and
new software architecture for overcoming the problems is presented. The proposed architecture
enables applications to utilize features provided by IP sub-layers selectively, yet preserves Internet

transparency and requires no change to protocols.

1. Introduction

Today, the IP layer not only routes datagrams but also
manipulates the datagrams in various ways, such as IP

encapsulation, encryption or even re-writing of the IP header.

Such manipulations are performed at the network layer to
meet various requirements. In this paper, we call the
mechanisms that implement such manipulation as IP sub-
layers. Examples of IP sub-layers include IPsec[6][7],
Mobile IP[8]{9], and SHIMS6[S5]. Each IP sub-layer is
designed to perform an intended function, to fulfill a set of
given requirements, with a care not to introduce any side
effects to the existing components of the TCP/IP protocol
suite.

Although evolution of IP technology gives a wider
variety of choices for the upper layer protocols, it is difficult
for applications to selectively utilize IP sub-layers. More
specifically, applications cannot make the best use of
functionalities provided by the IP sub-layers to meet their
various requirements, The restriction comes mainly from
the mismatch between the basic design of the Internet
architecture (i.e., Internet is a single logical address space)
and the various requirements from upper layer protocols for
the IP layer (i.e., mobility, multihoming, and security).

In the current system, the alternatives are either 1) to
force applications to implement code which calls APIs
dedicated for a given IP sub-layer, or 2) to let the system
decide what IP transformations should be applied to the IP
flow. However, neither of the above approaches fulfills the
requirements of the upper layer protocols. In the former
approach, re-writing of applications may be required to
make use of specific APIs, or applications may be required
to have detailed information about the IP layer such as a list
of available IP addresses and so on. In the latter approach,
the source address selection mechanism inside the kernel
cannot reliably distinguish each flow.

The objective of this paper is to analyze the current 1P
sub-layer architecture to identify the problems and to
provide a new architecture to overcome the problems. As a
result, applications become capable of using IP sub-layers
more effectively to fulfill their requirements and also using
more than one IP sub-layers at a time in a flexible manner.
In other words, we will provide a new mechanism to make it
possible that the layering of IP sub-layers can be re-
configured and customized to meet each of different
requirements of the applications. For this purpose, we
propose a new functional component called /P Broker,
which centrally coordinates interactions of IP sub-layers
taking an application’s requests into account. We also
propose a newly defined API which is provided by the IP
layer to upper layer protocols so that the applications can
convey their requirements to the IP layer.

The remainder of this paper is structured as follows. In
Section 2, common characteristics of IP sub-layers are
presented. Section 3 gives the problem statements, showing
the limitation of the current system and the necessity of
coordination inside the IP layer. In Section 4, the proposed
architecture and design principles are presented. Section 5
presents detailed logic of path resolution which is a
procedure to sort out what IP transformation is applied to an
IP flow in what order.

2. Background and Motivation

2.1. IP Sub-layers

Today, the IP layer consists of various IP sub-layers to meet
the various requirements from the upper layer protocols.
Figure 1 depicts a functional structure of the IP layer with a
number of IP sub-layers. The figure shows a comprehensive
view of the IP layer on an end host. We believe that the
figure represents a common view within the IETF
community, since the layering model is consistent with

(12)
(12)

several documents from IETF[5][13]. As shown, the IP sub-
layers are hierarchically arranged and there is a boundary
which horizontally divides the IP layer into two parts. The
top half consists of IP sub-layers that are processed solely
on the end host, whereas the bottom half may be processed
at the end host and/or intermediate nodes.
Tunneling

Tunneling is a technique commonly used in the network
layer. It is accomplished by encapsulating an original IP
datagram by prepending a new IP header. From the network
layer point of view, tunneling is a reformulation of an IP
packet and thus it is logical that the [P packet goes through
the IP layer again, which in turn may result in having
another IP transformation being made to the IP packet. IP
sub-layers such as Mobile IPv6, IPsec, and SHIM6 employ a
form of tunneling.

Destination Option

ESP 1| AH

Fragmentation

SHIMé

Destination
Option

Routing
Header

| Mobile 1P |

Hop-by-Hop Option

Routing

Figur

¢ 1: Reference model of IP layer

It is possible that various combinations of IP
transformation is applied to a given IP flow. The order of IP
sub-layer may not necessarily follow the order of layering of
IP sub-layers presented in Figure 1. For instance, even
though SHIM6 lays above Mobile IPv6 in the reference
model, it does not prohibit an end host from applying
SHIMSG to the flow of Mobile IPv6. That is, an IP packet
flow which had been transformed by Mobile IPv6 can be
subsequently transformed by SHIM6 provided that each IP
sub-layer is configured properly.

Figure 2 illustrates several scenarios where more than
one IP sub-layer is involved in the end-to-end IP flow
between a pair of hosts. The figure shows different
combinations of IP sub-layers arranged in different orders to
meet the different requirements of the upper layer protocols.
In some cases, one or more middle boxes are involved when
necessary. Although it is not common to have such complex
configurations today, we envision that such usage will be
useful to satisfy a wide variety of requirements in the future
network environments.

From the above discussion, we conclude that the
following design requirement shall be met:

® Design requirement 1: The IP layer is so designed that
combinations and orders of IP sub-layers can be flexibly
re-arranged in order to meet different requirements of
individual IP flows in various IP networking scenarios.

e Design requirement 2: The IP layer shall arrange the IP
sub-layers taking the network environment into account

Scenario6: SHIMG6 over [Psec
Figure 2: Utilization of IP sub-layers

2.2. Internet Transparency

The Internet was originally designed in a way that it is a
single universal logical address space [16]. That is, the
Internet should be seen by the upper layer protocols as a
single logical address space, on which IP datagrams can
flow from a sender to receiver unaltered. This fundamental
characteristic of the Internet is referred to as “Internet
transparency.” Basically, the whole system of the Internet
including DNS, transport layer protocols, applications, and
APl is designed based on this assumption. IP sub-layers
have been carefully designed so that Internet transparency is
preserved. That is, IP sub-layers are kept transparent to the
upper layer protocols and thus explicit mechanisms for
utilizing IP sub-layers have not been provided, by design.
Requiring applications to utilize a specific API to control a
specific IP sub-layer may lead to loss of Internet
transparency. Thus absence of API for utilizing IP sub-
layers is a deliberate design choice. However, RFC
3542[14] specifies how IPv6 extension headers, namely
routing header, hop-by-hop option, and destination option
header may be accessed by applications.

79‘7

However, actually, need for IP sub-layer is neither
universal nor uniform to the upper layer protocols. There is
a need for applications to utilize IP sub-layers to meet their
specific requirements. For example, a VoIP application
would require session continuity by mean of mobility
function in the IP layer, while a Web application would
require network layer security rather than mobility support.
Like this, characteristics of sessions employed vary and
demands for support provided by IP sub-layers are totally
application dependent.

Given the requirement for preserving Internet
transparency, the present situation is that matching IP sub-
layers to IP flows is mainly done implicitly by means of
source address selection. The socket API framework allows
applications to not specify the source IP address to set up a
communication. That is, an application can leave the source
address unspecified when establishing a connection. In such
a case, the source IP address is selected inside the kernel
(i.e., IP layer) according to the given policy and rules [3].
However, this mechanism cannot distinguish different
requirements from respective applications and thus
utilization of IP sub-layers is done in a system-oriented way
rather than an application-oriented way.

From the above discussion, we conclude the following
design requirements:

® Design requirement 3: The IP layer should provide IP
transformation services/capabilities to the upper layer
protocols without loss of Internet transparency.

s Design requivement 4: The IP layer should apply IP
transformation to a given IP flow according to the
requirements given by the respective application.

3. Problems

3.1. Limitation of Utilization of IP Sub-layers

There are mainly two approaches for determining what IP
transformation should be made for a given IP flow: explicit
and implicit approaches.

In the explicit approach, an application proactively
selects the [P transformation to be applied to the IP flow. In
order to so, an application is required either to use a specific
APl for utilizing the IP sub-layer or to have detailed
knowledge of the IP sub-layer. By using a feature-enriched
API (e.g., RFC 3542[14] or BTNS[11][12]), an application
can specify what IP transformation shall be made to the IP
flow. For instance, RFC 3542 defines extensions to the
socket API with which applications can send or receive 1P
datagrams with IPv6 extension headers. The information
specified by the API can be stored in the socket instance,
and is taken into account for the subsequent IP packet
processing. In the other method, application indicates a set
of parameters which is interpreted by the IP layer to
designate the specific IP transformation which the
application has selected. One of the real deployments is that
the application is aware that use of a specific source [P
address will designate that the IP flow is to have specific IP

transformation applied inside the IP layer. For instance, the
application may choose a Mobile IP home address as its
source IP address if it requires IP mobility support by
Mobile IP sub-layer in the IP layer.

In the implicit approach, the kernel determines the
necessary [P transformations to be applied to a given IP
flow. This is advantageous for applications since they
remain agnostic about the IP layer. In such a case, there is
no need for application to have much knowledge of the IP
layer, and it leaves the source IP address unspecified in the
communication setup. As mentioned earlier, the choice of
source address may govern the selection of IP
transformation to be made for a given IP flow. In fact, the
algorithm defined in RFC 3484[3] for source address
selection takes the Mobile IP sub-layer into account; the rule
gives preference to Mobile IP home address over normal [P
addresses. This implies that Mobile IP is turned on by
default, unless an application specifies a source IP address
other than the home address.

Although the two approaches mentioned above
marginally solve the issue of applying an IP transformation
to IP flow, neither of them fully meets the aforementioned
design requirements for the following reasons. In the
explicit approach, an application is required to get heavily
involved in the choice of IP transformation or to have
detailed information about IP layer. Therefore, the approach
does not fully meet the design requirement 3. In addition, it
is too much for applications to monitor the network
environment which may be dynamically changing in order
to determine what IP transformation is needed. Thus the
design requirement 2 is not met. On the other hand, in the
implicit approach, there are few requirements for
applications. However, selection of IP transformation is
made by the kernel by means of source address selection
without taking any requirements of applications into account,
Thus the approach does not fully meet the design
requirement 4.

3.2, Lack of Coordination inside IP Layer

As mentioned in Section 2, there are different IP sub-layers
and each has different roles and characteristics. It is
possible that more than one IP transformation need to be
applied to a given IP flow. In such case, a serialized IP
transformation needs to be applied to an IP flow in right
order, being consistent to the context information of each IP
sub-layers. However, in the current design of the IP layer,
such arrangement of IP sub-layers is difficult for the
following reasons.

First of all, the source address of the IP flow, the
ultimate endpoint of the communication, needs to be
determined taking all the necessary IP transformation to be
applied to the IP flow. This implies that a serialized IP
transformation needs to be resolved prior to the selection of
the communication endpoint. Thus the source address
selection mechanism deployed in the current TCP/IP
systems cannot make the right choice of the local
communication endpoint.

An IP sub-layer needs information about the subsequent
IP sub-layer that is to apply IP transformation to the IP flow.
More specifically, if the subsequent IP sub-layer requires a
specific template to apply the respective IP transformation,
the template should be understood by the previous IP sub-
layer. It is not necessarily true that packet processing to be
done at each IP sub-layer is independent from each other. In
some case, an IP sub-layer requires information about other
IP sub-layers, in particular, the subsequent IP sub-layer
which is to apply IP transformation to the IP flow.
Therefore, the current TCP/IP system where there is no
coordination inside the IP layer does not sufficiently meet
the design requirement 1.

3.3. Summary

As discussed in Section 3.1, preserving the Internet
transparency and facilitating utilization of IP sub-layers in
application-oriented way are two contradicting issues. It is
worthwhile to look deeper into the heart of the problem.
The root cause of the contradiction is related to the basic
design of the Internet, i.e., identifiers and locators are
represented as IP addresses[1]. The network based on the
design works well in a traditional network configuration
such that a host is connected to the Internet with a single
network interface and the host never moves. However,
problems arise once this assumption does not hold. Today,
there are millions of mobile hosts connected to the Internet
and large number of multihomed sites. Threats of
miscellaneous DoS attacks caused by spoofing network
layer information are emerging. Respective efforts made
inside the IP layer are countermeasure to each problem;
mobility, multihoming, and security.

With regard to the solution space for tackling these
problems, there are mainly two approaches; clean slate
approach and incremental approach. The former is a
ground-up effort to build brand-new network architecture
which replaces the Internet[2]. On the other hand, the latter
aims to improve the Internet by developing lacking features
or by making necessary modifications to the existing
systems. Hence the two approaches are antithetical to each
other and there are pros and cons. In the clean slate
approach, there is greater chance to design the new
architecture in a cleaner way taking all the identified issues
into account. However, it is hard to deploy, obviously. On
the other hand, the incremental approach allows the existing
systems to continue to work, yet solves each issues
incrementally. However, there is less hope for solving the
issues in architecturally right way. In other words, there is a
danger of making the Internet as a set of large number of
patches, which has a limited performance.

In this paper, we take the incremental approach to solve
the problems mentioned earlier in the hope of improving the
current situation with minimum cost. Since we re-use
existing protocols (IP sub-layers) in our approach, there is
no built-in design of ID/Locator separation within the
overall architecture. Instead, we introduce a coordinator
inside the IP layer that makes arrangement of disjointed
piece of IP sub-layers. The coordinator makes the necessary

arrangement inside the IP layer, according to a
comprehensive picture of a set of IP transformation to be
applied to the [P flow.

4. Proposed Software Architecture for
IP Layer

In order to satisfy the aforementioned design requirements,
we propose a new architecture for IP layer. In this section,
the outline of the proposed architecture and design
principles considered are presented.

4.1 Design Principles

As for the design principles, we put much value on
simplicity and extensibility. Simplicity means less work for
kernel, i.e., total amount of work required to achieve the
design goals of the proposed software architecture should be
kept minimum. Extensibility means that kernel
programmers should be able to add new features (e.g. new
IP sub-layers) to the IP layer without any drastic changes to
the software architecture.

4.2 Overview of Proposed Architecture

In order to achieve the design goal, bringing flexibility to
the IP layer of TCP/IP stack of end host, we designed new
software architecture for IP layer based on the design
requirements and the design principles. Figure 3 illustrates
the system overview. A new functional component called
IP Broker is introduced inside the IP layer, which centrally
coordinates resolution of IP transformation for respective IP
flows. In our architecture, hierarchical structure of IP sub-
layers is removed, in principle, and integrated use of IP
transformation becomes possible under the control of
applications. The IP Broker arranges the IP stack for each
application taking the requirements from respective
applications into account.

IP Service Attibutes. E

Socket
Sacket Hin}?

IP Broker
Manager

n

IP Broker

Flow
Manager

Transformation| [:
[Policy Databas
ity

Transformation| [t
L | Database

Figure 3: Overview of proposed software architecture
for IP layer

The following are the most important design choices
made:

1. Introduce a centralized coordinator inside the IP layer
which arranges the IP sub-layers

2. Resolution of IP transformation is done based on
requirements from applications and network
configuration

In the absence of the coordinator, it is fairly difficult to
apply more than one IP transformation to an IP flow. In the
conventional software architecture of the IP layer, it is all up
to the configuration of IP sub-layers made by the system
administrator, This implies that the IP layer is not
dynamically configurable. Moreover, proper selection of
the source IP address is hardly made without the conclusive
picture of what IP transformation is applied to a given IP
flow. Hence we conceive that the centralized coordinator
inside the IP layer is needed. The second design decision is
related to the information on which resolution of IP
transformation is made by the IP Broker. The ultimate role
of IP Broker is to satisfy the needs of applications. For
instance, a message “I want a stable connection!” is an
example of requirement given by an application. Such a
requirement indicates that the application wants its IP flow
to survive whatever network incidents take place (e.g.
change of network attachment point, change of local IP
address due to re-homing). The conventional IP layer has
never been responsive to such high level requests from
applications. In our architecture, determination of IP
transformation to be applied to a given IP flow is made by
the IP Broker based on requirements from applications and
the network configuration.

With the newly defined API, applications can request the
IP Broker to provide certain IP services, which may result in
applying a set of IP transformation to the IP flow. The API
conveys the requirements from the application represented
by a uniform data set called /P service attributes. Hence the
IP service attribute associated with a socket is the key
determinant for IP Broker to decide what IP transformation
should be made to the associated IP flow. On the left top of
Figure 3 sits a dedicated middleware called /P Broker
Manager, which interfaces IP Broker directly. The roles of
the IP Broker Manager are to convey network environment
information to the IP Broker, and deliver the IP service
attributes to the IP Broker acting on behalf of applications
which do not support the newly defined API. Hence the
proposed architecture can accommodate both legacy and
new applications.

5. Logic of IP Broker

In this section, key design elements of the proposed
architecture are presented. We explain the kind of input the
IP Broker gets from applications and the system
administrator, how an end-to-end path is calculated, and
how connection setup is done.

5.1 IP Service Attributes and API

We define a set of information that describes characteristics
of an IP flow called IP service attributes listed in Table 1.
An IP service attribute describes a high level and primitive
requirement from the application to the IP flow. The IP
service attributes are defined as socket options as shown in
Table 2 where each socket option corresponds to each IP
service attribute presented in Table 1. The newly defined
socket options are set or get by applications with
setsockopt() or getsockopt() routines, respectively.
Basically the API requires only a flag indicating whether or
not to activate a given an IP service attribute or not. Hence
the socket options take an integer as an argument of storing
option value. For instance, a video streaming client
application may give the requirement “Stable Connection”
since its session lifetime is normally long. Accordingly, the
socket handler inside the kernel stores the information in the
socket instance and informs the 1P Broker of the need for
stable connection for the associated IP flow. If the
application does not implement the newly defined API the
IP Broker Manager directly informs the IP Broker of the IP
service attributes required for certain applications.

Table 1: IP service attributes

Relevant [P

Name Description sub-layer
Whether or not the application wants the
Stable session to be stable, .i‘.e., the sessjon Mobile IP,
Connection should have a capability to survive SHIM6
regardless of whatever network incidents
take place
Whether or not the application wants the
Secure session to be secure. Security properties [Psec
Connection include data confidentiality, data (BTNS)
integrity, and data origin authenticity.

Table 2: Socket options for IP service attributes

Option name Level Option value
IP_ ATTR _STABLE IPv4, IPv6 int
IP_ATTR SECURE IPv4, IPv6 int

5.2 Network Modeling

In the proposed architecture, it is necessary for I[P Broker to
see the picture of the network configuration in order to
figure out the best IP transformation to be applied to a given
IP flow. Figure 4 is an example of network model. As
shown, a network model is represented in a directed graph.
In the model, any node that is involved in the routing and/or
transformation of the [P datagram is denoted as a vertex. A
vertex can also represent a set of routers (i.e., subnets).
Additionally information is given to a vertex indicating what
IP transformation the node can offer. One or more IP
addresses can be assigned to a vertex, which are candidate
IP addresses that end host can use as a communication
endpoint. Normally an IP address which is specified as a
communication endpoint is topologically situated at the end
host itself, i.e., the IP address is assigned to the vertex
representing the communicating host. However, sometimes
it is possible that the IP address is assigned to a vertex
which performs a certain IP transformation inside the

network. Middleboxes such as Mobile IP home agents and
[Psec security gateways[15] exploit this tunneling technique,
and thus an inner IP address assigned to the client is
topologically situated at the subnet of middlebox.

Figure 4 gives an example of network configuration
where a host (Host1) is served by multiple Mobile IP home
agents, HA1 and HA2. The upper half of the figure shows
the actual network configuration whereas the lower half of
the figure shows the network model. The vertex labeled
‘INT represents the Internet, where the peer (Host2) is
connected. As shown, there are three IP addresses available
for Hostl, IP1@Host!, IP2@HA1, and IP3@HA2. Mobile
IP home agent creates the illusion that a client is always
connected to the home network, and thus Hostl is under an
illusion that it is continuously connected to the home
networks served by HA1 and HA2, respectively. In this
sense, Hostl is considered to be a multihomed host.

Home network 1 Home network 2

IP addresses
assigned to Host1

\ IP3@HA2 @

IPZ@HME— | %‘ ‘///'

IP@Host2

N

Figure 4: A network model of a multihomed mobile
network
A network entity such as a Mobile IP home agent is pre-
deployed and requires an agreement established between the
server and the client prior to the service offering. Another
example of pre-deployed network service is IPsec in
authenticated mode. In a VPN, a typical deployment of
IPsec, client and security gateway requires pre-deployed
information, namely an identifier and associated credentials
for authentication. On the other hand, there are some IP
services that do not need any pre-deployed information. For
instance, SHIMG6[5] is designed in a way that the protocol
runs between a given pair of peers that have no prior
security association. BTNS[10], which is an
unauthenticated mode of IPsec, does not require any pre-

deployed information for peers to establish an IPsec security
association.

To summarize, in the network model, in addition to the
network configuration, information related to IP sub-layers
that come with pre-deployed information should be given as
input to the IP Broker. The input consists of 1) adjacent
matrix representing the network topology in a directed graph,
2) IP service attribute associated with each vertex, and 3)
associated IP address(es).

5.3 Path Resolution

The flow manager performs path resolution based on the IP
service attributes requested by the application and the
information about the network configuration. A path is a
sequence of nodes which perform any IP transformation to
the IP flow on the path between the sender and receiver.
Normal IP routers that perform plain IP forwarding are
omitted for simplicity. Hence the path represents not only
topological path but also IP transformation to be applied to a
given IP flow. Note that the path resolution is unidirectional.
The result of path resolution may trigger setup of an IP sub-
layer context in some case. The path resolution is done in
the following four steps.

1. Path search — Find all possible unidirectional path
from the sender to receiver

2. Selection of local communication endpoint -
Determine which IP address should be used as local
communication endpoint in each calculated path

3. Selection of path — Select path taking [P service
attribute into account

4. Multihoming — Apply end-to-end multihoming
context if necessary

The first step executes path search to sort out all the possible
paths. Path search is done in a simple way, based on
permutations of middleboxes and selection of multihomed
paths. The number of paths is the product of 1) summation
of permutation nPm (choosing m elements out of a
permutation whose size is n), 2) the number of the Internet
connectivity that sender has, and 3) the number of the
Internet connectivity that receiver has. This means that the
number of calculated paths grows exponentially with the
number of middieboxes. However, we conceive that the
algorithm does not cause any serious problem since a
realistic number of middleboxes is 3-4 at most. The
summation of nPm (where m is larger than 0 and less or
equal than n) is 16 (n=3) and 65 (n=4), respectively.
Multiple number of Internet connectivity of sender or
receiver indicates that the end host is multihomed. As a
result of path search, normally there are multiple candidate
paths calculated. Accordingly, the paths are carefully
selected taking various conditions into account. Figure §
shows an example of path search resulted from a network
condition given in Figure 4. As shown, there are five paths
(Pathl to PathS) discovered by the path search.

Path1: Host1* — Int — Host2

Path2: Host1* — Int = HA1* — Int — Host2
Path3: Host1* — Int — HA2* — Int — Host2 ;
Path4: Host1* — Int — HA1* — Int — HA2* — Int — Host2 |:
Path5: Host1* — Int — HA2* — Int — HA1* — Int — Host2

'F;igiire 5: An éA)‘(a“m/i)le of path search result

Table 3: Path attributes relevant to path resolution

LOC?I . Redundant | Candidate Add.monal

Path | communication flag path multihomed
endpoint (LCE) path

Pathl | IP1@Hostl False False True
Path2 | IP2@HALI False True N/A
Path3 | IP3@HA2 False True N/A
Path4 | IP3@HA2 True False False
Paths | IP2@HALI True False False

Following path search, selection of local communication
endpoint (LCE) is made for each path. The selection is
made by examining the IP address along the path from the
peer to the sender host. That is, each vertex on the path is
verified, in turn, if there is any [P address available for the
sender host. If any IP address is found, the IP address is
chosen as a focal communication endpoint.

In the next step, selection of path is made carefully
taking IP service attribute into account. In the example
shown in Figure 4 and Figure 5, if an IP service attribute
IP_ATTR_STABLE is specified by the application, Pathl is
judged invalid since it does not satisfy the need for [P
mobility support. In the example, Path4 and Path5 are
considered to be inferior to Path2 and Path3, respectively.
This is because the same type of IP transformation (IP
Mobility) is applied to the flow twice, which increases the
number of hop counts unnecessarily. In the example of
Figure 4 and Figure 5, an IP transformation to be done by a
single Mobile IP home agent is enough for satisfying the
needs of stable connection requested by the application. In
this paper, a set of the paths that are judged valid during the
path selection is called candidate path set. In the example,
Path2 and Path3 are included in the candidate path set.

The final step, multihoming support, is taken when
necessary. Ifan application requests a stable connection and
there are multiple paths included in the candidate path set,
necessary settings and configuration is made for
multihoming support. It is assumed that the multihoming
support is accomplished by applying SHIM6 to a given IP
flow. From each of candidate path set, a local
communication endpoint is taken and a set of candidate
upper layer identifiers (ULID) is formulated. Accordingly,
each of the paths from the set of invalid paths is examined to
see if there are any additional paths available. Note that
multihoming support may increase the number of paths that
peers can use. Figure 6 shows the pseudo-code for the
additional multihome path search. For each path in the
candidate path set, local communication endpoint is
compared with that of each invalid path. If it is different,
the path is considered as an additional multihomed path.

The local communication endpoint from the path is added to
the locator list associated with the ULID.

1: for all Path_c in Candidate Path Set do

2: for all Path_i in Invalid Path Set do

3 if LCE of Path_i is different from LCE of Path_c¢ and
4 redundant flag of invalid path is not set then

5: mark Path_i as additional multihomed path

6 end

7. end

8: end

Figure 6: Pseudocode for searching for additional
multihomed paths

5.4 Connection Setup

After path resolution is completed, the IP Broker needs to
take some necessary procedures so that the application can
setup a connection. The following procedures should be
taken according to the results of path resolution:

1. Determine source address for the IP flow
2. Update transformation databases

The source address of a given IP flow is determined by the
IP Broker according to the results of path resolution. The
local communication endpoint of the selected path should be
specified as the source IP address of the IP flow. If
multihome support is provided by IP Broker, then the source
address of the IP packet should be the local ULID of the
SHIMS6 context to be created. The source address selection
made by IP Broker is substantially different from the
conventional source address selection mechanism. The
most significant difference is that source address selection is
done in an integrated fashion, by taking into account
application’s requirement, available IP addresses, and
network configuration. Therefore, it becomes possible for
the IP Broker to meet multi-dimensional requirements at a
time. Secondly, the selection is made per application. In
the conventional approach, the selection is made by the
uniform rules that are applied irrespective of requirements
of application.

The second procedure is to dynamically apply settings
and configuration necessary for applying IP transformation
according to the results of path resolution. More
specifically, transformation databases need to be updated so
that [P transformation can be applied to the IP flow aligned
with the path information. Since the pre-deployed
information cannot be modified or changed by the IP Broker,
the main task of the IP Broker is to arrange the IP sub-layers
that require no pre-deployed information. In the example
presented in Figure 4 and Figure 5, the communicating peers
are recommended to establish a SHIM6 context to make the
best use of multiple paths. Therefore, necessary settings
should be made so that SHIM6 can initiate context
establishment according to the results of path resolution.

6. Related Work

The Host Identity Protocol (HIP)[4] suggests a substantial
design change of Internet architecture by separating
identifier and locator of the Internet objects. In the HIP
architecture, a new namespace for identifier is introduced
and identifiers are presented to the upper layer protocols for
the use of communication endpoints. Thanks to the
separation of identifier and locator, the architecture can
accommodate various kinds of network scenarios such as
mobility and multihoming. In addition, leveraging the self-
certifying identifier, host can claim the ownership of its
identifier without relying on any infrastructure. Thus, HIP
is a promising technology in the long run and a clean way to
solve the problems of the Internet. However, downside of
the protocol should also be considered. Due to the host-
centric design, transition is hardly achieved unless the
majority of the end hosts become HIP ready. A globally
scalable infrastructure bootstrapping the mapping of
identifier and locator is needed in communication setup.
Hence there are some necessary steps to take for HIP to
deploy. The proposed architecture, in comparison to HIP,
aims to solve the miscellaneous problems at the network
layer by re-using existing protocols rather than creating a
new protocol.

7. Conclusion

In this paper, we demonstrated the limitations of the current
TCP/IP system concerning utilization of IP sub-layers.
There are contradicting roles for the 1P layer; to provide a
universal single address space to the upper layer protocols
and to provide different [P services to respective IP flows to
meet various requirements. Due to this contradiction, it is
difficult for applications to make the best use of IP sub-
layers in the current architecture. Hence we argue that a
new architecture for the IP layer is required.

The proposed new architecture for the IP layer aims to
improve the current situation by reaching a middle ground;
it keeps the transparency of the Internet, yet allows
applications to utilize IP sub-layers selectively. A new
functional component called IP Broker brings flexibility to
the IP layer, i.e., combination and order of IP transformation
can be flexibly arranged in accordance with the
requirements given by application and the network
configuration. The acquisition of flexibility is a significant
step for end hosts on the Internet to meet multi-dimensional
requirements from the applications to the network layer.

The core feature of IP Broker is path resolution, by
which the combination and order of IP transformation to be
applied is determined based on the 1P service attributes and

the network environment information. The path resolution
is comprised of four steps: 1) path search, 2) selection of
local communication endpoint, 3) path selection, and 4)
adaptation of end-to-end multihoming.

8. Acknowledgement

The authors would like to express sincere thanks to
Professor Rodney Van Meter of Keio University and Dr.
Pekka Nikaneder of Ericsson Research in Finland for
providing valuable comments.

References

[11 J. Noel Chiappa, “Endpoint and Endpoint Names: A Proposed
Enhancement to the Internet Architecture,” 1999,

[2] GENLnet: Global Environment for Network Innovations,
http://www.geni.net

[3] R. Draves, “Default Address Selection for Internet Protocol
version 6 (IPv6),” IETF RFC 3484, February 2003.

[4] R. Moskowitz, P. Nikander, P. Jokela, T. Henderson, “Host
Identity Protocol,” drafi-ietf-hip-base-09.txt, work-in-progress,
October 2007.

[5] E.Nordmark, M. Bagnulo, “Shimé: Level 3 Multihoming
Shim Protocol for IPv6,” draft-ietf-shimé-proto-08.txt, work-
in-progress, May 2007.

[6] R. Atkinson, “Security Architecture for the Internet Protocol,”
RFC 1825, August 1995.

[71 S. Kent, K. Seo, “Security Architecture for the Internet
Protocol,” RFC 4301, December 2005.

[8] C. Perkins, B. Patil, P. Roberts, “IP Mobility Support for
IPv4,” RFC 3344, August 2002.

[91 D. Johnson, C. Perkins, J. Arkko, “Mobility Support in IPv6,”
RFC 3775, June 2004.

[10] N. Williams, M. Richardson, “Better Than Nothing Security:
An Unauthenticated Mode of IPsec,” draft-ietf-btns-core-
05.txt, work-in-progress, September 2007.

[11] M. Richardson, N. Williamas, M. Komu, S. Tarkoma, “IPsec
Application Programming Interfaces,” drafi-ietf-btns-c-api-
01.txt, work-in-progress, July 2007.

[12] M. Richardson, “An interface between applications and
keying systems,” draft-ietf-btns-abstract-api-00.txt, work-in-
progress, June 2007.

[13] D. Thaler, “A Comparison of IP Mobility-Related Protocols,”
draft-thaler-mobility-comparison-02.txt, work-in-progress,
October 2006.

[14] W. Stevens, M. Thomas, E. Nordmark, T. Jinmei, “Advanced
Sockets Application Program Interface (API) for IPv6,” RFC
3542, May 2003.

[15] B. Carpenter, “Middleboxes: Taxonomy and Issues,”
RF(C3234, February 2002.

[16] B. Carpenter, S. Brim, “Internet Transparency,” RFC 2775,
February 2000.

