2006— F1 =18 (%)
2005—=DD—19 (9)
2005,/3,/25

P B Ly 2
IPST SIG Technical Report

WS e

LRGSR 2T NI ST a i@l
K& SCAZMT 35 XML O JE

TRER AHR g R

AHZETIL, ¥R E XML OFEMREES L CERBEERZRETH. EHEEEMHIT,
BEO XML XEICEBTAEE Y- 2T 7L—FLTTFOHEL, b7 7L —

FEMWTAEY EOWIRITE XML ZERET D, BOoRKOBRHSATREZKED T FH0RE
Hrf XML EZERE T A2 06, AU EICEY 2 OBURTTH XML #ATE, TO7DH
AT NTETT—a DLt b XML XEE S — Y O ER O
WIS &, HABZDVEHNIYLV L TERETLILOIRT AU r— 3 v OEE(LICEL
TS,

Structure-based Compression of Parsed XML
for Content Adaptation

Hideki Yukitomo*, Akira Kinno*, Takehiro Nakayama*. & Atsushi Takeshita*

This presentation proposes a technique, called structure-based compression. for compressing parsed XML.
Structure-based compression registers common structural patterns as templates in advance, and uses these
templates to represent the complete structural information ot parsed XML. By compressing parsed XML
through its structure, the same memory space can hold more parsed XML instances, and even after
compression, parsed XML can be traversed without decompression. These features support the acceleration
of content adaptation, in which original contents are adapted according to the users’ preferences and device

capabilities prior to delivery.

1. Introduction
XML and its vanants (XHTML, WML and so

on) are playing a key role in the handling of

Internet contents, so many of them are represented
as XML documents, and are stored as such in
database systems.

To achieve features such as the partial addition,
deletion. and alternation of XML documents, they
must be parsed. However, once an XMI. document
1s parsed. its memory requirement is drastically
increased because parsed XML must contain the
relations between its elements. in addition to the
original text.

Since XML document database have to hold
quite a lot of XML documents, popular XML
documents are cached as parsed XML in memory
and the remainder are stored in a second storage
area If parsed XML is compressed, more parsed
XMI. instances can be held in memory, the number
of disk 1'O and expensive parsing processes are
reduced. and thus the overall system performance

FEONTT a3 E® e F AT ¢ THER
Multimedia Labs, NTT DoCoMo. Inc

—65—

is enhanced [1].

Especially for the case of XML content
adaptation, the delivery of the adapted content
involves the integration of matenal from several
source XML documents according to the user's
preference and device capability. Thus keeping
more XML documents in parsed form can
accelerate the time taken to locate the source XML
documents that matches the user’s preference and
devices capability, and also can accelerate the
management process of delivering adapted content
from source XML documents.

This presentation proposes a novel compression
technique for parsed XML called ‘structure-based
compression’. With structure-based compression,
the structural information of parsed XML is
replaced by structural templates given in advance.
Even after compression, parsed XML can be
traversed without decompression. We conducted
simulations to examine the space etliciency of
structure-based compression and prove that it
works well with real world XML documents.

研究会temp
テキストボックス

2. Related work
2.1. Un-parsed XML Compression

Lietke et al. proposed the first compression
technique for un-parsed XML named XMill[2].
XMill can use general text compression techniques,
such as LZW [3], and is useful when simply
storing XML documents. However. it does not
improve the performance of XML document
database systems because the XML documents
must be decompressed and parsed before use.

XPRESS [1], XGRIND [4], and XQzip [5]
were proposed to cover the shortcoming of: XMill.
They are also text based approaches, but aim at
query-enabling XML
documents that match a given XPath query can be
found even in compressed form.

This feature is desirable for some application.
However, it is not enough for content adaptation
because content adaptation -requires the “partial

addition, deletion, and alternation of XML .
documents. To support these features, the whole -

XML document should be kept in parsed form, and
the compression: of parsed XML "should be
considered.

2.2. Parsed XML Compression

Parsed XML can be " represented by the
document object model (DOM) standardized by
W3C [6]. DOM implements each XML node in
parsed XML as a single java/C++ object. Thus, it is
a convenient data structure for maintenance
functions such as partial addition, deletion, and
alternation. This implementation approach ofters a
lot of useful features. Unfortunately, it has huge
memory requirements [7]. However, not all
applications need such sophisticated features. Some
use simpler and more compact data structures. For
instance, some XSLT'-based transformers, such as
Xalan [7] and SAXON [9], handle parsed XML
with proprietary data structures, DTM and Tiny
Tree, respectively. Such approaches realize
compact parsed XML by aggregating multiple
XML nodes into a single java/C++ object and
eliminating unnecessary features. .

Neumiiller [10] introduced a compressio
technique for parsed XML. His approach uses a
dictionary for storing node names, and each parsed
XML node holds an index to that dictionary. Since
data centric XML tends .to re-use the same
element/attribute names in the same document,
data size can be shrunk.

! XSLT is a XML transformation language and
standardized by W3C [8].

compression, XML .

Each XML document must be parsed and
represented by a data structure that allows prompt
access to its data. The approaches of [7][9][10] can
compress parsed XML while offering this feature,
however, structural information is not fully utilized
in compression, thus, there is still room for
improvement.

3. Proposed compression technique
3.1. Preparation

A sample XML document is shown in Figure 1.
As shown, XML is a kind of ordered rooted tree:
Thus the parsed XML for this sample XML
document can be represented as shown in Figure 2.
Figure 2 shows that there are two types of nodes in
the tree. Element nodes, the circles, have element
names as values. The other, text nodes (the
rectangles), have string data as node values. A
sequential number is placed on the top right corner

. .of each node in the depth first manner. The

rclationSbip between nodes is represented by
arrows.

Logically, the parsed XML is represented as
shown in Figure 2. A naive implementation might
equate each node with a single java/C++ object,
and the relationship between nodes is implemented
by their references to each. other. However, this
kind of implementation .consumes too much
memory, and building this tree data structure is
slow because the creation/deletion of objects in
C++/Java is quite an expensive operation [7]. Thus,
advanced implementations usually take .a slight
different approach for space and speed efficiency
reasons. Let us now explain. one such
implementation, Apache Xalan’s DTM; we explain
structure-based compréssion with DTM .in Section
3.2. In DTM, parsed XML is represented by a table,
and each node is represented by a row that has
several columns. Table "1 shows the DTM

<R> <A> <E>abcd</E>
<E>efgh</E>
<E>nkl</E>
<E>mnop</E>

<C> <D>qrst</D>
<D>uvwx</D>
<D>yzab</D>
<D>cdef</D>
</C>
</R>

Figure 1: A sample XML document

representation of the sample XML document in
Figure 2°.

In Table 1, the first column represents the
identical number of each node. The second column
shows the node type, the value is either ‘Element’
or “Text’. The third column shows node name. If
node type is ‘Element’, this field represents element
name. If node type is ‘Text’, the third column is
meaningless. The fourth column shows the node’s
value (string data) and has meaning only for text
nodes. The, fifth to.eighth columns represent the
relationship between -nodes. The columns show
child, previous sibling, next sibling, and parent
reference, in that order. Some cells are grayed-out
in the last column. This indicates a reference to a
parent node; such references are not shown in
Figure 2 for better visibility. The terms used
hereafter are defined below.

Structure is a set of relationships between
nodes.” A structure involves node type and node
name.. This means that element nodes and text
nodes can be distinguished. Furthermore, the name
of an element node is meaningful. No text nodes
have names, and their values are meaningless with
regard to the structure.

Pure Structure is a set of relationships between
nodes. In contrast to structure, it is concern with
neither node type nor node name.

Open-join information is a set of references
between a node included in a structural template
and an outside node. It specifies the connectivity of
nodes in a structural template. That is. it describes
which nodes of the pure structure in the structural
template can be connected from/to outside nodes.

Compressed DTM represents a parsed XML
after structure-based compression. It inherits
Xalan’s DTM interface, however, it consists of

Figure 2: The Parsed XML of the sample
XML document shown in Figure 1

? Real implementation is more complicated. For
instance it includes ‘COMMENT’ and ‘ATTRIBUTE’
nodes. However, in this presentation, we explain about
the essence of DTM, and details only parts which
relates to structure-based compression. For details about
DTM, please refer to [7].

Table 1: DTM representation of
sample XML document

Index | Type |Name | Value | c |ps|ns|p
"0 |EBlement| R | 1 -
1 Element A 2| 100
2 |Element| E 3 4 F1
3 Text - - abed - 2
4 Element E - 5126 %
5 Text - efgh 4
6 .| Element E - 71481
7 Text - ijki - - 6
.8 Element E - 916 Ba
9 Text - mnop - |8
10 |Element | B 1 {1140
11 [Element | B 11{12}0°
12 | Element C - 13|11] - | @
13 | Element D 14 - 11512
14 Text: | - qrst NIEEE
15 |Element| D |- - [16|13 |17 [it2
16 Text - uvwx 15
17 | Element D - |18 [15(19 (42 ¢
18 Text - yzab - 17
. 19 | Element D - 20{17 12
20 Text - cdef 19

Root DTM and several template instances.

Structural template 1s a data structure to
represent a fragment of the pure structure.: It
consists of pure structure, template ID and open-
join information. Template ID is used to
differentiate the structural templates. ‘A structural
template is referenced from template instance, and
is used to describe a part of the pure structure that
matches the parsed XML.

Non-compressed” DTM represents a ‘parsed
XML without compression. While basically the
same as Xalan’s DTM. its data structure i5 slightly
different from that of the original Xalan’s DTM.
The difference is shown in Section 3.3. '

‘'Root DTM is non-compressed DTM included in
compressed DTM. With * structure-based
compression, compressed DTM’s pure structure is
partly replaced by template instances. However,
there will be several nodes that do not belong to
any template instance. Root DTM contains such all
stray nodes.

Template instance is a data structure to
represents ‘the part of parsed XML in compressed
DTM. It consists of instance ID, a reference to the
structural template, nodé¢ information, and outer
join information. Instance ID is used to identify
each témplate instance in the same compressed-
DTM. The reference to the structural template
shows which structural template is used in the
template instance.

研究会temp
テキストボックス

Node information is a set of node types, node

names, and node values in a template instance.
Since the pure structure contains only structural
relationships between nodes, node information
represents type, name, and value of each node in
the template instance.
Join information: Set of references between nodes
in the template instance and outside nodes. To
build compressed DTM with template instances,
each template instance and node in Root DTM
must be connected. Join information contains such
relationships and provides the concrete value of
open-join information in the structural template.

Structural information is either pure structure,
or open-join information, or join information.

3.2. Structure-based compression

The basic idea of structure-based compression
for parsed XML is the substitution of pure
structure with structural templates. For instance, in
Figure 2, each area surrounded by an ellipse holds
four nodes, and according to the definition of
structure (See Section 3.1), these structures
surrounded by ellipses differ from each other (since
the node’s names within each structure are
different). However, if you neglect node name, and
concentrate only on ‘pure structure’, these three
cllipses look the same. This means that if we can
separate the pure structure from the parsed XML,
divide it into fragments, and re-use them as
structural templates, we can compress the parsed
XML.

Figure 3 shows the concept of structure-based
compression more precisely. In Figure 3, the XML
document database holds many parsed XML
instances, which is represented by compressed
DTM, and one parsed XML, ‘#1° is described.
Parsed XML #1 contains a root DTM and three
template instances; those are represented by a
DTM-like data structure. The part that contains
meaningful data is represented by the solid line,
and the unused part is indicated -by the thin dotted
line.

If there are at least two template instances
which refer to the same structural template in three
template instances, they can share structural
information, and total data size can be reduced.

Note that not all structural information is
redundant, because join information should be
described. Furthermore, template instances have to
contain some extra data, spch as instance ID, and
the reference to the structural template. The
overheads incurred by using structural templates
are, however, much smaller “th;a,n the structural
information, and so can be ignored. Thus, total size
of compressed DTM is decreased as more

XML document database

=

Parsed XML (compressed DTM) #1

Root DTM

:ID Type | Name | Value || ¢ |ps{ns| p
Element | R
Text

n [T [[[T[]

Template instance #1
[1D] Type [Name|Vaue |

) I— 1 1
 E— T

Hl

Termplate instance #2
[1D] Type [Name | Value |
}, 1) |

Termplate instance #3
[D] Type |Name
| 1 1

[T T
s T 1

- -
Node information Structural information
(ioint information only)

Compression target

Figure 3: The concept of structure-
based compression

structural information is replaced by more template
instances (the area surrounded by the thick dashed
line).

3.3. Memory consumption

To evaluate the efficiency of structure-based
compression, we show the memory consumption of
parsed XML treated by structure-based
compression, and compare it with that of non-
compressed parsed XML.

At first, we define the memory consumption of
non-compressed parsed XML. Let N, denote the
number of nodes in XML document x. The memory
consumption of non- compressed parsed XML is
given by

U(x)=4-4N_+4-2N_+ D(x)

The first term represents pure structural
information. In the case of uncompressed parsed
XML, memory is needed to store all references
(parent, child, previous sibling. and next sibling) of
all nodes. This requirement is given by 4N.. Since
we assume that all of these are represented by
integers consisting of a total of four bytes, 4N, is
multiplied by four.

The second term represents two pointers those
represent node name and node value. Each pointer
is represented by four bytes. and thus s
represented by 4.2N,.

The last term D(x) is the sum of all string data.
Since each node has its own name and value, string
data are stored in the dictionary, and each node has
its own index to the dictionary for name and value,
respectively.

Second. the memory consumption of parsed
XML treated by structure-based compression is
given by

Ceoy =437, 46, @) +2)+ M)
+4-2N(x)+ D(x)

The second and third term have the same
definition as in the case of U(x). In the first term,
M. denotes the number of nodes in Root DTM. T is
the total number of structural templates, and ¢ is
the i-th structural template. A(2,x) is the number of
times structural template f occurs in document x.
J() 1s the size of join information for structural
template ¢. The first term also represents pure
structural information. Compressed parsed XML
needs only the join information plus some overhead
for each template instance. The size of join
information is represented by J(), and the
overhead consists of two factors: template instance
ID and the references to structural templates. Thus,
the memory consumption of each template instance
is represented by J(tx)+2. The total memory
consumption for pure structure of compressed
parsed XML is the sum of that for all template
instances, and is thus given by

T

>0 A0 () +2)

Since we have to consider the pure structure
included in Root DTM, and have to represent
memory consumption in bytes, 4M, is added to the
above equation (multiplication of four represents
the four references) and multiplied by four in C(x)
as memory consumption of the pure structure.

Note that the notation I(x) is used as the
memory consumption for idéal compression by
structure-based compression. If all nodes are
replaced by some structural template, the ability of
structure-based compression is maximized. I(x)
denotes the memory consumption of this case, and
is approximated by supposing that there is a virtual

structural template which can replace all nodes in
Root DTM.

4. Simulation
We conducted a simulation to examine the
space efficiency of structure-based compression. In

—69—

this section, we compare the memory consumption
of compressed parsed XML produced by structure-
based compression with that of non-compressed
parsed XML. They are represented by compressed
DTM, and non-compressed DTM, respectively.

4.1. Conditions

As the input XML documents, we collected
HTML documents from three web sites, A, B and
C, by following hyperlinks to the third level.
Strictly speaking, HTML is not a variety of XML.
By complementing the illegal notation in HTML
documents, we translated them to valid XML
documents.

Site A contains a lot of rumors, tips, and
information about miscellaneous topics. Site B is an
IT news site, containing a lot of technology related
news articles. Site C is a software vendor’s site, and
most documents are product information. Some
elements or tags of the collected documents were
complemented in advance to yield validated XML.
Table 2 shows miscellaneous information about the
documents from the three web sites. Note that we
treated a single HTML file as a single document in
this simulation.

The compression ratio strongly depends on the
suitability of the set of structural templates for the
documents. Since we have not yet developed a
strategy for choosing the ‘optimum’ structural

Table 2: Sample data information

Stte Numberof | Ave. File | Ave Number
conterts size [KB] o nodes
A 93 274 11437
B 629 17.0 6982
C 333 21 1175
#0 z #7
#

¢ 9 |

Figure 4: Structural templates
used in simulation

研究会temp
テキストボックス

template, we chose the structural templates after a
rough manual examination of the documents of
these three sites. We chose nine structural
templates manually.. See Figure 4 for details. The
number of each structural template is set on the top
left corner of the template. Filled circles and blank
circle represent open join information, and nodes,
respectively. The relationship between nodes is
represented by lines. .

We first choose simple horizontal (#0, #3, #4,
#6) and vertical (#7, #8) templates. As for the other
templates, they were inspired by the sequence of
anchor (#1 and #5) and table (#2) structure in site
A

The structural templates are sorted by the
number of nodes in them. We used a simple
algorithm to find every place where the structural
template matched the XML documents. For each
XML document, every structural template was
tested as to whether it matched the sub-tree rooted
by each node in the depth first manner.

4.2. Simulation results

Figure 5 shows the memory consumption of
non-compressed and compressed parsed XML for
each site. The Y axis plots memory consumption
for pure structure (thus dictionary size D(x) is
subtracted) in Kilo bytes and the X axis plots
document number. To improve readability,
documents are sorted by size of non-compressed
parsed XML. Figures 5(a), 5(b), and 5(c) present
the simulation results for sites A, B, and C,
respectively. The top curve (denoted by U(x)-D(x))
shows the size of non-compressed parsed XML.
The second curve (denoted .by C(x)-D(x))
represents compressed parsed XML with structure
base compression. The bottom curve (denoted by
I(x)-D(x)) represents the case where whole nodes
are replaced by some structural template. The
difference between the top and second curve
indicates the size of memory saving achieved by
structure-based compression. Figures S(a), S(b),
and 5(c) show that structure-based compression
works well for each site. Table 3 shows the average
reduction rate of total and structural memory
consumption for each site. Even considering the
total memory consumption, at least a 5.5%
reduction is possible with structure-based
compression. The compression efficiency of
structure-based compression strongly depends on
the documents and the set of structure templates.
As shown in Table 3, each site has a.different
average reduction size even though the same
structure templates were used. In other words, the
contribution of each structure template to memory
reduction size depends on the documents. For

. B sieA
K 60 . .
5 50 M\\ U)-D)
5 w0 [\
> I
T d
£ >
& ¥
7] 0 o b
Document No oc
(a)
KB Sie B
30
Ux)-D(x)

N
&
a;z:;‘_‘/_y—

oD
/

Structural memory consumption
=

[KB) Sile C
N -0
g oY COxHDx)’
2 o %\/ 100D0)
i S
_
g0
£

Document No 30C

U(x): non-compress
D(x): dictionary
C(x): structure-based compression
1(%): Ideal

Figure 5: Memory consumption

Table 3: Average reduction rate of total
and structural memory consumption

total memory structural memory
Site consumption consumption
(U(x)-Cx))U(x) (U(x)-C(x))/U(x)-D(x)
A 55% 11.0%
B 74% 16 0%
C. 78% 13.5%

example, further investigation shows that structural
template #4 matches some document in site A more
frequently than that in the other sites. In this case,
we can say that structural template #4 is ‘effective’
for compressing site A’s documents: because it
works quite well on several documents in site A. To

compress documents more efficiently, we have to
find and add other structural templates like #4.

In these simulations, we .roughly chose the
structural template, so total memory consumption
is reduced by at most 7.8% with structure-based
compression. However, the difference between
U(x)-D(x) and I(x)-D(x) in Figure 4 implies that
there is still room for further improvement if we
choose adequate structural templates. The upper-
bound of the reduction in total memory
consumption is estimated to be about 18 % for
these examples. In other words, the number of

parsed XML instances in the memory can be °
increased by 18%. Structure-based compression
can be made to work more effectively by finding a .

lot of effective structure templates for each site.

S. Conclusion
In this presentation, we proposed structure-
based compression, a novel compression technique

for parsed XML. With structure-based compression,
parsed XML can be compressed while still .

supporting the ability of prompt traverse. Since
structure-based compression focuses only on pure
structures, it 1s more powerful than conventional
approaches like [10]. Simulations results proved
the efficiency of structure-based compression, and

showed that it can achieve 55% to 7.8% .
compression with real XML documents. Our future

research goals are as follows:

1. Evaluate the efficiency of structure-baséd

compression by implementing system

This presentation assessed the space efficiency
of compression by just simulation. We will conduct
trials to investigate the degree of memory reduction
when actually real implemented. »
2. Develop an algonithm that can find effective
structural templates

Mining frequent sub-trees in the forest is, in
general. time consuming process [11, 12]. To make
our compression technique practical, we have to
find the structural characteristics of XML
documents for each application domain, and find a
fast way to identify a set of best (or quasi-best)
structural templates for them.

References

[1]: JK. Min, M.J. Park, and C.W. Chung,
~XPRESS: A Querniable Compression for XML
Data”, Proc. ACM Symp. On the Management of
Data(SIGMOD), 2003.

[2] H. Liefke, D. Sucia, “XMill: an efficient
Compressor for XML Data”, Proc. ACM Symp. On

the Management of Data(SIGMOD), Dallas, Texas,
2000.

[31J. Ziv. A. Lempel, “A Universal Algorithm for
Sequential Data Compression”, IEEE Transactions
on Information Theory 23(3): 337-343, 1977.

[4] P.M. Tolani, and, JR. Hantsa, “XGRIND: A
Query-friendly XML Compressor”, Proc. Int. Conf.
Of Data Engineering(ICDE), 2002.

[S] J.Cheng, and W. Ng, “XQzip: Querymg
Compress XML Using Structural Indexing”, In
Proc. of Extending DataBase Technology, 2004.
[6] Document Object Model (DOM),
http://www.w3.org/DOM/

[7] Apache XML Project: XSLT Processor Xalan,
http://xml.apache.org/xalan-j/index.html
(8] - XSL Transformations
http://www.w3.org/TR/xslt

[9] The XSLT and XQuery Processor, SAXON
http://saxon.sourceforge.net/

[10] M. Neumiiller, and J. N. Wilson, “Compact In-
Memory Representation of XML, Technical report,
Dept. of Computer and Information Science,
University of Strathclyde, Glasgow, Scotland, UK,
2002.

[11] R. Agrawal, and R.Srikant. “Fast algorithms
for mining association rules”, In Proc. of Int. Conf.
Very Large Data Bases (VLDB'94), pp. 487-499,
Santiago, Chile, Sept. 1994,

[12] M. J. Zaki, “Efficiently Mining Frequent Trees
in a Forest”, In Proc. of SIGKDD 2002, ACM,
2002.

(XSLT),

研究会temp
テキストボックス

Appendix.

Figure 6 shows the sample compressed DTM
for the data in Figure 1. It consists of (a) one root
DTM and (b) three template instances, and (c) one
structural template. The three template instances
have references to structural template #1. Reference
to a node is done using the X:Y notation; X is the

template instance number and Y is the node’s
index in the template. Node name and node value
are included in the table for better visibility though
they are represented by dictionary's index.
Open-join information of structural template #1
is included in structural information, and each
reference is indexed using a minus integer to
distinguish it from inner structural information.

Template instance #0 (Root DTM) Template instance (refers to structural templatem
CID] Type |Name| Value | c ps|ns| p ; Type |Name | Value s P 1
; Element | R - 10| - | - Element | A : 2 2
Text - abed 1o - Tae { Element B 3
Text - efgh | - |- |- |21 : Element| B -4
Text N ijkl T - 122 | Element | C -5 3.0
Text - mnop | - | - | - |23 -6
Text - qrst -] - |30
Text - uwx | - | - | - |31 Template instance | #2] (refers to structural templatd#1])
Text - yab | - |- |- |32 Type | Name | Value P -1 o1
Text - odef | -1 -1-[33 0 |Element | E - : 2] o2
‘J Element E - 3 03
J Element E - -4 0:4
(a) IElement | E - -5
6 1:0

ps|ns|p
J11]-6
0|2]|6
1(3(-6
21516

late instance (refers to structural templatel # Il

Type i -1 0:5
) ;JElement | D - -2 0:6
Element | D - 3107
Element D - -4 0:8

I Element D - -5
-6 0:3

(c)

(b)

Figure 6: Compressed DTM representation of
sample XML document

