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Abstract

This paper proposes a new evaluation metric for Information Retrieval systems that aim at provxdmg exactly one
highly relevant document to the user. Such information retrieval tasks are especially important for modern large-scale
retrieval environments (e.g. the Web) where recall is either unimportant or unknown. Existing metrics for the task
of finding one relevant document assume that the user stops examining the ranked list of documents as soon as he
finds one relevant document, even if it'is a partially relevant one. In contrast, our proposed metric, called P-measure,
assumes that the user looks for a highly relevarit document even if it is ranked below partially relevant documents;
and is probably suitable for retrieval situations such as known-item search or wherc it is easy for the user to spot
a highly relevant document in the ranked output. Our main new findings, based on experiments using two sets of
data comprising test collections and submitted rins from NTCIR, are: (a) P-measure is more stable and sensitive
than Normalised Weighted Reciprocal Rank (NWRR) and Reciprocal Rank, and is at least as stable and sensitive as
O-measure; and (b) Although O-measure and NWRR are highly correlated with each other, O-measure may be more
stable and sensitive than NWRR. In summary, P-measure and O-measure are probably the most reliable metrics for
the task of finding one highly relevant document. Researchers can decide on which one to use by considering which
better models user behaviour in the real retrieval environment.

1 Introductlon

Different Information Retrieval (IR) tasks require different
evaluation metrics. For example, a patent survey task may
require a recall-oriented metric, while a known-item search
task [11] may require a precision-oriented metric. When we
search the Web, we often stop going through the ranked list
after finding one good Web page even though the list may con-
tain some more relevant pages, knowing/assuming that the rest
of the retrieved pages lack novelty, or additional information
that may be of use to him. Thus, finding exactly one relevant
document with high precision is an important:IR task.

Reciprocal Rank (RR) [11] is commonly used for the task
of finding one relevant document with high precision: RR = 0
if the ranked output does not contain a relevant document; oth-
erwise, RR = 1/r, where 1 is the rank of the retrieved rel-
evant document that is nearest to the top of the list. However,
RR is based on binary relevance and therefore cannot distin-
guish between a retrieved highly relevant document and a re-
trieved partially relevant document. In light of this, Sakai [8)
proposed a metric called O-measure for the task of finding one
highly relevant document with high precision. O-measure is
a variant of Q-measure which is very highly correlated with
TREC Average Precision (AveP) but can handle graded rele-
vance [5, 6]. O-measure can also be regarded as a generalisa-
tion of RR (See Section 2.2). Using well-known methods for
evaluating IR metrics [1, 13], Sakai [8] showed that O-measure
is more stable than (and at least as sensitive as) RR, and that
system rankings based on graded relevance can be quite differ-
ent from those based on binary relevance.

Eguchi et al. [3], the organisers of the NTCIR Web track,
have also proposed an evaluation metric for the task of find-
ing one highly relevant document with high precision, namely,

Weighted Reciprocal Rank (WRR). WRR assumes thatranking
a partially relevant document at Rank 1 is more important than
ranking a highly relevant document at Rank 2. It has never ac-
tually been used for ranking the systems at NTCIR (See Sec-
tion 2.2) and its reliability is unknown. Sakai [9] points out
that, if WRR must be used, then it should be normalised be-
fore :averaging across topics: he calls the normalised version
Normalised Weighted Reciprocal Rank (NWRR).

As both O-measure and NWRR are generalisations of RR
for handling graded relevance, they are also based on 7, the
rank of the first relevant document in the list. This means that
all of these metrics assume that the user stops examining the
ranked list as soon as he finds one relevant document, even if
it is only partially relevant This assumption may be valid in
some retrieval situations, but not always, as we shall discuss
later. We therefore propose a variant of O-measure, called P-
measure, which assumes that the user looks for a highly rel-
evant document even if it is ranked below partially relevant
documents. For some real-world retrieval situations such as
known-item search or where it is easy for the user to spot a
highly relevant document in the ranked output, P-measure may
better model user behaviour than O-measure and NWRR do.

To evaluate and compare the reliability of P-measure and
other retrieval metrics, we use two sets of data comprising test
collections and submitted runs from NTCIR. Our main new
findings are: (a) P-measure is more stable and sensitive than
NWRR and RR, and is at least as stable and sensitive as O-
measure; and (b) Although O-measure and NWRR are highly
correlated with each other, O-measure may be more stable-and
sensitive than NWRR. In summary, P-measure and O-measure
are probably the most reliable metrics for the task of find-
ing one highly relevant document. Researchers can decide on
which one to use by considering which better models user be-
haviour in the real retrieval environment.



The remainder of this paper is organised as follows. Sec-
tion 2 defines the IR metrics considered in this study, and Sec-
tion 3 describes methods for evaluating and comparing the
metrics. Section 4 reports on the results of our experiments.
Section 5 clarifies the contribution of this study through com-
parisons with related work. Finally, Section-6 concludes this
paper. The Appendix explains why our.definition of WRR is
equivalent to the original definition by Eguchi er al. [3].

2 Metrics

This section defines the IR metrics considered in this study.
Prior to discussing the metrics for the task of finding one rel-
evant document, Section 2.1 defines TREC Average Precision
(AveP) and Q-measure, both of which are metrics for the task
of finding all relevant documents. These metrics have been
studied extensively elsewhere [6], and are used only as refer-
ences in this study. Section 2.2 defines the existing metrics
for the task of finding one relevant document, namely, RR,'O-
measure and (N)WRR. Section 2.3 proposes P-measure.

2.1 Existing Metrics for the Task of Finding All
Relevant Documents

" We first define AveP, which is prbbab_ly the most widely-
used IR metric today despite its inability to handle graded rel-

evance. Let R denote the number of relevant documents fora

topic, and count(r) denote the number of relevant documents
within top  of a system output of size L (< '1000). Clearly,
Precision at Rank r can be expressed as P(r) = count(r)/r.
Let isrel(r) be 1 if the document at Rank r is relevant.and 0
otherwise. Then, AveP can be defined as:

AveP = % Z isrel(f)P(r) . m

1<r<L

Next, we define Q-measure [S, 6], which is very highly
correlated with AveP but can handle graded relevance. Let
gain(X) denote the gain value for retrieving an X -relevant
document, where, in the case of NTCIR, X = S (highly rel-
evant), X = A (relevant) or X = B (partially relevant).
We use gain(S) = 3,gain(A) = 2,gain(B) = 1 by de-
fault. Let cg(r) = Y., <, 9(i) denote the cumulative gain
at Rank r for a system output [4], where g(s) = gain(X) if
the document at Rank 7 is X -relevant and g(z) = O otherwise.
Similarly, let cg(r) denote the cumulative gain at Rank r for
an ideal ranked output: For NTCIR, an ideal ranked output
lists up all S-, A- and B-relevant documents in this order. Then,
Q-measure is defined as:

1 . UV
Q-measure = B Z igrel(r)BR(r)

1<r<L

where
cg(r) + count(r)
cgi(r) +r

BR(r) is called the blended ratio, which measures how a
system output deviates from the ideal ranked output and pe-
nalises “late arrieval” of relevant documents. (Unlike ‘the
blended ratio, it is known that weighted precision W P(r) =
¢g(r) /cg1(r) cannot properly penalise late arrival of relevant

BR(r) =

documents and is therefore not suitable for IR evaluation. For
more details, we refer the reader to [8, 9].)

We have the following theorems for the blended ratio and
Q-measure:

o Inabinary relevance environment, BR(r) = P(r) holds
iffr < R and BR(r) > P(r) holds otherwise.

e Ina bmary relevance envnronmem Q-measure =
AveP holds iff there is no relevant document below
Rank R, and Q-measure > AveP holds otherwise.

Moreover, if small gain values (gain(X)) are used with Q-
measure, then it behaves like AveP [5]. Q-measure is at least
as stable and sensitive as AveP as measured by Buckley /
Voorhees and Voorhees / Buckley methods (See Section 3) [6].

2.2 Existing Metrics for the Task of Fiﬁdihg
One Relevant Document

Traditional IR assumes that recall is important: . Systems
are expected to return as many relevant documents as possi-
ble. AveP and Q-measure, both of which are recall-oriented,
are suitable for such tasks. (Note that the number of relevant
documents R appear in their definitions.) However, as was
discussed in Section 1, some IR situations do not necessarily

_ require recall. More specifically, some IR situations require

one relevant document only with high precision. As was men-
tioned earlier, Reciprocal Rank (RR) is often used for the task
of finding one relevant documerit [11). However, RR cannot
handle graded relevance, even though it is clear that users pre-
fer highly relevant documents to partially relevant ones. Be-
low, we describe O-measure and Normalised Weighted Reci-
procal Rank (NWRR), both of which are géneralised’ versions
of RR for handling graded relevance.

Sakai’s O-measure [8] is defined to be zero if the ranked
output does not contain a relevant document. Otherwise:

g(r1) +1

O-measure = BR(rli) = T

)
That is, O-measure is the blended ratio at Rank r;. (Since
the document at ry is the first relevant one, cg(r1) = g(r1)
and count(r1) = 1-hold.) Thus, while Q-measure examines
the blended ratio for all relevant documents, O-measure ex-
amines that of the first retrieved relevant document only. For
this reason, O-measure is less stable and less sensitive than Q-
measure and AveP. However, it is at least as stable and sensitive
as RR [8].
We have the following theorem for O-measure:

e In'a binary relevance envjroriment, O-measure = RR
holds iff 71 < R, and O-measure > RR holds other-
wise.

Moreover, if small gain values are used with O-measure, then
it behaves like RR [5].-

Next; we define Weighted Reciprocal Rank (WRR) with-
out normalisation, proposed by Eguchi et al. [3]. Our de-
finition looks different from their original one, but the Ap-
pendix proves that the two are equivalent. In contrast to
cumulative-gain-based metrics (including Q-measure and O-
measure) which require the gain values (gain(X)) as pa-
rameters, WRR requires “pénlty” values B(X) (> 1) for
each relevance level X: We let beta(S) = 2, beta(A) =
3,beta(B) = 4 throughout this paper: note that the smallest



penalty value must be assigned to highly relevant documents.
WRR is defined to be zero if the ranked output does not con-
tain a relevant document. Otherwise:

1
WRRS TRy @
where X denotes the relevance level of the relevant document
at Rank 71. .

Eguchi et al. {3] proposed WRR for the NTCIR Web track,
but they always set 3(X) = oo for all X, so that WRR is
reduced to binary RR. That is, the graded relevance capability
of WRR has never actually been used. )

It is easy to see that WRR is not bounded by one: if the
highest relevance level for a given topic is denoted by Y, WRR
is bounded above by 1/(1—1/8(Y’)) (See the Appendix). This
is undesirable for two reasons: Firstly, a different set of penalty
values yields a different range of WRR values, which is incon-
venient for comparisons; Secondly, the highest relevance level
Y may not necessarily be the same across.topics, so.the up-
perbound of WRR may differ across topics. For example, the
upperbound for a topic that has at least one highly relevant
documentis 1/(1—1/8(S)) = 1/(1 —1/2) = 2, but that for
a topic with only relevant and partially relevant documents is
1/(1-1/B(A)) = 1/(1—1/3) = 1.5. This means that WRR
is not suitable for averaging across topics if Y d1ffcrs across
the topic set of the test collection.

In light of this, Sakai [9] defined Normalised WRR
(NWRR). NWRR is defined to be zero if the ranked output
does not contain a relevant document. Otherwise:

1-1/B(Y)
= 1/8(X1)
The upperbound of NWRR is one for any topic and ié,theref_orc
suitable for averaging.

There are two important differences between NWRR and
O-measure.

NWRR = 4

(a) Just like RR, NWRR disregards whether there are many
relevant documents or not. In contrast, O-measure takes
the number of relevant documents into account by com-
paring the system output with an ideal output.

(b) NWRR assumes that the rank of the first retrieved docu-
ment is more important than the relevance levels. (The
Appendix shows why this is true.) Whereas O-measure
is free from this assumption.

We first discuss (a). From Eq. (4), it is clear that NWRR
depends only on the rank and the relevance level of the first
retrieved relevant document. For example, consider a sys-
tem output shown in the middle of Figure 1, which has an S-
relevant document at Rank 3. The NWRR for this system is
(1-1/8(S))/(8 -1/B(S)) = (1 - 1/2)/(3 - 1/2) = 1/5
for any topic. Whereas, the value of O-measure for this sys-
tem depends on how many. X -relevant documents there are.
For example, if the system output was produced in response
to Topic 1 which has only one S-relevant document (and no
other relevant documents), then, as shown on’ the left hand
side of Figure 1, O-measure = (g(3) + 1)/(cgs(3) + 3) =
(3+1)/(3+3) = 2/3. On the other hand, if the system output
was produced in response to Topic 3 which has at least three
S-relevant documents; then, as shown in the right hand side of
the figure, O-measure = (34 1)/(9 + 3) = 1/3. “Thus,
O-measure assumes that it is relatively easy to retrieve an X -
relevant document if there are many X -relevant documents in

Ideal output - Ideal output
for Topic 1 System for Topic 2
rank cgy(r) © rank cg (r) rank cg,(r)
1 3 ’ To 1 3
2 3 "o 2 6
3l 3 = 3. 3 s o
.O-measure= : O-measure=
BR(3)= . BR(3)=
@iy@Es=  NWRR=  3iiNeea)
416=213 (1203122 o1
for Topic 1 (RISIZS ¢ Topic 2
for BOTH P

" Topics 1 and 2

Figure 1 O-measure vs NWRR: Topics 1
and 2.
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Figure 2.-O-measure vs'NWRR: Topic 3.

the database. If the user has no idea as to whether a docu-
ment relevant to his request exists or not, then one could argue
that: NWRR may be a better modél. On the other hand, if the
user has some idea about the number of relevant documents he
might find, then O-measure may be more suitable. Put another
way, O-measure is more system-oriented than NWRR.

Next, we discuss (b) using Topic 3 shown in Figure 2,
which has one S-relevant, one A-relevant and one B-relevant
document. In this figure, System x has a B-relevant doc-
ument at Rank 1, while System y has an S-relevant docu-
ment at Rank 2. Regardless of the choice of penalty val-
ues (3(X)), System A always outperforms System B accord-
ing to NWRR. Thus, NWRR is unsuitable for IR situations in
which retrieving a highly relevant document is more impor-
tant than retrieving any relevant document in the top ranks.
In contrast, O-measure is free from the assumption underlying
NWRR: Figure 2 shows that, with default gain values, Sys-
tem y outperforms System z. But if System z should be pre-
ferred, then a different gain value assignment (e.g. gain(S) =
2,gain(A) = 1.5,gain(B) = 1) can be used [9]: In this
respect, O-measure is more flexible than NWRR.

2.3 A New Metric for the Task of Finding One
Relevant Document -

Despite the abovementioned differences, both NWRR and
O-measure rely on 71, the rank of the first retrieved relevant
document. This means that both NWRR and O-measure as-
sume that the user stops examining the ranked-list as soon as
he finds one relevant document, even if it is only a partially rel-
evant one. This assumption may be counterintuitive in some
cases: Consider System z in Figure 2, which has a B-relevant
document-at Rank 1 and an S-relevant document at Rank 2.
According to both NWRR and O-measure, System z and Sys-



tem z are always equal in performance regardless of the para-
meter values, because only the B-relevant document at Rank
r1 = 1 is taken into account for System z. In short, both
NWRR and O-measure ignore the fact that there is a better
document at Rank 2.

This is not necessarily a flaw. NWRR and O-measure may
be acceptable models for IR situations in which it is difficult
for the user to spot a highly relevant document in the ranked
list. For example, the user may be looking at a plain list of
document IDs, or a list of vague titles and poor-quality text
snippets of the retrieved documents. Or perhaps, he may be
examining the content of each document one-by-one without
ever looking at a ranked list, so that he has no idea what the
next document will be like. However, if the system can show a
high-quality ranked output that contain informative titles and
abstracts, then perhaps it is fair to assess System C by con-
sidering the fact that it has an S-relevant document at Rank 2,
since a real-world user can probably spot this document. Sim-
ilarly, in known-item search [11], the user probably knows that
there exists a highly relevant document, so he may continue to
_examine the ranked list even after finding some partially rele-
vant documents.

We now define P-measure for the task of finding one highly
relevant document with high precision, under the assumption
that the user continues to examine the ranked list until he finds
a document with a satisfactory relevance level. P-measure is
defined to be zero if the system output does not contain a rel-
evant document. Otherwise, let the Preferred rank 5 be the
rank of the first record obtained by sorting the system output,
using the relevance level as the primary sort key (preferring
higher relevance levels) and the rank as the secondary sort key
(preferring the top ranks). Then:

cg(rp) + count(rp)

P-measure = BR(rp) = 91 (o) F o

)]

That is, P-measure is simply the blended ratio at Rank 7. For
System z in Figure 2, r, = 2. Therefore, P-measure =
BR(2) = (cg(2) +2)/(cgr(2) +2) = (4+2)/(6+2) =
0.86. Whereas, since r, = 71 holds for Systems A and B,
P-measure = O-measure = 0.50 for System z and
P-measure = O-measure. = 0.57 for System y. Thus,
System z is handsomely rewarded for retrieving both B- and
S-relevant documents.

Because P-measure looks for a most highly relevant docu-
ment in the ranked output and then evaluates by considering
all (partially) relevant. documents ranked above it, it is pos-
sible that P-measure may be more stable and sensitive as O-
measure, as we shall see later. Moreover, it is clear that P-
measure inherits some properties of O-measure: it is a system-
oriented metric, and is free from the assumption underlying
NWRR. Furthermore, the following clearly holds: :

e In a binary relevance environment, P-measure =
O-measure holds.

3 Methods for Comparing the Reliability
of Metrics

This section describes three methods for assessing and
comparing the reliability of IR metrics. .

3.1 Kendall’s Rank Correlation

“

We examine the resemblance between a pair of metrics us-
ing Kendall's rank correlation between two system rankings,
which computes the minimum number of adjacent swaps to
turn one ranking into another [12]. Kendall’s rank correla-
tion lies between 1 (identical rankings) and —1 (completely
reversed rankings), and its expected value is zero for two rank-
ings that are in fact not correlated with each other. Let n
denote the number of systems that are to be ranked. Let a;
(1 £ i < ni) denote the rank of the i-th system as measured
by a metric, and let b; denote the rank of the same system as
measured by another. Then, clearly, there are ns(ns — 1)/2
combinations of (a;, b;) and (a;,b;) (i # j) in total. Among
these combinations, let pos denote the number of combina-
tions such that a; < a; and b; < b;, or a; > a; and b; > b;
(i.e. ‘the number of agrecménts between two metrics regard-
ing the i-th and the j-th systems). Likewise, let neg denote
the number of combinations such that a; < a; and b; > b;,
ora; > a; and b; < b; (i.e. the number of disagreements).
Then, Kendall’s rank correlation (7) can be expresséd as:

_ 2(pos — neg)
T= ns(n, — 1) ° ©

It is known that

Zo = ul ! ‘(7)
((4ns +10)/(9ns(ns — 1)))2

obeys a normal distribution, and therefore a normal test can
easily be applied. Note that the test statistic Zo is proportional
to ||, given n,: When n, = 30 (See Section 4.1), Kendall’s
rank correlation is statistically significant at @ = 0.01 if it is
over 0.34 (two-sided test).

3.2 Buckley / Voorhees Stability

We measure the stability of each IR metric with respect to
change in the topic set using our adaptation of the Buckley /
Voorhees method [1]. The input to this method are:

o AnIR test collection;

e A set of systems (or runs) submitted to the task defined
by the above test collection;

e An IR evaluation metric;

o A fuzziness value f, which determines how much relative
performance difference between a system pair should be
regarded as negligible.

The output of the method are:

e Minority Rate, which represents lack of stability with re-
spect to the change in topic sets;

e Proportion of Ties, which represents lack of discrimina-
tion power.

More specifically, our adaptation of the Buckley / Voorhees
method works as follows. Let S denote a set of systems sub-
mitted to a particular task, and let = and y denote a pair of
systems from S. Let Q denote the topic set of the test col-
lection, and let M(z,Q) denote the value of metric M for
System z calculated based on Q. Then, using the algorithm
shown in Figure 3, the minority rate and the proportion.of ties



fori =1 to 1000 o
create Q: s.t°|Qi| = |Q|by . e
random sampling with replacement from Q;

for each pair of systems.z,y € S
fori = 1to 1000

margin = f * max(M(z,Q:), M(y,Q:));

if( |[M(z,Q:) — M(y, Qi)| < margin)
EQum(z,y) ++

else if( M(z,Q:) > M(y,Q:))
GTm(z,y) + +

else
GTm(y,z) + +;

Figure 3. Thé‘ algorithm for. computing
EQum(z,y),GTm(z,y). and GTy(y, ). -

of M (MRym and PTyy), given a fuzziness value f, can be
computed as:

Zz,yes mln(GTM (:r, y)1 GTM(ys 3))

MRy = 8)
Zz,yes 1000
3 ves EQu(z,y) x
PTy = &IE—SW . o)
Z: JZWES

From the algorithm, it is clear that GTM (z,y) +
GTm(y,z) + EQu(z,y) = 1000 holds for each system
pair, and that a larger f yields larger EQp(z,y) values, and
therefore a larger PT and a smaller MR. As a fixed value of
f implies different trade-offs for different metrics, we vary
f(= 0.01,0.02,...,0.20) to draw MR-PT curves [6, 8] for
the purpose of comparing different metrics.

Our method"differs from the original Buckley / Voorhees
method in that we use sampling with replacement from Q to
create bootstrap samples Q; [2]. We shall discuss this issue in
Section 3.3.

3.3 Voorhees / Buckley Sensitivity

We measure the discrimination power (or sensitivity) of
each IR metric using our adaptation of the Voorhees / Buck-
ley method [13]. The input to this method are:

e An IR test collection;

e A set of systems submitted to the task defined by the
above test collection;

e An IR evaluation metric;

o The required confidence level of a conclusion as to which
of the given two systems z and y is better.

The output of the method are:.

e The mininum absolute/relative performance difference
required in order to guarantee the given confidence level;

e How often system pairs actually satisfy the above re-
quirement, which represents the discrimination power of
the metric.

More specifically, our adaptation of the Voorhees / Buckley
method works as follows. Let d denote a performance differ-
ence between two systems computed based on a topic set. We

fori=1to 1000 '
create Q; and @ s.t. Qi) = Q)] = Q| by
random sampling with replacement from Q;
for each pair of systems z,y € S

fori = 1 to 1000
dm(Q:) = M(z,Q:) -~ M(y, Qi);
dm(QF) = M(z, Qi) ~ M(y,Ql);

count(BIN(dum(Q))) + +;
if(dn (Q:) * dm(Q7) > 0)
continue
else
swap- count(BIN(dM(Q ) ++:
for each bin b
swap_rate(b) = swap_count(b)/count(b);

Figure 4. The algorithm for computing the
swap rates.

first prepare 21 performance difference bins, where the first bin
represents performance differences such that 0 < d < 0.01,
the second bin represents those such that 0.01 < d < 0.02,
and so on, and the last bin repi'esems those such that 0.20 < d.
Let BIN(d) denote a mapping from a difference d to one of
the 21 bins where it belongs. The algorithm shown in Flgure 4
calculates a swap rate for each bin.

By plotting swap rates against the performance difference
bins, one can discuss how much performance difference is re-
quired in order to conclude that a run is better than another
with a required confidence level. For example, if 95% con-
fidence is required, one looks for the minumum performance
difference that guarantees 5%, swap rate or less. Moreover,
by examining how often this condition is satisfied among all
pairwise comparisons from all the trials, one can compare the
discrimination power of different metrics.

Our method differs from the original Voorhees / Buckley
method in that we use sampling with replacement from Q to
create boostrap samples Q; and Q;. The original method used
sampling without replacement from @ and ensured that Q; and
Q; are disjoint (i.e. Q; N Q} = ¢), but this implies that (i) Q;
and Q; are not independent of each other [10]; (ii) Q; and Q;
can only be half the size of Q. Regarding (i), Sakai [7] showed
that sampling with and without replacement yield similar re-
sults for the purpose.of comparing the sensitivity of different
IR metrics. Regarding (ii), extrapolation can be used to esti-
mate the sensitivity of metrics when Q; is as large as the orig-
inal topic set Q, but the accuracy of such an approach is not
clear. Hence, we chose sampling with replacement, so that we
can directly measure the sensitivity of an IR metric given the
topic set size |Q;| = Q).

4 Experiments

This section describes our experiments using data from NT-
CIR for comparing the reliability of IR metrics.

4.1 Data

Table 1 shows some statistics of the NTCIR data we used
for comparing the reliability of IR metrics [5, 8]. For ex-
ample, The NTCIR-3 Chinese data set contains 42 topics, 45



Table 1. Statlstlcs of the NTCIR-3 CRE.)%R data

#runs (S) T R(A
Chinese 42 30 (45) 2I ) 24, 323 | 782
Japanese 42 | 30(33) <19 315 210 [ 604

submitted runs (of which we used the top 30 as measured by
Relaxed-AveP for all experiments), 21.0 S-relevant documents
per topic, and so on.

4.2 Results: Rank Correlation

Table 2 shows the Kendall’s rank correlation values for

each pair of metrics, based on the Chinese and Japanese data.
Table 3 shows similar data between P-measure with default
gain values -and P-measure with alternative gain value assign-
ments: For example, “P30: 20:10” represents P-measure with
gain(S) = 30, gain(A) = 20, gain(B) = 10, All the corre-
lation values exceed 0.34 and therefore are stansncally highly
significant (See Section 3.1), but values higher than 0.9 are
shown in bold. We can observe that:

' 9 O-measure and NWRR are consmently highly correlated
with' each other This is because they are both based on
1, while takmg graded relevance into account.

- P-measure is. highly correlated with O-measure and
NWRR for the Japanese data, but the correlation values
are somewhat lower for the Chinese data. This reflects

., the fact that P-measure relies on.7; rather than ry.

e P-measure, O-measure ahd NWRR are not'so’highly cor-
related with RR. Hence, finding one highly relevant doc-
ument is not the same as finding any one relevant-docu-

- ment. (This' generalises'a finding in {8], which-consid-
ered neither P-measure nor NWRR.)

"P-measure, O-measure, NWRR and RR are not highly
correlated with AveP and Q-measure. Hence, finding one
relevant document is not the same as finding as many
relevant documents as possible. (This also generalises a
finding in [8].) ‘

e P-measure is fairly robust to the choice of gain values.

" . “P30:20:10” and “P10:5:1” produce rankings similar to

. the default P-measure (i.e. “P3:2:17).

4.3 ' Results: Buckley/ Voorhees Stability

Figures 5 -and 6 show the Buckley / Voorhees MR-PT
curves for the Chmese and Japanese data, respecuvely Re-
call that good IR metrics should show low minority rates and
low proportion of ties. We can observe that:

e P-measure is possibly more stable than O-measure. Thls
difference probably arises from the fact that P-measure
considers all relevant documents ranked above 7. |

e P-measure and O-measure are more stable than NWRR.

~ This dlfferencc probab]y arises from the fact that the
two compare the system output with an ideal one, while
NWRR looks at the system output only.

P-measure, O-measure and NWRR are all more stz;ble
than RR..Hence, the use of graded relevance improves
. stability. However, these metrics, designed for the task

Table 2. Kendall’s rank correlation values
based on 30 runs (NTCIR-3 CLIR).

Chinese (b) (c) (d) (e) ()
(a) RR 85757 7977 7425 | 5264 | .5494
(b) NWRR - 9126 | 8575 | .5494 | 5632
(c) O-measure - - 8621 5264 5402
(d) P-measure - - - 5540 5678
(e) AveP - - - - 9678
(f) Q-measure | - - : - -
Japanese (b) (c) (d) (e) f)
(a) RR 8759 | 8207 | 8253 | .7701 | .7701
(b) NWRR - 9356 | 9126 | 7011 | 7287
(c) O-measure | - - 9218 | 6920 | .7011
(d) P-measure | - - - 7333 | 7517
(e) AveP - - - - .9540
(f) Q-measure | - - - - -

Table 3. Kendall’ rank correlation based on
30:runs: default P-measure vs other gain’
value assignments (NTCIR-3 CLIR)

Chinese P30:20:10 | P0.3:0.2:0.1 [ PLI:T [ P10:5:]
P- 9540 - . | 8713 8667 | 9126
P-

P P30:20:10 [ P0.3:02:0.1 | PL.I:T [ P10 )
9862 9632 9402 | 9632 |

Table 4. Voorhees/Buckley sensitivity
(swap rate < 5%; NTCIR-3 CLIR).

Chinese abs max rel | sensitivity
Q-measure | 0.07 | 5374 | 13% 43.2%
AveP 0.08 | .5295 | 15% - 39.5%
P-measure 0.15 | .8636 17% 30.5%
O-measure | 0.17 | 8674 | 20% 24.4%
NWRR 0.18. | 8633 |21% 22.2%
RR Q.19 | 9524 | 20% |, 20.0%
Japanese abs max rel | sensitivity
Q-measure | 0.07 | .6433 11% 67.1%
AveP 007 | 6449 | 11% 66.1%
P-measure | 0.13 | .8759 | 15% 59.3%
O-measure | 0.14 | 8690 | 16% 56.2%
NWRR 0.16 | 8757 | 18% 51.0%
RR 0.17 || 9524 | 18% 47.6%

of finding one relevant document, are not as stable as Q-
measure and AveP, which are for the task of finding all
relevant documents. (This generalises a finding in [8].)

4.4 Results: Voorhees / Buckley Sensitivity

Table 4 summarises the results of our Voorhees / Buckley
sensmvny experiments. For example, with 42 topics and 30
Chinese runs, P-measure is 95% confident that a system is bet-
ter than another provided that the absolute performance differ-
ence is at least 0.15, which translates to a relative difference of
17% [6, 8]. Among 435,000 comparisons_(30*29/2 run pairs
times 1,000 trials), 30.5% actually satisfied the absolute differ-
ence requirement. From the table, we can observe that:

o P-measure is more sensitive than NWRR and RR; P-
'measure may be more sensitive than O-measure, which
in turn’ may be more sensitive than NWRR.

e Even P-measure is not as sensitive as Q- measure and
AveP, as it does not examine all relevant documents as
Q-measure and AveP-do.
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minpry rate
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(NTCIR-3 CLIR Japanese).

4.5 Per-topic Analysis

As was discussed earlier, the stability and sensitivity of P-
measure probably arises from the fact that it relies on 7, rather
than 7;. We now examine some actual values of r, and 7 per
topic to see what values they take and how often they equal
each other. Figure 7 shows the values of 7, and 71 for a “me-
dian” Chinese run: This run had the 15th highest P-measure
value among the 30 Chinese runs we used. Values of 7, and
T, are represented by crosses and circles, respectively. It can
be observed that 7, often differs from r1. For example, for
Topic 2, r1 = 3 but r, = 20. The ranked output for. this topic
had A-relevant documents at Ranks 3, 11 and 12, B-relevant
documents at Ranks 7 and 17, and its first S-relevant document
at Rank 20. As a result,; while the RR, NWRR and O-measure
values are 0.33, 0.19 and 0.25, respectively, -the P-measure
value is 0.21. As mentioned earlier, P-measure models the user
behaviour in IR tasks such as known-item search: Because the
user knows (or believes) that a highly relevant document ex-
ists, he examines the ranked list until he finds one at Rank 20.
Whereas, RR, NWRR and O-measure assume that the user is
satisfied when he sees the A-relevant document at Rank 3. '

Since our experiments showed that P-measure and O-
measure are probably the most reliable metrics for the task of
finding one highly relevant document, researchers can decide
on which one to use by considering which better models user
behaviour in the real retrieval environment.
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‘Figure 7. A Comparlson of r, and r; for
the Chinese run with the 15th highest P-
measure.

5 Related Work

Voorhees [12] con51dered the problem of finding a few
highly relevant Web pages, but used the unnormialised Dis-
counted Cumulative Gain (DCG) [4] as an evaluation metric,
which is not specifically designed for the problem of finding
one highly relevant dbcuin_ent. Moreover, using DCG without
normalisation is not suitable for averaging across topics [6, 9].
Soboroff [11] reports on the Voorhees / Buckley sensitivity of
RR for the TREC Web track, but his experiments are limited
to binary-relevance metrics.

Sakai [8] proposed O- measure for the task of ﬁndmg one
highly relevant document and compared it with RR, AveP and
Q-measure in terms of rank correlation, stability and sensi-
tivity. This paper extends his work in that P-measure and
NWRR are also included in the experiments. Moreover, while
Sakai [8] used sampling without replacement in his ‘stability
and sensitivity experiments, the present study used sampling
with replacement, which enabled us to use resampled topic sets
Q; that are equal in size to the original topic set @ [7].

6 Conclusions

This paper proposed a new evaluation metric called P-
measure for the task of finding one highly relevant document.
While Reciprocal Rank, (Normalised) Weighted Reciprocal
Rank and O-measure assume that the user stops examining
the ranked list of documents as soon as he finds any relevant
document, P-measure assumes that the user looks for a highly
relevant document even if it is ranked below partially relevant
documents. This assumption is probably valid for retrieval sit-
uations such as known-item search or where it is easy for the
user to spot a highly relevant document in the ranked output.

Our experiments using two sets of data from NTCIR showed
that:

e P-measure is more stable and sénsi(ive than Normalised
Weighted Reciprocal Rank (NWRR) and. Reciprocal
Rank, and is at least as stable and sensitive as O-measure;

o Although O-measure and NWRR are highly correlated

with each other, O-measure may be more stable and sen-
sitive than NWRR.

In summary, P-measure and O-measure are probably the most
reliable metrics for the task of finding one highly relevant dac-



fori=1tol
if document at Rank i is X -relevant (X € {S, A, B})
fi(d) = 6(X)/(i - 1/B(X))
else /* nonrelevant */
fi(d) = 0;
W RR, = max; fi(3);

Figure 8. A definition of WRR that is more
faithful to the original one by Eguchi et al.

ument. Researchers can decide on which one to use by consid-
ering which better models user behaviour in the real retrieval
environment. :

Appendix: Proof that Our Definition of
WRR is Equivalent to that by Eguchi et al.

Let { denote a document cut-off value, and let §(X) = 1 if
each X -relevant document should be counted as relevant and
8(X) = 0 otherwise. Figure 8 provides a definition of WRR
(at cut-off [) that is more faithful to the original one by Eguchi
étﬁl. [3] than Eq. (3). Since [ i$ just a cut-off value, we can let
1 = L for the purpose of assessing the reliability of WRR (i.e.
the whole ranked ouput is examined). This should provide the
upperbounds of its stability and sensitivity, since it is known
that using a small value of [ reduces stability and sensitiv-
ity [6]. Moreover, note that the parameters §(X ) merely define
which relevance levels should be counted as relevant. Thus, in
essence, the definition of WRR by Eguchi er al. (when the sys-
tem output contains at least one relevant document) computes
f(i) =1/(i - 1/B;) for each X -relevant document at Rank i,
where 8; = 8(X), and finally takes the highest value.

" We now prove a simple theorem:

Theorem 1 Ifi < j and (i, 8; > 1, then f(i) > f(j) holds
(regardless of whether B; > f3;, B; = 3; or B; < B;).

Proof: Let us assume the contrary, i.e.:
1/(i-1/8.) £1/(G - 1/85) -

Then,
- i=1B; <i-1/Bi

and therefore

J—=1< (8~ B5)/B:bBs -

Thus,
BiBi(j —1) < Bi = B - (10
Butsince 7 < j and 3;, 35 > 1,
BiBs < BiB5 (5 — 9) C3))
should hold. Therefore, From Eqgs. (10) and (11),
BiBi < Bi— B -

Hence, .
Bi(Bi+1)<B:i<Pi+1.

Therefore 8; < 1, but this is a contradiction.

Corollary 1 The maximum value of f(i) for a given ranked
output is given by 1/(r1 — B(X1)), where T1 is the rank of a
relevant document that is nearest to the top of the list and X,
is the relevance level of this document. That is, the original
definition of WRR is essentially equivalent to ours (Eq. (3)).

Proof: Theorem 1 implies that, if documents at Ranks i and j
are (at least partially) relevant and ¢ < j, then f(i) > f(j)
holds regardless of the relevance levels of these two docu-
ments. Thus, the maximum value of f(i) is obtained when
f(#) is computed for the first relevant document in the ranked
output.

Corollary 2 If System z has.its first relevant document at
Rank i while System y has its first relevant document at Rank 7
(> i), then System x outperforms System y regardless of the
relevance levels of these two documents.

Proof: This is also a corollary of Theorem 1.

Corollary 3 WRR is bounded above by 1/(1 - 1/8(Y)),
where Y is the highest relevance level for the topic in ques-
tion.

Proof: From Theorem 1, it is clear that the highest possible
value of WRR for a topic is given by 1/(1 — 1/8(X)) for
some X. Moreover, it is clear that this value gets large as
B(X) gets small. Thus X should be Y, which is given the
smallest penalty.
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