& o> % L

F—T—F

Abstract

key words

A= F A D a THARRILE 2713
(1999. 12. 16)

RRMTEAR LMY - S| T2y XA
FAY Vv s=ZIE S it FHxk

el K TR R
T 060-8628 fLIRMIALXAL 1 3 &M 8 TH
Tel: (011) 706-7259
E-mail: john@meme.hokudai.ac.jp

IO EEEICERHTE AR AR L ST AT LT Y R LB R, o
DT T Y X LIIHEHER NG 50, MIER 5O S/ 2425 - &
T&ED. ZOTAITY AN ZABE LSO ET 5 - L Tx 5, 101
2§ﬁow@ﬁ*Aﬁﬁ5_a<%7@7»:JXAm4wNmZ@Ny%47
L7y TSEAD256 %256 D8y N EBR L. ZOERDOIEY
D7 —=LFF-HTE9T7L—LUETHD. ZOFT LI XLDEEES
A9 D = DI EBROFE R 2 79

IRH = B ST %90

A Real-time Polygon Extraction and Classification Algorithm
John GATES Miki HASEYAMA Hideo KITAJIMA

School of Engineering, Hokkaido University
Kita-13, Nishi-8, Kita-ku, Sapporo-shi, 060-8628, Japan.
Tel: (011) 706-7259
E-mail: john@meme.hokudai.ac.jp

This paper presents a high-accuracy real-time polygon extraction and classification
algorithm. The algorithm is capable of extracting both convex and concave polygons
from complex images. The algorithm can classify triangles into five distinct classes and
can classify quadrilaterals into six distinct classes. The algorithm was tested with a variety
of natural and synthetic 256 x 256 grayscale images and an average frame rate of more
than 69 frames / second was obtained using a 450 MHz. Pentium II Processor.
Experimental results are presented which demonstrate the high-accuracy of the algorithm.

Pattern recognition, polygon extraction, polygon classification

— 73 ——

1. INTRODUCTION

The extraction of lines from digital images is one of the
fundamental problems in the field of pattern recognition
{1]. Many solutions to this problem have been
proposed [2-8]. However, the extracted line
information provides very little information in itself to
the user. What is needed is for the computer to connect
these lines into more complex objects such as polygons.
In this area, however, very liitle research has been
performed.

Some researchers have been able to extract polygons by
first extracting the lines by using the well-known
Hough transform [9]. This method can exiract
polygons from simple binary images, but in complex
natural images the Hough transform cannoti accurately
extract the line features. Also, the Hough transform s a
very slow algorithm and cannot extract line features in
real-time. The Hough transform is two orders of
magnitude slower than the line extraction algorithm
used in this paper. To improve the speed of extracting
polygons, dedicated integrated circuits have been
proposed [10]. Although this method greatly increases
the speed, it is an inflexible and costly solution. A
neural network approach has been proposed [11] that
increases the accuracy of the polygon exiraction
algorithm at the cost of speed.

Although, these present methods can extract polygons, a
new method is needed to extract the polygons in
practical real-time applications. The three most
important requirements for the extraction algorithm are
accuracy, speed and cost. All of these conditions are
met in the proposed algorithm.

2. ALGORITHM DESCRIPTION

2.3 The HART Line-feature Extraction Algorithm

The fundamental element of any polygon extraction
algorithm is the line-feature extraction algorithm. The
line-feature extraction algorithm used in this paper is a
high-accuracy real-time (HART) line-feature extraction
algorithm [12]. This algorithm is fundamentally
different from other line-feature extraction algorithms
in that it does not use pre-processing to detect edge
pixels. Conventional algorithms use pre-processing to
reduce the effect of blurred edge transitions that are
common in natural images. The HART algorithm
processes the natural image directly, thus maintaining
the pixel intensity information. This intensity
information is used by the algorithm to quickly and
accurately extract the line-features.

Of all the conventional algorithins, the one which has
the greatest potential for real-time applications is chain

code [7]. The HART algorithm has many similarities
with chain code but it also has many fundamental
differences. The fundamental differences between the
methods is based on the principles of chain code [6],
which are:

(1) at most two basic directions are present, and these
can differ only by unity, modulo eight;

(2) one of these two directions always occurs singly;

(3) successive occurrences of the single direction are as
uniformly spaced as possible.

This is where the HART algorithm is superior to chain
code. In the HART algorithm the direciional variation
permitted is governed by two principles only. These
principles are:

(1) the direction of movement must always be
advancing or staying at the same distance from the
starting position;

(2) the error must always be below a given threshold.
This error parameter forces the algorithm to closely
follow the contour of the edge, thus curved lines
can be accurately approximated as straight lines.

The first principle prevents the algorithm from
descending back on itseif. The second principle
prevents the algorithm from following curves that are
not siraight lines. The advantage of this over chain
code becomes obvious whern processing natural images.
in this situation lines are rarely perfect and will need o
be approximated as siraight lines. By using the error as
the limiting factor the algorithm can follow the line
shape exactly until its end is reached and then it can
approximate the best it for the natural line by using the
least-squares estimators {131

After the algorithm has extracted the line information, a
post-processing algorithm is used to connect and thin
extraneous line segments. This reduces the number of
lines entering the polygon extraction algorithm and thus
reduces the computation time. To demonstrate how the
polygon extraction algorithm works the simple figure
shown in Fig. 1 is used as the input to the HART
algorithm. The extracted lines and nodes have been
numbered and are shown in Fig. 2.

2.2 Polygon Extraction Algorithm

The pulygon extraction process resernbles the way the
human visual system operates. In the human visual
system, individual elements are assembled into larger
features and then these features are assembled into even
larger and more complex objects. In & similar way the
polygon extraction algorithm first extracts the line-
feature information and then finds the nodes where
these lines intersect. Then it uses this information to

form the polygons. Finally the polygons are classified
into various categories based on a mathematical
definition.

Figure 1. Input image.

Node 6,7

l\.\che 0.1

f‘”"’f
\Node 2.3 \".

Node 4.5 % Line 4 \

\ \ S
Lineé\ \\\ f"’l‘/‘/ 12.]."65

5 -

4 Line 3
Y Line 0

o~

o

Node
16,17

Figure 2. Extracted lines with line and node numbers.

To find the nodes where the lines intersect requires each
of the extracted lines to be compared with all the other
lines. This requires approximately N2 comparisons.
Where N is the number of extracted lines. Fortunately
the y-range can be tested with only a single integer
comparison and the x-range can be tested with only two
integer comparisons. Thus almost all of the non-
intersecting line pairs are eliminated using at most three
integer comparisons. The remaining candidates are
tested for intersection using equations (1) and (2).

e b, —b, n

m, —m,

I

y=mx+b, (2)

where m is the slope of the line and b is the intercept
that was calculated by the HART algorithm. Small line
breaks can be compensated for by allowing the length
of the line segments to extend slightly beyond their
actual length.

As each node is found, an ordered linked list is created.
This list consists of the node number, the x and y
coordinates of the intersecting lines, the intersecting
line’s number and a pointer to the next node. Two node
numbers are needed to represent each intersection point,
as individual node numbers are used for each of the two
intersecting lines. These node numbers are chosen to be
sequential. An example of the node list generated for
lines zero and three shown in Fig. 2 is shown in Table 1.

Table 1. Node list for lines zero and three.

Line Zero
Node X Y Line Pointer
4 37 104 5 2
2 123 141 4 0
0 207 177 3 -1
Line Three
13 246 86 2 1
1 207 177 0 7
7 179 241 1 -1

Once all the lines have been tested for intersection, the
algorithm uses a tree structure to connect the nodes into
polygons. The tree begins with a pair of node numbers
called the root nodes. From the root node numbers the
corresponding intersecting lines can be found from the
list. These two lines are the root lines. The next layer
of the tree consists of the nodes and their corresponding
lines which lie on the root lines and are higher in value
than the root nodes. The final layer in the tree is
calculated in the same manner. However, the third
layer is only required for the top branch of the tree. To
extract quadrilaterals, the lines in the third layer of the
upper branch are compared with the lines in the second
fayer of the bottom branch. If a match occurs then a
quadrilateral has been found and the node numbers are
reported. If the line number in the third layer of the
upper branch matches the bottom root line then a
triangle has been found. This scanning process is easily
extendable to N-sided polygons by simply increasing
the number of layers in the tree. This approach also
allows for the extraction of both convex and concave
polygons. The node tree for nodes zero and one, for the
example given in Fig. 2 is shown in Fig. 3.

2.3 Polygon Classification

Once all the polygons have been detected another
algorithm is used to classify the triangles and

5 —

quadrilaterals into various geometric classes. The
algorithm has five different triangle classes and six
different quadrilateral classes.

Rec. 1: NO, N7, N10, N4
Rec. 2: NO, N7, N8, N2
Rec. 3: NO, N13, N16, N4
Rec. 4: NO, N13, N14, N2

Figure 3. Node tree. N represents the node number and
L represents the line number.

All of the triangles can be classified by using angle
information only. The first triangle class is the obtuse
triangle. This class is found by testing for an angle
greater than 90°. Right triangles are found by testing
for an angle of 90°. If the triangle has two angles that
are the same, and the angle is 60°, then the triangle is
an equilateral triangle. If the angle is not 60° then the
triangle is an isosceles triangle. Any triangle that does
not fall into one of the above categories is considered to
be a general acute triangle.

To classify the quadrilaterals the slope and line length
information is required. The algorithm first tests to see
if the slopes of the opposite sides are parallel. If this
occurs then the quadrilateral is either a square,
rectangle or general parallelogram. If the slopes of the
lines are expressed as angles, and the difference
between the slopes of two adjacent lines is 90° and the
lengths of the adjacent sides are the same then the
quadrilateral is a square. If the difference in the slopes
is 90° and the lengths of the adjacent sides are not the
same, then the quadrilateral is a rectangle. If the
difference in the slopes is not 90°, then the quadrilateral
is a parallelogram.

If the slopes of only two of the sides of the quadrilateral
are the same then it is a trapezoid. If the adjacent sides
of quadrilateral have the same length then it is a
rhombus. If the quadrilateral does not fit into any of the
above classes, it is classified as a general quadrilateral.

3. EXPERIMENTS

The image shown in Fig. 4 shows all of the triangles
that the algorithm can classify. The classified triangle
information generated by the algorithm is shown in
Table 2. In Fig. 4 the point 0,0 is in the bottom left-
hand corner, the x-axis proceeds from left to right and
the y-axis proceeds from the bottom of the image to the

top.

Figure 4. Input image for triangle classification.

Table 2. Triangle classification results.

Triangle | Type Node1 | Node2 | Node3
1 Equilateral | 97,76 50,49 | 50,103
2 Obtuse 222,139 | 24,129 | 101,200
3 Right 245,199 | 170,199 | 170,231
4 Isosceles 221,29 | 180,131 | 140,29
5 Gen. Acute | 41,219 | 30,241 9,209

The image shown in Fig. 5 contains all the
quadrilaterals that the algorithm can classify.

Quad. 3 Quad. 2

Quad. 4

Quad. 5 £

Quad. 1

Figure 5. Input image for quadrilateral classification.

— 76 —

Table 3. Quadrilateral classification results.

Type Node 1 | Node 2 | Node 3 | Node 4

Table 4. Classification results for Fig. 6.

Trapezoid 190,41 190,101 | 232,80 | 211,29
Gen. Quad. | 51,240 {202,245 75,179 | 80,225
Square 26,245 | 26,229 | 10,229 | 10,245

Rhombus 80,30 1100,102| 121,30 | 100,9

1
2
3
4| Rectangle | 210,201 | 227,143 122,113 106,172
5
6

Parallelogram | 41,150 | 15,118 | 20,170 | 46,201

The images shown in Figs. 1, 4 and 5 are simple binary
images. Binary images can be processed by
conventional algorithms with little difficulty. To show
that the proposed algorithm is superior to the
conventional algorithms, the image shown in Fig. 1 was
corrupted with random noise and is shown in Fig. 6.
The image was tested with the polygon extraction
algorithm and the results are shown in Fig. 7. From Fig
7 it can be seen that the polygon extraction algorithm
perfectly extracts the polygons from the noisy input
image. The classified polygon data is shown in Table 4.

Figure 6. Corrupted image.

Figure 7. Image extracted from Fig. 6.

Type Node 1 | Node 2 | Node 3 | Node 4
1| Rectangle |95204 | 162,51 | 76,13 | 10,168
2 | Rectangle | 95,204 | 162,51 | 246,87 | 179,241
31 Rectangle | 95,204 |123,141| 37,104 | 10,168
4 | Rectangle | 95,204 |123,141(207,177| 179,241
5| Rectangle {179,241} 246,87 | 76,13 | 10,168
6 | Rectangle 1179,2411207,177| 37,104 | 10,168
7 | Rectangle 162,51 [123,141] 37,104 | 76,13
8 | Rectangle 162,51 1123,141(207,177| 246,87
9 | Rectangle | 246,87 {207,177| 37,104 | 76,13

As can be seen from Table 4, nine rectangles have been
extracted from Fig. 6. This result is correct, because
there are four small interior rectangles, four rectangles
composed of two interior rectangles and the large
exterior rectangle. The algorithm extracts all the
rectangles without preference for a certain class. This
allows the algorithm to be used in many different
applications.

Although the algorithm performed well on the corrupted
synthetic image shown in Fig. 6. The algorithm should
also be tested on a complex natural image. The image
chosen for this test is shown in Fig. 8. The extracted
polygons are shown in Fig. 9. It can be seen from the
recovered image that the algorithm performs adequately
on complex natural images.

Figure 8. Natural Image.

To test the speed of the algorithm several natural and
synthetic images were tested. These images were all
standardized 256 x 256 grayscale images. Five
synthetic images were tested. These images are Figs. 4,
5 and 6, a scanned blueprint and a circuit schematic.
The four natural images tested are, Lena, the tea cup
shown in Fig. 8, a boat and a computer motherboard.
The frame rates are shown in Table 5.

o 77 —

by :

| —_—

& N
i I

Figure 9. Polygons extracied from Fig. 7.

Table 2. Frame-rate Experiments

Image Frame-rate (frames/sec.)
Figure 4 113
Figure 5 110
Figure 6 46
Blueprint 62

Schematic 52
Cup 59
Lena 72

Motherboard 51
Boat 64
Average 69

4. CONCLUSION

This paper has presented a high-accuracy real-time
polygon extraction and classification algorithm. The
algorithm is capable of extracting both convex and
concave polygons from complex natural and synthetic
images. The algorithm can classify triangles into five
different classes and can classify quadrilaterals into six
different classes. The algorithm was tested on a variety
of 256 x 256 grayscale images and an average frame
rate of more than 69 frames/second was obtained using
a 450 MHz. Pentium II Processor. The algorithm has
many useful applications such as identifying tumors in
medical applications, increasing the accuracy of robotic
manufacturing equipment, automatic quality control and
as a building block for real-time complex pattern
recognition systems.

5. REFERENCES

(1] JW. Lee and LS. Kweon, Extraction of line
features in a noisy image, Pattern Recognition, vol.
30, no. 10, pp. 1651-1660, 1997.

{21 D. H. Ballard, Generalizing the Hough transform
to detect arbitrary shapes, Patrern Recognition, vol.
13, n0. 2, pp. 111-122, 1981.

{3] R. C. Gonzalez and P. Wintz, Digital Image
Processing. Second Edition. Addison-Wesley,
Reading Massachusetts, 1987.

[4] S. Y. Yuen and CH. Ma, An investigation of the
nature of parameterization for the Hough
transform, Pattern Recognition, vol. 30, no. 6, pp.
1009-1040, 1997.

[5] D. H. Ballard and C. M. Brown, Computer Vision.
Prentice-Hall, Englewood Cliffs, New Jersey,
1982.

{6] H. Freeman, Boundary encoding and processing, B.
S. Lipkin and A. Rosenfeld, eds, Picture
Processing and Psychopictorics, pp. 241-266.
Academic, New York, 1970.

[7]1 J. Yuanand C. Y. Suen, An optimal O(n) algorithm
for identifying line segments from a sequence of
chain codes, Paitern Recognition, vol. 28, no. 5,
pp. 635-646, 1995.

[8] J. W. Gates, M. Haseyama, H. Kitajima, A real-
time line extraction method, [EEE international
Svmposium on Circuits and Systems'99, vol. 1V,
pp. 68-71, 1999.

{9] Rosenteld A., and Weiss I. “A convex polygon is
determined by its Hough transform.”, Patteirn
recognition letters. v 16 n 3 pp. 305-307, 1995.

{10]Sastry R., and Ranganathan N. “PMAC: A
Polygon Matching Chip.” /ne. journal of paitern
recognition and artificial intelligence v 9 n 2 363-
370, 1995.

[11]Mitzias D. A., and Mertzios B. G. “Shape
recognition with a neural classifier based on a fast
polygon approximation technique.” Pattern
recognition. v 27 n 5 627-635, 1994.

[12]Gates J., Haseyama M., and Kitajima H. “High-
accuracy, real-time (HART) line-feature extraction
algorithm.” submitted for publication.

[13]E. R. Dougherty, Probability and Statistics for the
Engineering, Computing, and Physical Sciences.
Prentice Hall, Englewood Cliffs, New Jersey,

1990.

