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Abstract Multichannel restoration approaches have been shown to outperform independent single-channel ones when
multiple observations with significant correlation are available. In this paper, we present a wavelet-based multiscale
Wiener restoration approach that takes into account the highly correlated cross-scale edge structure in wavelet domain
to obtain superior results to the conventional Wiener approach. A specific redundant filter bank algorithm known as
the & trous algorithm is used in dyadic wavelet transform so that the decomposed scales can be associated directly with
the multichannel Wiener restoration filter. Experiments show the proposed multiscale Wiener restoration approach is

capable of outperforming the conventional Wiener approach.
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1. Introduction

Multiscale approach to signal and image process-
ing has evoked significant attention largely moti-
vated by the great activities in the field of wavelets.
Wavelet domain is suitable for natural image model-
ing in that its bases, wavelets, are well localized both
in time/space and frequency domain. Several sig-
nal processing operators, such as denoising, pattern
matching, compression and estimation, are shown
to benefit from the multiscale representation [1] [2].

There are also a few attempts in the field of
When multiple ob-

servations with significant correlation are available,

multiscale image restoration.

multichannel restoration approaches were proposed
to take the advantage of such correlation [9][10].
Motivated by the highly correlated edge structure
in wavelet-decomposed image scales, Banham et al
firstly proposed to associate wavelet scales with the
multichannel Wiener restoration in [6]. Zervakis et
al further investigated the vector-matrix formula-
tion in [7]. Their approach was based on the widely
used orthogonal wavelet proposed by Mallat [3]. It
was shown that such a multichannel approach re-
places the global stationary assumption in conven-
tional image restoration with weaker, thus more
practical ones within each scale. The critical prob-
lem of their approach is that no satisfactory esti-
mation method for cross-scale correlation is found,
and only the theoretic results which estimates such
statistics from the original images were presented in
their papers.

In this paper, we use the particular filter bank ver-
sion of wavelet known as the & trous algorithm [4] [5].
The a trous algorithm is redundant, that is, no
decimation/expansion is performed in decomposi-
tion/reconstruction. This greatly simplifies the for-
mulation of the multiscale restoration filter because
without decimation all the operators in the filter
bank now commute with the restoration operator
The &

trous algorithm is also different from Mallat’s one

under the block-circulant approximation.

in that it creates only one high frequency compo-
nent in one scale that includes edges in all direc-
tions. This not only decreases the computational

load in wavelet decomposition and reconstruction,

more importantly also avoids the possibility of at-
tenuating the edge correlation between scales when
they are decomposed into different directional com-
ponents. Experimental results show that such a
multiscale Wiener restoration approach can outper-
form the conventional one.

This paper is organized as follows. The restora-
tion problem definition and a brief review of Wiener
filter are given in Section 2. In Section 3, we give the
detail of our multiscale restoration approach. The
experiments and results are discussed in Section 4.

We conclude this paper in Section 5.

2. Image Degradation Model
and Wiener Filter

The general model for a degraded image can be

formulated as
g= Df +n (1)

where a lexicographic ordering of the original im-
age f, the observed image g, and the observation
noise n, is used. The observation noise is assumed
as additive white Gaussian. The blur operator D is
represented as a block-Toeplitz matrix because the
blur is space invariant.

By assuming D and n are known or have been
estimated, there are numerous approaches to solve
the ill-posed equation (1). The direct stochastic reg-
ularization leads to the choice of an approach that

estimates the restored image f according to
min E||f — f||*. (2)

Wiener filter, which is the linear estimate satisfying
(2), is then given by

f =Ry D"(DRs;DT + Run) g (3)

where Ry is the autocorrelation of original image
which must be estimated. Assuming each of the ma-
trices in (3) are block-circulant, it can be efficiently
solved in the discrete Fourier transform(DFT) do-
main. Note that the circulant property of autocor-
relation matrix Rs; assumes the global stationarity
of the image. We approximate the power spectrum
Ssf, i.e. the DFT of Ry, by the periodogram of

the observation g

Sfr = GG* (4)
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where G is the DFT of g, and * stands for the com-
plex conjugate.
When N observations, g;(1 = 1,2, ..., N), with sig-

nificant cross-channel correlation are available,
gi=Difi+n;, i=12,..,N (5)

the multichannel Wiener filter which takes the ad-
vantage of cross-channel correlation structure per-
forms better than the single-channel one indepen-

dently applied on each channel. With the notations

below
[ o h ny
92 fa ng
g=| " |, f=|" |.n=| . | (6
| 9N fn ny
[ D, 0 0
0 Do 0
D= (7N
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the multichannel Wiener filter has just the same
formulation as equation (3). We only consider the
simple case without cross-channel blur. Because of
the general stationary assumption for each channel,
the correlation matrix (8) consists of block-circulant
sub-matrices, thus the restored images (3) can be
efficiently calculated in DFT domain using the al-
gorithms proposed in [9] and [10].

The multichannel Wiener filter is mostly used in
video image processing, where successive image se-
quence are regarded as multichannel inputs, and in
color image processing, where the RGB bands are
treated as a 3-channel image. In the next section,
we propose to use the wavelet-decomposed scales as

channels in the multichannel Wiener filter.

3. Multiscale Wiener Restora-
- tion
We address the multiscale Wiener restoration ap-

proach in this section. The degraded image is de-

composed into wavelet domain using the a trous

algorithm [4] [5].

mated and creates one set of wavelet coefficients at

The & trous algorithm is undeci-

each scale. The decomposed scales are directly asso-
ciated to the multichannel Wiener restoration filter
to yield a nonstationary restoration approach.

3.1 Wavelet transform and the & trous al-

gorithm

Given a continuous signal s(t) and the wavelet
function 9 (t), the Discrete Wavelet Transform(DWT)
is defined as

t—n

w(zf,n):% [ 5 sttt (9)

Some algorithms have been proposed to discretize
(9). Mallat proposed the widely used decomposition
algorithm [3], which is decimated and creates three
sets of wavelet coefficients of different directions for
one scale in two dimension. The decimation op-
eration makes Mallat’s decomposition translation-
variant, and is found to cause some unpleasant arti-
facts in image denoising [8]. We propose to use the &
trous(with holes) algorithm, which is undecimated
and creates only one set of wavelet coefficients in
one scale. Fig. 1 depicts the filter bank structure
of the & trous algorithm, where Hy(z1,22) is the
2-D low-pass filter and Hj(z1,22) is the 2-D high-
pass filter. In stead of the decimation operation,
the & trous algorithm inserts zeros(holes) between
successive filter coefficients(e.g. from Hy(z,23) to
Hy(2},23)). We will use the notation Hi(i = 0,1
and 7 = 0,---,J — 1) to denote the spatial matrix
of the low/high-pass filter used in scale j + 1.

In practical computation, given the image data
co(m,n) = s(m, n) the smooth coefficient c; of scale

7 is computed from scale j — 1 as
Cj = Hg_lc]-__l. (10)

The high-pass filters are designed so that the
wavelet coeflicients w; are just the difference be-

tween two successive smooth scales
wj = ¢j-1 — ¢4 (11)

Note that we get only one coefficient set in one scale
here even in two dimension. The algorithm then al-
lows us to reconstruct the original data as

J

C():CJ-FZ’LUJ' (12)
j=1
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scale j =3

scale j =2 - Hy(z%,2%)
scale j =1  Hy(z3,22)
Ho(z1,22) Hi(+1,73)
Hi(,23)
Hy(z1,22)

Fig. 1 The 2D & trous decomposition
filter bank(Hp:the low-pass filter,
Hj:the high-pass filter).

(¢) :
Fig. 2 (a)Image Lena (b) three-level Mal-
lat’s decomposition (c) three-level

a trous decomposition.

where J is the final scale.
Fig. 2 shows the Lena image after 3 level decom-
position using both Mallat’s and the & trous algo-

rithms. The low-pass filter used in the & trous algo-

rithm is
1/4
(14 172 1/a)e]| 172 (13)
1/4

where ® is the Kronecker operator. This filter is

also used in all the experiments hereafter. Fig. 2

shows that the edge structure are highly correlated
across scales.

3.2 Multiscale restoration approach

Using the & trous algorithm depicted in Fig.1,
wavelet coefficients of image s in scale j can be ex-
pressed in matrix-vector formulation as

wi = H}s,

i1 pri—2 ,

wi = H{'H{ "---His, j=1",J

¢ = Hy=V... Hls.

Replacing s with the observed image g in (1), we

get

¢4 = H{'---H)(Df +n).

All the operators HZ and D are circulant matrices
under space-invariant assumption, so they commute

with each other and we obtain

w

<t

=Dw! +w}, j=1,---,J (14)
= Dc§ + cf. (15)

C

wa

By approximating that the white Gaussian noise
is still white Gaussian after decomposition, the
above equations reflect the multichannel degrada-
tion model in (5). So we can decompose the ob-
served image to wavelet domain, perform multiscale
restoration, and then reconstruct the result to the
spatial domain.

The use of cross-scale correlation results in a re-
duction of the global stationary assumption im-
posed on the observed image in conventional Wiener
restoration. This can easily be understood in the
correlation structure equation (8), since only the
sub-matrices are assumed to be block-circulant, not
the whole matrix Ry itself. A more theoretical ex-
planation can be made in the DFT domain. Wavelet
filters are nothing but band filters in the DFT do-
main. While stationary approach restores each fre-
quency independently, the multiscale approach tries
to explores and utilize the cross-scale(frequency)
correlation, thus obviously reflects a nonstationary
one.

Our approach differs from the previous one in the
following two points. Since the complicated decom-

position of the blur operator D in wavelet domain
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is unnecessary now, this formulation under the un-
decimated & trous algorithm is more general and
much simpler than that in [6] and [7] based on the
decimated orthogonal wavelet. Also the & trous al-
gorithm creates only one high frequency component
in one scale, which may avoids the possibility of at-
tenuating the edge correlation between scales when
they are decomposed into different directional com-
ponents. While Banham et al addressed the diffi-
culties in estimating the cross-scale correlation in
their paper, our experiments show that the usual
periodogram estimate from the observed image can

improve the restoration.

4. Experiments

In this section, we demonstrate the effectiveness
of the proposed multiscale restoration algorithm
through experiments.

Three images Squares and Goldhill(Fig. 3), and
Lena(Fig. 4.(a)), all of size 256 x 256, are used as
sample images in experiments. These images pos-
sess different characteristics. The blur operator used
is the uniform blur of size 7 x 7. The test images
are also contaminated with white Gaussian noise
at 40,30 and 20 dB in blurred signal-to-noise ra-
tio(BSNR). The restoration results are evaluated in
terms of improved signal-to-noise ratio(ISNR) which

is defined as

ISNR = 10logy, /=gl (16)
NF=71?

Table 1 denotes the results of the two restora-
tion approaches tested in our experiments: Wiener
denotes the conventional single channel Wiener
restoration in spatial domain, MultiScale Wiener de-
notes the proposed multiscale approach in wavelet
domain. In all cases, the proposed multiscale ap-
proach shows improvement from 0.2dB to 0.9dB
over the conventional spatial domain one. The im-
ages of Lena at BSNR= 30dB are shown in Fig. 4.
for a visual inspection. The visual difference in the
results of Wiener and MultiScale Wiener can be seen

clearly. .

5. Conclusion

In this paper, we presented a multiscale Wiener

approach for image restoration in wavelet domain.

Fig. 3 Sample images, from left to
right:Squares and Goldhill,

Table 1 Results in ISNR(dB) for the three

sample images

BSNR | Wiener ] MulitScaleWiener
Lena
20dB 1.99 2.68
30dB 2.66 3.46
40dB 3.80 4.60
Squares
20dB 3.32 3.59
30dB 3.84 4.64
40dB 5.53 6.48
Goldhill
20dB 1.75 2.38
30dB 2.46 3.14
40dB 3.60 4.20

(¢) (d)

Fig. 4 Images of Lena (a)the origi-
nal (b)the degraded (c)the spa-
tial Wiener result (d)the multiscale
Wiener result.

By taking into account the significant cross-scale
correlation in wavelet domain, this approach shows
improvement over the conventional Wiener filter in

spatial domain.
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