HEEAN BRLUEES WARS 2004—AWM—47 (1)
IPSJ SIG Technical Reports 20041279

MANETIZBITAP2P 7 7 A NVIEHEDI-ODKEA T v 7 A% —4

KHE #8! Zihui Ge™ Yang Guofft JimKurosef'f

TP RKELSEE T 657-8501 # = K NHFEET 1 — 1
11 AT&T Labs - Research Florham Park, NJ 07932-0971, USA
111 University of Massachusetts at Amherst Amherst, MA 01003-9264, USA
E-mail: fc-ohta@cs.kobe-u.ac jp, {fgezihui@att.research.com, 111{yguo kurose} @cs.umass.edu

HoEL FBTIE, TXAMALT KRBy 77Xy hU—2 (MANET) IZB}BET - V— - ET7 77 A LEEDTDHD
ZODEANRERREFRELBELTCND. ATy AY—nERATHZLT, A VT I A=\ ADT 7
ANA T 7 AeBEBIIRET D ZENFARIZREN, Ty vaDO—BHEROEDIZA =1~y KRELS. K
BT, Zo0A Ty AY—"Fxy 2 2FR (CC (Consistent Caching) , LC (Local Caching)) ¢ 75 v5 4
YTHRDOEBREB ol BRTIE, A0 F o2 A —n"FRIZLY, REDA =1~y KRBT FvF 40k
RITHARTEDSLVHEIBTE DN EHLNICT B E L bIZ, KliA T v 7 AP —1"E0, Xy hU—2H (X
FaxYb—h ATyl RERL— MESTEDISCETE0EHELE. EBICHIZ->TE, Zo0F=
Y %X, HQ (History Query) & LQ (Latest Query) #xf%& Liz. BEHEND, Xy hIT—IH A X, £ F v
JRAERLV—b, Fa2xVUL—HMISLT, CCLLCRBRTRETHEZ Libhol.

F—TJ—K BT - V—UT, AVF oI ZAY—2, EALAT KKo 2%y hT—2

Index-Server Optimization for P2P File Sharing
in Mobile Ad Hoc Networks

Chikara OHTA', Zihui GE!f, Yang GUO'!, and Jim KUROSE!t

1 1-1 Rokkoudai, Nada, Kobe, Hyogo 657-8501, Japan
11 AT&T Labs - Research Florham Park, NJ 07932-0971, USA
11 University of Massachusetts at Amherst Amherst, MA 01003-9264, USA
E-mail: fc-ohta@cs.kobe-u.ac.jp, {{gezihui @att.research.com, 111{yguo kurose} @cs.umass.edu

Abstract In this paper, we compare two basic approaches towards providing peer-to-peer file-sharing (or more generally,
information search) in mobile ad-hoc networks (MANETS). The use of index servers presents the possibility of locating a file
index quickly in an index server cache, but requires additional overhead to maintain cache consistency. We compare the per-
formance of the flooding approach to two index-server caching approaches: consistent caching and local caching. We quantify
the reduction in search overhead using the index-server scheme rather than flooding in MANETS, and study how the optimal
number of index servers varies according to network size, query rate, and index generation rate. We compare the flooding
scheme and the consistent caching and local caching schemes, for two types of queries: history queries and latest queries.
Numerical results show how one can choose between the alternatives of consistent caching and local caching depending on
network size, index generation rate and query rate.

Key words peer-to-peer, index server, mobile ad-hoc networks

. assistance of the other nodes’ forwarding function even if these two
1. Introduction))) .
nodes can not communicate directly (over a single hop) with each

Mobile ad-hoc networks (MANETS) are self-organizing networks other. Thus, MANETS provide the freedom of mobility, and enable
that consist of mobile nodes with routing and forwarding functions. nodes to be quickly deployed in the field without any infrastructure

In MANETS. two nodes can communicate with each other with the [5]. Peer-to-peer (P2P) systems such as Gnutella 2], KaZaA [9],

il_

研究会temp
テキストボックス

研究会temp
テキストボックス

and Freenet [6] have been developed to provide distributed file and
information sharing. These systems are tolerant to failure of some
nodes, since each node can act as both a server and a client. Such
a distributed architecture enables nodes to share information to the
greatest extent possible, even if the network is segmented due to
node mobility. Thus P2P file sharing has great potential as a tech-
nology upon which one can build numerous MANET applications.

A fundamental problem in P2P file sharing is to determine where
a needed file (or piece of information) is located. Thus nodes col-
lect indices of which nodes hold which files. But given that a node
needs to determine where a file is stored, how can it do so? Flooding
is perhaps the simplest approach, although it incurs the overhead of
involving every node in the search (since searches are broadcast to
all network nodes). An alternative is to introduce additional servers,
known as index servers, into the MANET. Index servers cache di-
rectory information (i.e., indices) about which nodes have which
files. With index servers, a node wishing to locate a file first queries
its local index server, which then queries other index servers, as
needed. The use of index servers presents the possibility of locat-
ing a file index quickly in an index server cache, but requires ad-
ditional overhead to maintain cache consistency. In this paper we
investigate and compare the performance of the flooding approach
to approaches based on index servers. We note that while we will
refer to the object being searched for as a “file,” there is no dif-
ference between searching for a file name, or an arbitrary piece of
information that is associated with a node. In either case, the goal
is to determine where the file, or piece of information is stored, af-
ter which the file/information can be retrieved. We will use the term
“file” throughout this paper for ease of exposition, but stress that the
techniques we study are equally applicable to searches for general
pieces of information as well.

Our index-server system can be considered as a hybrid P2P sys-
tem as KaZaA, which has client nodes as well as super-nodes [9].
A number of P2P research works have studied super-node systems
(e.g-[7],[10]) in wired networks. In this work, we address the fol-
lowing questions in the context of a mobile ad hoc network: 1)
To what extent does the index-server approach reduce search over-
head in comparison with the flooding approach? 2) What forms of
caching are most effective in the index-server approach? 3) What
is the optimal number of index servers that minimizes search over-
head?

In this paper, we analyze the search overhead of the flooding
scheme and two different index-server caching schemes. We con-
sider two types of queries: history queries and latest queries. We
also obtain expressions for the optimal number of index servers,
and show how the optimal number of index servers varies according
to network size, query rate, and index generation rate.

This paper is organized as follows: Section 2. describes the flood-
ing scheme and two types of caching for the index-server scheme.

In Section 3., we analyze the cost (total amount of search overhead)

for six combinations of three schemes (flooding scheme and two
caching schemes of index-server) and two types of queries. We de-
rive expressions for the optimal number of index servers. In Section

4., we present numerical results. Finally, we conclude in Section 5..
2. System Description

Fig. 1 shows the sequence of actions involved in file retrieval us-
ing the flooding scheme. Each node issues a query which includes
the description of its user’s interest. A query is flooded into the
whole network using a simple scheme: if a node receives the query
for the first time, it forwards it to the neighbors, otherwise it dis-
cards the query. If the node has any files that match the query, it
replies to the query originator with index information about the file.
For example, the index might contain the location and other charac-
teristics of the file. If the original node needs actual files, it initiates
a file request to each file holder. Each requested node replies by
sending the file corresponding to the request.

In our index-server system, we assume that index servers are se-
lected among all of the nodes according to several conditions, such
as the size of network, query rate and index generation rate. In this
paper, we refer to non-server nodes as clients. A client issues a
query to its nearest index server. The nearest index server acts as a
proxy to resolve queries on behalf of the client, and to respond to
queries from other clients and other index servers. When a node (or
index-server) generates any new files, it registers their indices with
its nearest index server (or itself). Each index server caches indices.
In this paper, we consider two types of caching: consistent caching
and local caching.

Consistent caching: Each index server tries to maintain consis-
tent indices among the index servers. Fig. 2 shows the sequence of
events involved in file retrieval. If an index server receives new or
updated index registrations from a client in its area, the index server
immediately forwards the new/updated index to other index servers
over the spanning tree that connects all index servers. Consequently,
every index server has the same set of indices. The nearest index
server to the query originator replies to the querier with the indices
that match the query.

Local caching: Each index server acts as a query proxy on be-

half of the clients in its area. Fig. 3 shows the sequence of events

Peer1 Peer2 Peer3 Peerd

@—Index generatior
~]

Indexfquery
Indexjreply [——==¢-—Index match

re
------- -

Query interval <.

—

Figure 1 Time diagram of flooding-reply scheme

,__27

involved in file retrieval. An index server receiving a query from
aclient in its area forwards the query to other index servers. If an
index server has indices that match the query, it replies by sending
the indices to the proxy index server. After collecting the indices,
the proxy index server forwards the indices to the query originator.

In the following analysis, we will consider two types of queries:
history queries and latest queries.

History query: A node is interested in all information (subject
to some criteria) including every updates after the previous query.
We refer to the type of query for such information as a “history
query.” For instance, a node may need to know the exact fluctuation
of temperature over time in a certain place.

Latest query: A node is only interested in the latest information
at the moment of a query. We refer to the type of query that requires
the present information as a “latest query”. For example, a node
may want to know the current temperature in a certain place. In this
case, the latest index will be returned even if the temperature has
not changed since the previous query.

3. Analysis

3.1 Motivation of Model

We are seeking a fundamental understanding of the system per-
formance under different query schemes and various system param-
eters (e.g., network size, query rate, index generation rate). We note
that once a querying node has received the results (indices) of its

query, the subsequent file requests and replies are the same for the

Area | Area2
_Areas
Client Server Server Client

Peer1 Peer2 Peer3 Peerd

Index]quet J— L———lndex generation
/ i_k'\ [——Index registration
[——Index disseminatior
[Index match

........ T ——

Query interval -"'\""“ by -
il
F

~l..

‘—<File reply

|+

Figure 2 Time diagram of consistent caching of index-server scheme

Area | Area 2
Client ~ Server Server Client
Peer | Peer2 Peer3 Peerd

, _—e=—9—Index generation
- J Indexfquery L‘ “——Index registration
! |————Index query flooding
| a1 [idex match
! "< Index] reply.__4

3
Query interval

|

Filej

Figure 3 Time diagram of local caching of index-server scheme

flooding scheme and the two kinds of index-server schemes. There-
fore, to evaluate and compare these systems, we only need to focus
on the message overhead associated with resolving a query.

In order to build a simple model to understand the performance
tradeoffs in terms of search overhead and compare the three query
schemes, we consider a simple grid network topology and assume
uniform and static query rate and index generation rate.

Although we do not consider dynamic topology and uneven (both
spatially and temporally) query and index generation rate, our anal-
ysis can still provide a good insight in such scenarios. In particular,
since an index server can observe the statistics of local query rate
and index generation rate, it can compute the optimal local index-
server-density (as we will see in Section 3.4.6), which forms the
basis of a dynamic index-server election/placement protocol (e.g.,

by adapting a distributed self-stabilizing algorithm in [4]).
3.2 Model Description

We consider an n x n grid topology, where on each lattice point
of the grid sits a node (as shown in Fig. 4). Thus, there are a total
of N(= n x n) nodes in the network. Each node can only commu-
nicate with its adjacent nodes directly. In index-server schemes, we
assume that the network can be equally divided into M (= m x m)
areas. An index server is placed at the central lattice point of each
area. This index server serves all clients in the area, including itself.

Each node in the network generates index queries at a rate of m
bit/s, where p can be considered as the product of the average num-
ber of query packets per second and the length of query messages
in bits. New files and thus new file indices are generated on each
node. The rate that a new file index is produced at one node is A
bit/s, where X is the product of the mean number of files generated
per second and the mean index length in bits. We denote the ratio
of Xtopuby p=\/p.

We define p as the probability that a file index generated in the
last query interval matches a given history query. We define k as
the coefficient such that kg represents the mean rate of query replies
between a query replier to a query originator in latest queries. The
value of k can be considered as the mean number of file sources that
match a latest query multiplied by the ratio of the file-index-length
to the query-message-length.

We summarize the notation as follows:

® N =n x n: the number of nodes

® M = m X m: the number of index-servers (the number of
areas)

® ubit/s: mean query rate per node

® A bit/s: mean index generation rate per node

® p=2A/pratioof Atop

® p: probability that an object generated during a query inter-
val matches a history query.

® k:.the coefficient such that kyu is the mean rate of query

replies between a query replier to a query originator in latest queries.

3

研究会temp
テキストボックス

3.3 Flooding Scheme

3.3.1 Flooding Cost

We assume that each node can flood a query to its adjacent neigh-
bors using a link-level broadcast mechanism. Thus, each node only
needs to broadcast a query once — either as the initiator when a query
is generated or as a forwarder when it receives a flooded query for
the first time. Since each node generates queries at rate p, the over-

all query message rate is #N. Thus, the total flooding cost is
Chooding = BN M

3.3.2 Reply Cost

a) History Query

Recall that each node generates new indices or updates existing
indices at the index generation rate, . Thus, the mean rate of query
replies in responding to one query originator from any one of the
N — 1 repliers (excluding the query originator) is pA. Furthermore,
the number of hops that a query-reply message travels on average
(among the N(N — 1) number of possible originator-replier pairs)
is 2/N [11]. The total reply cost Ccply can thus be computed by

Ceww = PANHV-1). @

b) Latest Query

By definition, the mean rate of query replies in responding to one
query originator from any one of the N — 1 repliers is kp. Thus, the
total reply cost Creply is

2 3
Creply = Ek“N; (N-1). 3)

3.3.3 Total Cost
a) History Query
By summing up (1) and (2), we have the total cost C'iotal @S

Cuotal = 1 {N2 + %ppN%(N - 1)} : @

b) Latest Query
By summing up (1) and (3), we have the total cost Ctotal aS

Cuoral =u{N’+ ;kN%(N—l)}. ®)

3.4 Consistent Caching Scheme
3.4.1 Registration Cost
When a new file is generated on a client node, the client needs to

register this index with its nearest index server. We assume that the

Figure 4 Topology Model

index server is located in the center of its ared™" . As shown in[11],
the average hop count from a node to its index-server in the area,

hserver—clients 18

T 1 [N
Rserver—client = 5 M 6)

Since the number of client nodes in the network is N — M and
the index generation rate per node is A, the total registration cost

Clegistration 18

1
Clegistration = EA(N — M)” % 7

3.4.2 Query Cost
Each node sends queries to its nearest index-server at rate p. Sim-

ilar to the registration cost, we can compute the query cost Cquery

1 N
Cauery = 5#(N - M)V T (®)

3.4.3 Reply Cost
a) History Query
As described in Section a), the mean rate of query replies in re-

as

sponding to one query originator from the other N — 1 nodes is
pA(N — 1). Each query reply travels Rserver—client hOps on average
from an index server to a client in the area. Thus the total reply cost

C, reply is

Crepty = %p)\(N ~1)(N - M)y % ©

b) Latest Query

Similar to the case of history queries, the mean rate of query
replies in responding to one query originator from the rest of the
nodes is k(N — 1). Thus, the reply cost C.eply is

[N
Creply = %ku(N—l)(N—M) 7 (10)

3.4.4 Index-distribution Cost
Index-servers are logically connected to each other through a
minimum spanning tree, where there are (M — 1) “links” and
each “link” consists of \/N/M number of physical hops on aver-
age (since the index servers are evenly distributed in the network).
When an index is generated/updated on an index server — by either
the index server node itself or a client in the area, this index is dis-
seminated over the spanning tree to other index servers. This means
each index need to be propagated (M — 1),/ N/M hops on aver-
age in order to reach all index servers. Since there are N nodes, and
each node registers indices at rate A, by multiplying them, we have
the index-distribution cost Cjstribution a8
s M -1

Caistribution = AN 2 7k (1)

(1) : For the arca that includes node 1, the index sever is set at (25, “5)

To2m

n—m
Tm

For simplicity. we treat (

) as a rcal number although it may not be an integer.

i4_

3.4.5 Total Cost
a) History Query
By summing (7) through (9) and (11), we have the total cost

Clotal @S
Cowmt = p|i{o+14pp(N -1} (N =)/
total = M 2{P+ + pp M
3 M -1
+ pN2 . (12)
P m]

b) Latest Query
By summing (7), (8), (10) and (11), we have the total cost Cyota)

as
1 [N
Ciotal = M[E{p+l+k(N—l)}(N—M) i
aM-1
N . 13
e m] =

3.4.6 Optimal Number of Index-Servers

In this section, we derive the expression for the optimal number
of index servers, M, such that the total cost is minimized when
consistent caching scheme is used.

a) History Query Case

Note that as M increases from 1 to NV, the first term of (12) mono-
tonically decreases while the second term monotonically increases.
In the sense that the total cost Cyo, is minimized, the optimal value

M can be obtained by solving the derivative of %!ﬁll =0. Let

N-1)-1}+1
mo= N,,{,C{f(m_ a —}m} = a9
We have M* = 4, if1 < 4 £ N. In the case of 1 < 1
ory1 > N, if Ciotal|M=1 £ CiotatlM=~, M* = 1; otherwise,
M® =N.
Taking a closer look at (14), we find that when 1 < N,

M :max{l,L } (15)
2-p

Thus, M~ increases proportionally with N, suggesting that the op-
timal density of the index servers is independent of the network size
when the network is sufficiently large.
Furthermore, taking limit on ,, we have
N{p(N-1)-1}
N+(N-1)(1-p)

which corresponds to a system with a very large indices generation

M 5 as p — 00, (16)

rate in comparison with the query rate.

b) Latest Query

Apply the above technique in latest query scheme, we obtain the
optimal number of index servers M as follows:

k(N—-1)—p+1
p(2N —1) — k(N -1) -1’

Y2 = N 17)

M* =~ if1 £ v, < N. Inthe case of v, < 1 orvyz > N, if
CrotutlMm=1 £ Cioral|pr=~n, M" = 1: otherwise, M~ = N.

When 1 < N, we have
M ~max|1,— N (18)
~ max 2=k N

indicating that M also increases according to O(N). Furthermore,

taking limits on ~y2, we have
M 51 as p— oo (19)

3.5 Local Caching Scheme

3.5.1 Registration, Query, and Reply Costs

For the local caching scheme, the registration cost, Ciegistration
the query cost, Cquery, and the reply cost, Creply, are the same as
those of the consistent caching scheme.

3.5.2 Server Flooding Cost

A query message, once received at an index server, is “flooded”
among the logical index server network. That is, when an index
server receives a “flooded” query from another index server for the
first time, it forwards the query to all adjacent index servers except
the one from which it has received the query. Thus, each query
should eventually travels all logical links in the index server net-
work, where there are 2(M — /M) links in total and each virtual
link corresponds to \/IWAZ physical hops on average. Since the
query rate on each node is p. the total flooding cost Cierver—flooding

1S
Cuerver—fiooding = 2uN¥ (VM —1). (20)

3.5.3 Server Reply Cost

Similar to that of the flooding scheme in Section a), the number
of logical hops that a reply message travels on average (among all
pairs of originator and replier) in the m x m index server network is
§\/ﬁ [11]. Since each logical hop corresponds to \/N/_M number
of physical hops, we have the average reply distance in physical hop

counts as
- 2
hserver—reply = 3V N. (21

a) History Query

Each node generates indices and registers the indices at its index
server at rate A. Thus, each index server receives registrations from
the clients (and itself) in its area at rate)\%. The reply rate from
any one of the index servers to the proxy index server (to which a
query is first directed) is p)\% on average. The number of possible
pairs of proxy-replier index servers is M (M — 1). The mean length
of reply path is %\/J—V— Therefore. the total reply cost Cserver—reply
is

Coervermreply = %pAN%(Al —-1). 22)
b) Latest Query
By definition, the reply rate from a node is kyu. Since % nodes

exist in each area and all indices in the area that match a query are

replied to the proxy index server, the reply rate from any one of the

5

研究会temp
テキストボックス

研究会temp
テキストボックス

index servers to the proxy index server is ky% on average. Sim-
ilar to the above history query case, we have the total reply cost

Clerver—reply a8

Cierverreply = ;kuN% (M - 1). @3)
3.5.4 Total Cost

a) History Query

By summing (7) through (9), (20) and (22), we have the total cost

Clotal @8

. 1 /N
Ciotal = #[§{p+1+pp(N—1)} (N-M) ”
+oNR (WM -1)+ g-ppN%(M - 1)] e
b) Latest Query

By summing (7), (8), (10), (20) and (23), we have the total cost

Clota) @8

Ciotal = [{p+1+k(N-1)}(N-M)

yoN (VM -1) + 5kz\ri‘(M - 1)] . e

3.5.5 Optimal Number of Index-Servers

Now we derive the expression for the optimal number of index
servers, M ", when local caching scheme is used. As we did in Sec-
tion 3.4. 6, we first seek a solution for %’-ﬁf“ =0.

For both the history query scheme and the latest query scheme,

we obtain a cubic equation in the following form:

2 +az’ +b=0, - (26)
where z = VM*.

If (26) has a real solution g satisfying 1 £ zr £ V/N, then the
\/1'_R- (unless CtotalIM:_l <
Crotal| M=z OF Crotal|M=N £ Chotal| M=zx)- For the solution
of (26), please refer to[3].

a) History Query

For the history query scheme, we have a and b in (26) as

3 4 1 1
302 (142 -p) . @7
SP{P P N(’ p>}

3 1
-—|14+4=-p+pN|. (28)
)

From (26), (27) and (28), we have
2
M~ (§N) *as

. . 2,
Thus, M~ increases according to O(N 3). Furthermore, we have

optimal value M* is given by M"* =

1K N. 29

M'a(A%WL 6_2, - 9>2 as p— oo, (30)
9As 3
where
} 3 14+p(N-1
a = —g-”;—N), @1
- a4 a2 3
= ﬁN“L 4N2+ §+ N’ (32)

b) Latest Query
For the latest query scheme, we have a and b in (26) as follows:

_ 3 (4 _,_p+1l 1
= Sp(k 1-= +N) (33)

3 (p+1
b = N-1). 4
Sp(k + 1) 64

From (26), (33) and (34), we have

2
M~ (gN)3 as

. . 2
Thus, M* increases according to O(N 3). Furthermore, we have

1< N. (35)

M" - N as p— oo. (36)

4. Numerical Results

In the following, we vary the value of p with the value of u fixed.
This is because the rest of Ciot.) factorized by p can be represented
using p without u in all cases.

4.1 Total Cost Characteristics

In the following numerical examples, we computed and used the
corresponding optimal number M ™ for each index server, and we
set N =100, u = 256 x 8/30 bit/s,p=1.0and k = 1.0.

Figs. 5 and 6 show characteristics of total cost for the cases of his-
tory queries and latest queries, respectively. In both cases, consis-

tent caching provides lower cost than local caching, when the value

Nooding)
Co{comi-caching) -
'E‘_'L(xml cachin

Cnat bIVS

Figure 5 Characteristics of total cost of flooding, consistent caching and
local caching in history query scheme as function of the value of
p. (N =100, u = 256 x 8/30 bit/s, k = 1.0)

(Nooding) -==m-mmr
(c Sl ching) -
(local-caching) s

C ot DIVS

o "
w? 0? 10! 10" 1 0? 0

Figure 6 Characteristics of total cost of flooding, consistent caching and
local caching in latest query scheme as function of the value of p.
(N =100, = 256 x 8/30 bit/s,k = 1.0)

of p is small. This relationship is reversed in case of high value of
p. We will discuss the crossover point in Section 4. 2. Note that, in
the latest query case, the cost of flooding scheme is constant for any
p with p fixed as shown in (5). In this case, the consistent caching
scheme has higher cost than even the flooding scheme, as well as
the local caching scheme in the case of a high value of p. This is
because the index-distribution cost brings heavy burden. The cost
of local caching approaches to that of flooding scheme as the value
of p increases. In case of higher value of p, as shown in the follow-
ing, the optimal number M of index-servers reaches the number of
nodes (), where server flooding cost in the local caching scheme
coincides with flooding cost in flooding scheme.

4.2 Crossover Point between Consistent and Local Caching

Figs. 7 and 8 plot the ratio of the cost of consistent caching to
that of local caching for history queries and for latest queries, re-
spectively, in cases of N = 10,100, 1, 000 and 10, 000. Note that
in case where the ratio is greater than one, consistent caching has
a higher cost than local caching. The crossover point varies widely
according to the value of N in the case of a history query, while
such variation is relatively small in the case of a latest query. This is
because, in the latest query scheme, regardless of index generation
rate, only the latest indices are retrieved. Thus, the effect of index

generation rate is relatively small, and the value of total cost mainly

Nz 10—

Cuai(consistent¥C g y(locsl)

10 0? 10! 10° 1! 10’
p

Figure 7 Characteristics of ratio of total cost of consistent caching to that of
local caching in history query scheme as functions of the number

of nodes and the value of p. (1 = 256 x 8/30 bit/s,p = 0.1)

10

"

“catllocal)

C

Figure 8

Characteristics of ratio of total cost of consistent caching to that

of local caching in latest query scheme as functions of the number

of nodes and the value of p. (1 = 256 x 8/30 bit/s, k = 1.0)

Figure 10

depends on the number of nodes — N. On the other hand, for the
history query, the total cost depends on the values of both A and N.

4.3 Optimal Number of Index-servers

Figs. 9 and 10 show the optimal number M~ of index-servers for
history queries and latest queries, respectively, with the consistent
caching scheme. In the history query scheme, the optimal number
M™ converges to an asymptotic value as shown in (15), while it
reaches one in the latest query scheme as shown in (16). This can
be explained as follows: in this scheme, a smaller number of index-
servers can bring a smaller index-distribution cost but higher other
costs. Note that the reply cost of the history query is dependent on
the value of the index generation rate, while that of the latest query
is independent of this value. In case of a higher index generation
rate), the reply cost is negligible in the latest query scheme, while
itis still dominant in the history query scheme. Therefore, suppress-
ing index-distribution costs reduces the total cost so that the value
of M™ reaches to one in latest caching scheme. On the other hand,
the smaller number of index-servers brings more reply cost so that
M™ converges to an asymptotic value.

In the history query scheme, the optimal number M* converges
to an asymptotic value as shown in (30), while it reaches to N in
latest query scheme as shown in (36). We can have a similar dis-

cussion to consistent caching for this reason, but we omit it due to

10000

10f 10 10’ 10’

Figure 9 Characteristics of optimal number M* of index-serves in case of

consistent caching scheme and history query scheme as functions
of the value of p. (1 = 256 x 8/30 bit/s,p = 0.1)

Characteristics of optimal number M * of index-serves in case of
consistent caching scheme and latest query scheme as functions
of the value of p. (u = 256 x 8/30 bit/s,k = 1.0)

‘7*

研究会temp
テキストボックス

limited space.
We confirm that the optimal numbers of index-servers given in
Sections 4.3 and 3. 4. 6 coincide to those by Brent method which is

one of numerical analysis methods [12].
5. Conclusions

In order to explore the feasibility of an index-server approach for
P2P file sharing in MANETSs, we analyzed a flooding scheme and
two index-server schemes (consistent caching and local caching) for
history queries and latest queries from the viewpoint of search over-
head on a grid topology. Our results show that we should care-
fully choose the alternative of consistent caching or local caching
depending on the size of the network, the index generation rate and
the query rate.

As future work, we will construct a protocol to select index
servers dynamically using the results of this paper.

Acknowledgement The part of this research work was sup-
ported by the Ministry of Education, Culture, Sports, Science and
Technology, Japan, Grant-in-Aid for Young Scientists (B), No.
16700066, 2004.

References

[1] “The gnutella protocol specification v0.4," “http://www9.
limewire.com/developer/gnutella_protocol 0.4.pdf”

[2] Gnutella webpage, “http://gnutella.wego.com.”

{3] J. W. Harris and H. Stocker, Handbook of mathematics and compu-
tational science, Springer, 1998.

[4] B.-J. Ko and D. Rubenstein, “Distributed, self-stabilizing placement
of replicated resources in emerging networks,” IEEE ICNP 2003,
pp.6-15, 2003.

[5) S. Corson and J. Macker, “Mobile ad hoc networking (MANET):
routing protocol performance issues and evaluation considerations,”
IETF RFC2501, Jan. 1999.

[6] Freenet webpage. “http://www.freenetproject. org.”

[7) B. Yangand H. Garcia-Molina, “Designing an Super-Peer Network,”
Proc. of IEEE ICDE 2003, March 2003.

[8] Y. Yi, X. Hong, and M. Gerla, “Scalable team multicast in wireless ad
hoc networks exploiting coordinated motion,” Proc. of Fourth Inter-
national Workshop on Networked Group Communication, Oct. 2002.

[9] KaZaA webpage, “http://www.kazaa.com”

[10] W. Nejdl, M. Wolpers, W. Siberski, C. Schmitz, M. Schlosser, L.
Brunkhorst, and A. Loser. “Super-peer-based routing and clustering
strategies for RDF-based peer-to-peer networks,” Proc. of the 12th
International World Wide Web Conference, May 2003.

[11] C.Ohta,Z. Ge,Y.Guo.andJ. Kurose, “Index Server Optimiza-
tion for P2P File Sharing in Mobile Ad Hoc Networks,” University
of Massachusetts, CMPSCI Technical Report, TR04-07, 2004.

[12] W.H.Press.B.P. Flannery, S. A. Teukolsky, W. T. Vetterling. Numer-
ical Recipes in C (2nd edition), Cambridge University Press, 1992.

研究会temp
テキストボックス

