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Abstract

Elastic Bunch Graph Matching(EBGM) is a popu-
lar method in automatic localization of facial feature
points, where the selection of optimal Gabor param-
eters plays a key role in the extraction of Gabor jets
with a high degree of discrimination. We propose a
method for the selection of parameters by minimiz-
ing the energy function consisting of within-class and
between-class scatters using the gradient descendent
method. We formulate the learning rule and design
the algorithm for the learning of parameters. Numeri-
cal experiments have been performed to investigate the
performance of estimated parameters in improving the
precision of automatic localization.

1 Introduction

Localization of automatically selected or prespeci-
fied fiducial points plays a key role in both appearance
based approaches and model based ones as prior pose
normalization and feature extraction, respectively.[1]
In general, the performance of facial feature localiza-
tion is evaluated from the following aspects: accuracy,
robustness against illumination, pose and scale varia-
tions, and computation expense, etc. EBGM in Ref.[2]
provides a robust method of localization against the
variations of brightness by using a bank of Gabor re-
sponses (Gabor jet) as a discriminant feature, where
shape variations are modeled by an elastic graph. To
further improve the accuracy, statistical approaches,
such as SVM, have been applied to EBGM to explore
the discrimination of extracted graphs.[3] Elastic graph
matching with morphology features has also been pro-
posed. [4] We still adopt the Gabor filters, a biologi-
cally relevant model for the receptive field[5,6], for ro-
bust feature extraction against illumination and vary-
ing contrast by making the Gabor kernel DC-free and
normalizing the Gabor jet. We consider improving the
robustness against scaling by extracting and scaling
the face region to a specified face size. The accuracy
of EGBM in land-marking is increasable by improving
the discriminant of jets among fiducial points nearby,
which is implemented by the optimization of Gabor pa-
rameters in the present work. The robustness against

distortion and rotation is also improvable by learning
the Gabor parameters based on training samples.

Various approaches have been proposed for the selec-
tion of Gabor parameters, e.g., post-selection of Gabor
response according to the output of SVM classifiers
[7], Neural Network (NN)-based selection of parame-
ters for texture segmentation [8] and information dia~
gram based search [9], etc. The selection by NN intro-
duces extra hyper-parameters for the network, whose
convergence is difficult to control when dealing with
a large number of high-dimensional Gabor responses.
Due to the large size of the Gabor family used in land-
marking, the information diagram-based search in the
candidate space of parameters is highly computation-
ally expensive. We perform the optimization of Gabor
parameters by the minimization of an energy function
which maximizes the discrimination of Gabor jets.

In Section 2, we give a full view of the whole local-
ization system, and formulate the energy-minimization
based approach for the optimization of Gabor param-
eters. We also give the learning algorithm. Numerical
experiments have been performed in Section 3 to inves-
tigate the performance under optimized Gabor param-
eters. Discussions on the advantages and shortcomings
of the proposed approach will also be given. Finally,
we conclude the present work and explain our future
work.

2 Feature Localization by EBGM with Opti-
mized Gabor Parameters

A two-stage localization, i.e., one stage for coarse lo-
calization and one for fine localization, is used in our
system to improve the computational speed. The Ad-
aboost face detector, proposed by Viola and Jones [10],
provides a fast and accurate detection of facial region
with reasonable robustness to both illumination and
scale variations in the coarse localization stage, whose
detailed explanation can be found in Ref.[10]. A de-
fault graph is then applied to the extracted face image
as the initial positioning for the following finer localiza-
tion. The refinement of the positions for those fiducial
points is executed by EBGM, the major topic of the
present paper, starting with an initial point which has
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been put in a neighboring region of the ground truth
after the first stage.
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Fig. 1 Block diagram of the land-marking system used
in the present work.
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Fig. 2 Schematic diagram of EBGM land-marking.

2.1 Fine Land-marking by EBGM

A schematic diagram for the idea of EBGM is given
in Fig.2. The structural information of selected fidu-
cial points is described by a graph. The points are
processed sequentially in a descending order of their
reliability, which is decided subjectively or by exper-
iments, e.g., the extraction of an eye might be more
reliable than that of the chin tip. After the coarse lo-
calization, most of the points have been located within
the neighborhood of the ground truth. For each point,
an initial position is guessed from the interpolation of
others that have already been estimated. A discrimi-
nant feature is calculated from that position and com-
pared to a template bunch to measure the similarity. A
search, full or selective, is then executed inside a speci-
fied range for the detection of the optimal position with
highest overall similarity. A flow chart is given in Fig.3
for EBGM land- marking.

Discriminant features are extracted by a family of K
Gabor kernels in Ref.[2]. In a common form, the k-th
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Features

Initial
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¥

Fig. 3 Flow chart for EBGM land-marking.
Gabor kernel is defined as

w4 (5+ )

Gioy = Fr——— {exp [i (wkz + wiyy))
x0ky
2 2

= 1 |

which is a complex sinusoid centered at frequency
(wks, wry) and modulated by a Gaussian envelope, as
shown in Fig.4. ok, and oy, are the standard devi-
ations of the elliptical Gaussian along z and y. The
second term inside the bracket makes the Gabor kernel
DC-free, so that robustness against brightness varia-
tion can be improved.

(a.) Real part (b.) Imaginary part

Fig. 4 A Gabor kernel.

In Ref.[2], oks = oky is adopted to simplify the Ga-
bor kernel. The jet J for one point is defined as a
K-dimensional vector [Ji|k € {1,---,K}] formed by
responses of Gabor filters, where Ji = oy exp(idk) ,
with o as the magnitude and ¢ as the phase infor-
mation. Wiskott et al. [2] further defined similarity
between two jets using their phase information, i.e.,

% aka; cos(@x — ¢;c - d:b‘k)

\/zk: az\/; ()2

where O = [wk; wky) and didy, compensates for the
phase rotation. d stands for the displacement of two
points. Further exploration of discriminant from the
graph by classifiers has been done to improve the local-
ization accuracy|3], utilization of discriminant features
other than Gabor was also proposed.[4] We consider the
derivation of optimal Gabor parameters to improve the
accuracy of localization in the present work.

8(J,J) = ()
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Tabel 1 Matrices for calculating the differential

Tabel 2 Algorithm for learning Gabor parameters

B.:K x K, (Bu)ij =Dy Gi2k8i41,5 — i 2k410i-1,55
C,: XY x XY, (Cz)i']’ = 5,"1"51, (Cy)i|j = 5,"]‘2',,;
Bs, : K X K, (Bou)ij = 6i,361i/21,k0re
&
Do, :KxK, (D)= Z 8:,381i/2) K0k 3

Co, : XY X XY, (Co,)i,j = 5,,1,, (Coy)i = 6”1,,,
Eo, : XY x XY, (E.,)ij= Z 8:,5013/2) kWkzO e

(Buy )i = ; 0:,301/2] kWkyOry;
Eg. : XY x XY (Ea-c),J = E 5. ,6[,/21 kwk,akz,

(Eoy)ij = E S 1511/2J kwkya’w

2.2 Optimization of Parameters for Ga-

bor Kernels

We collect a training set of P patterns, i.e., Q =
{gplp € {1,---,P}}, by cutting the neighboring re-
gions of all M fiducial points from N training images,
where P = N x M. For the p-th pattern, we use p,.
and p, for the label of the fiducial point and that of
the subject to which this pattern belongs. We take a
reversed-order raster scan for each pattern, i.e., g =
[qulm € {X/2: IR _X/2}’y € {Y/Z, ] _Y/2}]v so
that the convolution of Gabor kernel on a certain fea-
ture point is identical to a matrix multiplication in a
window centered on this point. X and Y are the width
and height of the window around the feature. We use
XY to denote the window size. Dividing the jets into
different clusters according to the fiducial points that
they represent, we search for Gabor parameters that in-
crease the similarity among jets within the same cluster
and decrease the similarity between different clusters
by minimizing the following energy function:

F= Z (Aépaxra (1 - 5Pc:rc) _

6p537‘c P T
N PLe)S(I7, T7)(3)

pT,r>p
with N, = Ep,r,r>p Op,ra(l = Op.,r.) and N =
> prr>p Ope,re- S(JP, J7) is the metric of similarity be-
tween two jets JP and J". d,, is the Kronecker delta
function which takes 1 for a = b and 0 for a # b . The
first term tends to increase the degree of separation
between different fiducial points from the same person,
while the second term is a regularization term that im-
proves the generalization ability of the extracted bunch
from training samples. A is a hyper- parameter in-
troduced to control the relative strength of between-
cluster scatter to that of within cluster scatter. De-
tailed formulations are given in the following part of
this section. For convenience of formulation, we sep-
arate the direct current component from the Gabor
kernel in Eq.(1). A common Gabor kernel is

Grazy = Chroy +1Skay, k€ {1,---, K}, 4)

a) Initialize the parameters by taking certain divi-
sions in angle and wave length. Set T as the max
iteration time and ¢ as the threshold for convergence.
Sett=0

b) Construct gP by raster scanning the cropped
face image in a reverse order;

c) Calculate u?,uf,uf,,ub ,

d) Calculate F®) /88 for both wg,wy, o5, Oy;

e) Update w(t+1)’w!(/t+l) (t+1),0.1(/t+1);

f) Calculate energy function F(t+1),
g) Increase t by 1;

h) If |[F+) — F®)| < g or t > T, exit. Otherwise,
repeats steps (c) ~ (h).

ub,, for all patterns;

€o8(Wka + WiyY) 1, z? v
= kT T exp |~ (o + —5-) | 5
Cray 2M Oz Oky P [ 2(0§x + oz, )| 5)
sin(wWkzT + w
Shey = S2E H ) o | 1L V) (g
kzOky Uka: Uky

Especially, all filters in a Gabor family are put into
rows of 2K x XY matrix G, whose element reads

Gioy = Z 01,2k Cray + 01,2k+15kay- (7)
&

while ©; = {Okz,Oky, Wke, Wiy} is the set of parame-
ters. The DC components of filters are written into
another matrix GPC, which is defined as GPS =
>k 01,2k Dicay, with

2
exp [ (fr + fﬁ- +wiof, + wﬁycr,%y)]

2O kzOky

D kzy = (8)

Therefore, the response of the Gabor bank reads

w? = [uf, -, ubp T = {G - GPC)g? 9)
Because jets from each point are extracted indepen-
dently during the learning process, and all samples are
centered on the ground truth position, welet d = [0 0]
for similarity defined in Eq.(2). This similarity is equal
to the cosine of the angle between u? and u”, i.e.,

[T

SJP,J,d = Dl Wil
( (]

[0 0]) = cos(uP,u") = (10)

Accordingly, the energy function is rewritten as

A(]‘ Pcyrc)6ps;ra
=) %

PyTT>P

6Pc,7‘c P 44T
A } cos(uP,u").
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The differential of energy function to parameter 6 is

oF A(1—0p,,re)0p, .7 _ Op,,re , O cos(uP, u”)
Z{ Ns Nc } o0 (11)

P,T\T>D
For a parameter 0, € Oy, the differential reads
dcos(u?,u’) 1 8([ur]Tu")

86 T |uP||lur| 86k
I ()
2lur|jur| | |uP|?06;

8([u"]"u")
w2805 } (12)

Accordingly, we have

d([uP)Tu") _ (z 8(Chkzy — Diay) »

r
aok 60k Q:cy)u2k

zy

08z O(Crey — Dizy) -
+(E - y‘]zy)uzkﬂ + (Z '(_k‘y—k_y) @y )uby

Skey
+(Z - y‘Izy) 2k+1 (13)

If we let & = [0, +,0k-1]7 be the parame-
ter vector for the Gabor family, and define &} =

Q2 P T which sati
[, 00 ’uox_1,2K—1] which satisfies

i 2, (61,260(Chzy—Dray H01,2k+108kzy)
0“/2]! Z = aek (14)

k,zy

we will have a simplified notation as

A([w?]"u")
06
where A is a K x 2K matrix and Ak = 81/2)x for
vk,I,k € {0,---,K —1},1 € {0,---,2K — 1}. The
symbol o defines the component-wise multiplication of
two matrices. We summarize the equations for @} as

= A[a} ou” + dip ou?] (15)

), = Gu,q", 8, = Go, ", (16)
with
G,, =B, GC,+E,, GPC
G,, =B,, (G- GDC)CU. -D,, (G- GPC) (17)

+Ea. GDC

where the symbol e could be replaced by z or y for
the horizontal or vertical direction of 2D Gabor, re-
spectively. Each matrix in Eq. (17) is summarized in
Table 1. Note that we use i, = |i/X] iz = (i—i,X) to
denote the z and y coordinates of pixel i , respectively.
Finally, we have

AZ Z {1 = 6p,r)d, p,,r,N éf]‘\’]:ci}

r>p
g ou”
18
+ o Jo

{uo ou” + iy ou?

_ [uP]Tu" [afou?
lu? ||'1’|

~ Jueljur] { o2

The learning of optimal Gabor parameters is performed
using a form of Gradient descendent learning, while the
learning rule is

oD = g — pAg® = gt — N5g )‘ (19)

The algorithm is summarized in Table 2.

CY (e) (f)
Fig. 5 Samples of extracted images for a finer localiza-
tion. (a) Frontal face, (b) Pose variation, (c) Brightness
variation, (d) Scale variation (e) Expression, and (f) Oc-
clusion.

0=left eye
1=right eye
2 = left mouth corner
3 = right mouth corner
4= outer end of left eyebrow
5= inner end of left eyebrow
6 = inner end of right eyebrow
7 = outer end of right eyebrow
8= left temple
9 = outer corner of left eye
10 = inner corner of left eye
11 = inner corner of right eye
12 = outer corner of right eye
13 = right temple
14 = tip of nose
15 = left nostril
16 = right nostril
17 = upper lip
18 = lower lip
19 = tip of chin

Fig. 6 Selected fiducial features and their positions.

3 Numerical Experiments and Discussions

In our numerical experiments, we focus on the inves-
tigation of performance under the optimized param-
eters achieved by the proposed approach. The Bio
ID Face Database [11] has been used as the testing
database. We randomly picked two mutually-exclusive
sets from the whole database. One set, consisting of
200 images, is used as the universe of training samples,
from which samples are randomly selected to form the
training set. Another set with 100 images is prepared
for testing. When dealing with the finer land- marking
by EBGM, we confront the following problems, i.e.,
variations in pose, illumination, and scale, morphing
caused by facial expressions, and occlusions of fiducial
points by eye closing or by glasses and beard. Some
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examples of extracted face images before finer localiza-
tion was performed are shown in Fig.5.

For each image, 20 points are selected as fiducial fea-
tures and their true positions are manually marked, as
shown in Fig.6. We use an Adaboost face detector to
extract the face region for each image in the training
set, and then rescale it to a size of 200 pixels x 200
pixels. All images that failed to be detected by the
Adaboost face detector were not counted in our ex-
periments. Around the ground truth of each fiducial
point, a window of size 51 x 51 pixels is extracted and
reorganized in the reversed order of raster scanning to
produce Q for the learning of Gabor parameters.

To evaluate the accuracy of localization, a normal-
ized distance is defined by taking the ratio of bias in
the present point to the inter-eye distance, where the
inter-eye distance is calculated from the ground truth
for each image. In our experiments, 40 Gabor kernels
are used, which include 5 wavelength and 8 angle divi-
sions. The learning rate is 0.3 and the threshold ¢ is
0.0001. Starting from the initial position, a full search
is performed in a neighborhood of size 16 x 16 pixels.
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Fig. 7 Comparison of localization accuracy from pa-
rameters before and after learning. A smaller bunch
size also achieves higher accuracy with optimized pa-
rameters. N is the depth of bunch (also the number
of images patterns) and N=P/20.
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Fig. 8 Comparison between localization accuracy

under different .

Major results of experiments are listed as follows:
1) In Fig.7, comparisons are made between results

from parameters before and after learning. As depicted
in Fig.7, a bunch with less depth achieves higher accu-
racy with learned optimal Gabor parameters.
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Fig. 9 Comparison of localization accuracy with

Gabor parameters before and after learning for dif-

ferent fiducial points.

2) The transition of localization accuracy under dif-
ferent hyper- parameter A is shown in Fig.8. Because
the parameter is optimized on the majority of samples
by the learning on the training samples, the overall ac-
curacy has been improved. On the other hand, even
larger bias might occur for outliers in the testing set,
e.g., images with beard or glasses in eye area, etc.

3) We also made detailed comparisons on each point.
All fiducial points are divided into two categories: first-
tier points include eyes, corners of eyes and mouth,
nose tip and others, and second-tier points include the
left and right temples, the tip of chin, eye brows, the
bridge of nose, etc. Results on three first-tier points,
i.e., left eye, left eye outer corner, left eye inner corner,
are given in Fig.9(a) to (c), while results for three sec-
ond tier points, namely, the left temple, the left eye-
brow outer corner and the tip of chin, are shown in
Fig.9(d) to (f), respectively. Three cases under N=110,
i.e., before learning, after learning with A = 3.0 , after
learning with A = 5.0 , are compared. We found that
EBGM with optimized Gabor parameters improve the
accuracy on both the first- tier and second-tier points.

4) The transition of Jet similarity around the ground
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truth of left eye is plotted to check the influence caused
by different hyper-parameter in Fig.10. The similarity
of the jet in left eye to all jets extracted in the same
row is plotted for three cases, initial parameter, pa-
rameter from N=110 and A = 3.0 , and N=110 and
A = 5.0 in Fig.10. After learning, the distance between
the left eye to its neighbors (e.g., inner corner of left
eye or outer corner of left eye, etc) is enlarged, which
reflects the influence of the minimization of the energy
function.

From the above results, we found that the learned
Gabor parameters increase the degree of discrimination
of Gabor jets and accordingly the localization accuracy
has been improved. Comparing with the conventional
EBGM, optimized Gabor parameters could provide im-
proved accuracy of localization with a smaller depth of
bunch, which also speeds up the processing of local-
ization. Although we performed a full search, a tech-
nique, i.e., using FFT for fast computation of Gabor
jets, helps reduce the burden of computation. In a PC
with 1.6GHz CPU, the whole process with both coarse
and fine land-marking costs about 10 seconds for each
image in our experiments. Faster speed is possible if
the search is executed in a selective way.

4 Conclusions

We focus on the improvement of localization accu-
racy in the EBGM method by the optimization of Ga-
bor parameters in the meaning of maximizing the de-
gree of discriminant between Gabor jets from different
fiducial points. We use the gradient descendent method
for searching the local optimum of energy function, and
derive the learning rule. According to our numerical
experiments, the accuracy of localization is improved
by optimized Gabor parameters when comparing with
the conventional EBGM. This verifies the efficiency of
the proposed approach. In the energy function we in-
troduce a new hyper-parameter, which is set heuris-
tically in the present work. Since the energy function
could be extended to the framework of Markov random
field, we will consider the possibility of automatically
determining the hyper-parameter by probabilistic es-
timation, which is left as a topic for our future work.
Further investigation regarding more efficient energy
functions is another important future research topic.
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