F=FR—=ALAT A 121—7
B W % X B 58-7
(2000. 5. 25)

SRIEE XA E) ETEREICBITA
7= AF 2 — IR B AEETEE O RE AT
, B EERE. EE) &
{miyuki, kitsure}@tkl.iis.u-tokyo.ac.jp
BN S5 2 0 A

RBETIE, FHEAEATVHEBRECBIAEI Ny L 2 A HEORBEMEREBITL, F— V¥ AFa—
Ny VaEEHEOREEECE A BB IOVWTRE Lz, SHEE AT EHEBET Yy 7 7 FEHFRO
DA MKREREL, 2OTRAMREETE, Frviad X, F—95H. /— FERZEPERLESED
Ny Y EEREOMRE IR L, ZOME, BAPRET 2.5y 7 7 BEFR TR, SlE 2 €
VEEBORAr S Y T4 2L D5 [EHTLRARIC. F—90HORVICIZEENS LV L2 BEAL
720

Effect of Data Skew on Join Execution
in Distributed Shared Memory Parallel Machines

Miyuki Nakano and Masaru Kitsuregawa
Institute of Industrial Science, University of Tokyo
7-22-1 Roppongi, Minato-ku, Tokyo, 106 Japan
e-mail : {miyuki,kitsure }@Qtkl.iis.u-tokyo.ac.jp

In this paper, we analyze the performance of parallel hash joins in DSM machine and consider the data
skew impact on hash join execution in DSM machines. Although we have already reported performance
evaluation of parallel hash join processing on the DSM architecture, our previous measurements were
done by using uniform data distribution and the system resources, such as cache size or number of nodes,
were fixed since an actual DSM machine was used. We analyze the processing cost of the proposed four:
buffer management strategies in DSM machines and report simulation results by varying data distribu-

tion, cache size, number of nodes, and so on.
1 Introduction

Recently, with the rapid evolution of informa-
tion infrastructures such as the Internet and the
growth of our information society, large amounts
of data are accumulated each-day. As a result,
many large database systems such as multime-
dia databases and decision support systems(DSS)
were developed. . These databases are required
to provide quick response to complex queries
along with providing facilities to allow for rapid
data growth. On. the otherhand, many par-
allel machines have been developed from high-
performance microprocessors, -utilizing low cost
memories whose capacity are very large, possess-
ing a high-bandwidth network and many small low
cost disks today. From the background described
above, there are many parallel database systems
implemented on commercial parallel computers
and the TPC-D benchmark results on these par-
allel systems, such - as NCR Teradata, IBM DB2
on SP-2 and Oracle on SUN enterprise series, are
reported. '

Although the distributed shared memory
(DSM) architecture is focused on in parallel

processing research now, there is little research
on parallel database processing in the DSM
environment[4, 2, 6]. Moreover, almost all perfor-
mance evaluations of the DSM architecture[3, 5]
have been done by assuming scientific applications
in which access locality is high, while there are
no reports analyzing such data intensive applica-
tions such as relational DBMS, DSS, multimedia
DBMS, in which a large memory space is accessed
randomly. So, the research of parallel database
processing on the DSM architecture is an impor- .
tant subject to resolve the problem of growing
database size and the varied requirements of dif- .
ferent user applications.

In [7), we have already proposed .the : four
buffer management strategy for hash join oper-
ation and implemented .them on an actual DSM
Machine HP Exemplar SPP 1600. Then, we have
shown that the strategy of considering node local-
ity can achieve substantial performance improve-
ment. However, our previous measurements was
done by using uniform data distribution and the
system resources, such as cache size, remote mem-
ory access cost or number of nodes, were fixed. So, -

in this paper, we analyze performance of the par-
allel hash join in DSM machines employing CC-
NUMA by varying data distribution and the sys-
tem resource parameters. First, we describe an
overview of CC-NUMA model and consider mem-
ory access characteristics based on the HP Ex-
emplar SPP 1600. Then, we introduce the data
buffer allocation and access strategy of parallel
hash join and consider the memory access cost of
our four buffer management strategies. The sim-
ulation results of our strategies are measured by
varying cache size, node size, access cost of re-
mote memory and data distribution. From these
results, it is shown that DSM architecture is a
promising platform for parallel DBMS. Moreover,
we show that the buffer management strategy of
considering node locality is efficient in improving
the performance of parallel database processing in
a DSM architecture even when data skew exists.

2 DSM Parallel Computer
Architecture

In general, the DSM architecture means that
memory allocated on physically distributed mem-
ory in each node can be accessed as one virtual
memory space by memory coherency mechanisms
supported by software or hardware. DSM archi-
tecture are also classified by its memory mecha-
nism into COMA(Cache Only Memory Architec-
ture), which regards all memory as a large cache
and does not mapped virtual space into specific
physical local memory on the nodes, and CC-
NUMA (Cache Coherent Nonuniform Memory Ar-
chitecture), which allocates the virtual space to
each distributed physical memory and uses a cache
space for maintaining memory coherency. Almost
all DSM machine products, such as the HP Exem-
plar series, SEQUENT NUMA-Q, SGI-Cray Ori-
gin 2000 and Data General Aviion NUMA Server,
are equipped with CC-NUMA.

We show an overview of a CC-NUMA machine
in Figure 1. A CC-NUMA machine consists of
nodes connected by an iterconnection network
whicn can provide high band width and support a
global virtual shared memory by allowing proces-
sors in any node to the memories in other nodes.
Each node contains a number of processors, a
shared memory and a number of disks. In gen-
eral, a CC-NUMA machine provides the following
three memory classes which can be specified when
users compile their sources.

1. global memory : is allocated among all nodes
equally using a page unit. It can be accessed

| Inter—connected Network

[fvafaion

Sl

write request for
remote memory A

4

read request for
remote memory B

Figure 1: Overview of a CC-NUMA machine

from all nodes. However, users cannot spec-
ify where a page is allocated. This is equal
to the shared memory in a shared-everything
architecture.

2. local memory : is allocated to the specified
node explicitly. So, users can access node
local memory with intent to improve access
cost. Also, it can be accessed from other
nodes.

3. network cache : is used for accessing mem-
ory space allocated to the physical memory of
the other nodes. It is controlled by network,
and memory coherency mechanisms and users
cannot specify what data is explicitly cached.
However, it is guaranted that the latest ac-
cess data which is located in a remote node
is encached.

3 Parallel Hash Join Pro-
cessing on DSM Machine

In this section,we consider buffer access manage-
ment of the parallel hash join on DSM machines
based on the buffer model on shared-everything
architecture. In the following, we take an equi-
join of relation R and S as follows.

SELECT * FROM R,S WHERE R.joinkey = S.joinkey

First, we describe the model of parallel hash
join processing on the DSM architecture and
classify the bufler allocation and access strat-
egy. Then, we introduce the four buffer manage-
ment strategies, Shared Everything strategy(SE),
Shared Hash Table strategy(SHT), Local Hash
Table strategy(LHT) and Local Hash Table with
Remote Reference strategy(LHT-R).

S
Relation
R

N I T

Shared Memory or
Global Memory

Local Memory

e memory wirte

JE—

memory read(reference)

Figure 2: Parallel Hash Join Model on DSM En-
vironment

Figure 2 shows the model of parallel hash join
for the DSM environment. A hash join algorithm
consists of two phases : the build phase and the

- probe phase. During the build phase, relation R .

is partitioned by a hash function and the hash ta-
ble is generated. The probe phase starts after the
hash table is completely generated. Relation S is
read from the disks and, for each tuple, the hash
tables are probed respectively. The Build Process
is responsible for the build phase and Probe Phase
is responsible for the probe phase, respectively.
Although I/0 process is responsible for disk ac-
cess, it is omitted from Figure 2 for simplicity.

During the build phase, the following steps are
repeated until each processor has read its portion
of relation R.

B-1 each processor reads relation R from its local
disk.

B-2 divides it into buckets using a hash function.

B-3 generates a hash table.

At the probe phase, the following steps are re-.

peated until all tuples of relation S are processed.

P-4 each processor reads relation S from disk..
P-5 divides it into buckets using a hash function.
P—6 probes its hash table

— i<i':;‘> r") - SE SHT | LHT | LHT-R
E@ Eﬁe'“"m: R Data Buffer . Global | Local | Local | Local
X Hash Table Global .| Global | Local | Local
1/0 Build Phase(1) [inter intra intra | intra.
Data Read node node node | node
Build | Build Phase(2) || inter intra inter | inter
Data Reference || node node node | node
Build | Build Phase(3) || inter inter intra | intra
Hash Table ‘Il node node - | node | node
Generation
I/0 Probe Phase(4) | inter intra intra | intra
Data Read node node node | node
Probe | Probe Phase(5) || inter intra inter | intra
Data Reference | node node node | node
Probe | Probe Phase(6) || inter inter intra | inter
Hash Table node node node | node
Reference
R Probe | Probe Phase(7) || infer inter intra | inter
\% e e Build Data node node node | node
gela(iun | lslelation‘ lslelution ' Reference

Table 1: Four Buffer Management Strategies

P-7 compares against the join key of relation S
with that of relation R. When tuple matching
succeeds, a join is performed.

As shown in Figure 2, the hash table, build -
data buffer and probe data buffer are mainly ac-
cessed space in hash join processing and I/O, build
and probe processes access to these buffer inde-

" pendently. Although the access cost for these

buffers are equal in the shared-everything archi-
tecture, as described before, the access cost for
these buffers on DSM machines varies depending
on where the data buffer is mapped. In thefol-
lowing subsection, we explain the buffer allocation
policy and access strategy from the DSM architec-
ture point of view using a model which consists of
three buffers and three processes.)

As described before, users can allocate the spe-
cific memory space onto physical local memory of
each node in a DSM machine. So, we can allocate
the build and probe data buffers in local memory
or in global memory. Similarly, the hash table can
be mapped onto local memory or global memory.
On the other hand, from the point of view of the
three processes, the type of access issued by the
processes are classified into local access intra node
or global access including remote access between
nodes. ;

As based on the data flow in Figure 2, we con-
sider the access strategy shown in Table 1.

Regarding the build and probe data buffer, I/O
process writes these data buffer during the Build

—39—

Phase(1) and Probe Phase(4) in Figure 2 after
reading data from disks. The build and probe pro-
cesses read the data buffer during Build Phase(2),
Probe Phase(5) and Probe Phase(7). These days,
disk are attached to each nodes directly for almost
all DSM machines. Moreover, the I/O process is-
sues only write accesses to the buffer. So, since
write cost is higher than read cost, the data buffer
for build and probe relations should be allocated
" on local memory explicitly. As for the hash table
area, it can be allocated to the local memory on
each node as an implementation of shared-nothing
architecture does. Thus, three buffer allocation
policies are considered from the combination of
data buffer and hash table allocation as shown in
Table 1.

Once the data buffer allocation policy is deter-
mined, the access strategy is also fixed by consid-
ering data flow and access efficiency as shown in
Table 1. For example, consider Build Phase(2)
with the build relation buffer in local memory.
Two access strategies are given for candidates :
the case that I/O process writes data buffer on
local memory and build phase on the other node
reads it and the case that I/O process writes data
buffer on the other nodes and build phase reads
it. As discussed above, the cost for the later case
is very high, since write costs for remote memory
and read cost for data on local memory which is
encached on the other node is high as shown in
Table 2.

4 Simﬁlation Results

In this section, we analyze the performance of par-
allel database processing in a DSM ‘machine by
using simulation based on the cost formula of the
four buffer management discussed above and vary-
ing the system resource parameters.

We have reported the measurement results on
the HP SPP 1600 of the four strategy in [7]. How-
ever, in our previous measurements, the system
parameter values such as cache size, node size
and memory access cost were fixed since an actual
DSM machine was used. Moreover, we used only
the uniform data distribution. Thus, in this mea-
surement, we change resource parameters of DSM
Machines, such as cache size, number of nodes and
access cost of remote memory. The effect of data
skew on parallel hash join is also discussed.

Simulation Environment and
Parameters

4.1

In this simulation, we assume that our platform

Mapping | Access | Invali- | Fault | Lock | cost{usec)
dation

Local- read No No No 0.8

Local read Yes(*) | No No 5.1

Local write No No No 0.8

Local write | Yes(**) | No No 5.8

Local write No Yes No 5.1

Local write No No Yes 6.0

Local write Yes No Yes 16.8

*:invalidated, **:invalidate

Mapping | Access | Invali- | Fault | Lock | Cache | cost
dation hit (usec)

Remote read No No No Yes 0.8

Remote read No No No No 4.0

Remote read Yes No No No 4.6

Remote write No No No Yes 2.0

Remote write No | No No No 4.0

Remote write Yes No No No 5.8

Remote write No Yes No No 4.6

Remote write No No Yes Yes 12.2

Remote write No No Yes No 14.5

Table 2: Memory Access Latency of SPP 1600

is a CC-NUMA machine illustrated in Figure 1
and. the cost indicated in Table 2 is used as the
basic memory cost parameter values. The size of
the relation is varied from 8 to 640 MB and the
relations are initially uniformly partitioned among
the disks. The data distribution is also varied as
discussed later. The size of a page is 4KB and a
tuple is 64 bytes in length.

In this measurement, we assume that the direc-
tory map of all cache lines are already generated
and global and local memory is randomly touched
in order to equalize access time from each node.
Since the data is encached to the specified node,
the access time is very different between the node
and the other. Moreover, assuming a database
server, almost all of the memory space will be
randomly accessed after sufficient time passes. In
the following results, we omitted the disk access
time to clarify the difference of memory access cost
among the four strategies.

Cost Formula Validation on the
HP Exemplar SPP 1600

4.2

Before presenting our simulation results with
various parameters, we compare the simulation re-
sults using uniform data distribution to the results
measured on SPP 1600 in order to verify our simu-
lation results. The configuration of SPP 1600 is 4
nodes, each node has 8 CPUs(PA-RISC 7200, 120
MHz), 512MB local memory, which are connected

T T T

v T
SE :Total —+—
SE_sim:Total -wox---
SHT :Total ---x---
SHT_sim :Total . .o -
LHT :Total
LHT _sim :Total -. -
| LHT-R:Total ---e---
LHT-R_sim :Total ...a-..

140 ¢
SE strategy

120

101

S

80 ¢+

60 |

Execution_Time(sec)

40 +

20+

320 400 480 560

240
Relation_Size(Mbyte)

Figure 3: Validation of Simulation Results with
Experimental results

by a crossbar switch, and high bandwidth network
employing SCI protocol among nodes which pro-
vides distributed shared memory mechanism and
maintains memory coherency by 64 byte cache line
unit. So, in total, we have 32 processors and 2GB
memory.
Figure 3 shows the total execution time for the
~ four strategies calculated by simulation and mea-
sured on SPP1600. From this figure, we can see
that the performance differénce between simula-
tion and experimental results are slightly small.
As shown in Figure 3, the performance of the
. SE strategy is the worst since all buffers are allo-
cated from global memory. In contrast, the LHT-
R strategy shows the best performance from Fig-
ure 3. Its performance is improved by 58% com-
pared to the SE strategy. Also, we observe that
the performance of LHT and LHT-R strategies
which allocates hash table to local memory is bet-
ter than those of the SE and SHT strategies in
which the hash table is allocated from global mem-
ory. : : R
In the following subsection, we use the simula-
tion results only.

4;3 Effect of Cache Size

We expect that performance of parallel join ex-
ecution can be improved when the cache size be-
comes large, since the memory access cost de-
creases once the data is encached. Figure 4 shows
the simulation results of each strategy by varying
cache size. In this measurement, the total relation
size is 384 MB, that is, 96 MB per node and the
data distribution is uniform. From this figure, we
can observe that thé execution time for the ‘build
phase of each strategy is always. constant when
cache size increases. This is because the cost for

600

100 —_— . .

"SE_cache :Total ——

SHT _cache :Total --x---
LHT cache :Total - -x---
80 LHT-R_cache :Total - -a- -
E 60 |) r
i:l B et TR
§
] 40 -
3 - L5
& o emee
P . o
20
0 L n . L s . .
0 10 20 30 40 50 60 70 80

Cache_Size(Mbyte)

Figure 4: Effect of Cache Size : Total Time

remote memory write is dominant at the build
phase of all strategies. In contrast to the build
phase, the execution time for the probe phase de-
creases when cache size increases. With regard
to the SE and SHT strategies, since the hash ta-
ble on global memory is often referenced at the
probe phase, almost all remote memory read for
hash table becomes cache hit. Moreover, the build
relation hold on global memory is also encached
on the other node. With regard to the LHT and
LHT-R strategies, the improvement of the execu-
tion time for the probe phase is smaller than that
for the SE and SHT strategies. As for the LHT-R
strategy, although the hash table is held on lo-
cal memory, the probe process also references the
hash table located on the other nodes. So, when
the cache size becomes larger, the cache hit ra-
tio of the hash table becomes high. However, the
part of the build relation is clustered into each
node at the build phase, the cache hit ratio of the
necessary build data is relatively low. In the LHT
strategy, since the probe process does not refer-
ence to the remote node memory while searching
the hash table, the performance gain is small when
the cache size becomes large.

4.4 Effect of Number of Nodes

We show the execution time for each strategy
with increasing the number of nodes from 4 to 96
in Figure 5. In this measurement, the cache size
is 64MB and the relation size per node is 160 MB.
So, when the number of nodes increases, the total
relation size is also increase. From these Figures,
we can observe that the execution time is almost
constant when the number of nodes is larger than
8. This means that the system scalability can be
obtained easily in DSM architecture. However,
when the number of nodes is varied from 4 to 8,

140 | 4
120 | //)—’—v
~ ¥
3 100} =7
2
E
= 80
3 60 L CSTRE IR - e -8
L% o o B - B o ki
40 |
SE_node :Total —+—
20 L SHT_node :Total ---*--- |
LHT_node :Total "~
LHT-R_node :Total - 9
0 L N . .
0 20 40 60 80

Number of Nodes

Figure 5: Effect of Number of Nodes : Total Time

each execution time of four strategies increases as
shown in Figure 5. As described in the previ-
ous subsection, the cache size affects the execu-
tion time. So, the performance difference between
in the case of 4 nodes and 8 nodes is caused by
the cache size. Then, when the number of nodes
becomes large, the effect of cache is eliminated.
Thus, we find that although DSM architecture
provides the system scalability, the system per-
formance is saturated by remote memory access
cost when the number of nodes becomes large.

4.5 Effect of Remote Memory Ac-

cess Cost
200 T v v r v v T
SE_a2 :Total —+—
SHT_a2 :Total ------
LHT a2 Total =™ .
LHT-R a2 ‘Total - o~ - Y
150 o
8 e
& .
o 100 o
8
) - -
50t o
o
L
A
PR
0 i L L " L L 2
0 80 160 240 320 400 480 560
Relation_Size(Mbyte)
Figure 6: Effect of Remote Memory Access Cost
: twice

As observed above, the cost of remote memory
access is the dominant factor in the performance
of DSM machines. Although the cache size af-
fects the system performance when the relation
size is relatively small, almost all execution cost is
remote memory access. So, we consider the cost

640

1000 T T T T T T
SE_al0:Total ——
SHT al0 :Total -—*--
- LHT al0 :Total -=%-**
800 |- LHT-R_al0:Total~ @~ - 4
4
5 .
8
g 600 +
&
g
g a0} 4
g A
4
200 |
0 i N L s s s .
0 80 160 240 320 400 480 560

Relation_Size(Mbyte)

Figure 7: Effect of Remote Memory Access Cost
: 10 times

T T T

1600 SE_a20 :Total —+—
$HIZa20 Tol -

P ol - al

1400 |} HF-R7420 Total - =~ -

1200 +

800

600 |

Execution_Time(sec)

P

400

200

240 320 400 480 560

Relation_Size(Mbyte)

160

Figure 8: Effect of Remote Memory Access Cost
: 20 times

ratio of local memory access to remote memory
access. We take the memory cost of the SPP 1600
shown in Table 2 as the base cost ratio of local
memory access to remote memory access. Then,
the cost ratio is changed twice, 10 times and 20
times. In the case of the cost ratio 20 times, the
ratio of local memory access to remote memory
access is almost similar to that of DSM software
(1.

Figure 6, 7 and 8 shows the execution time of
each strategies when the cost ratio is twice, 10
times and 20 times, respectively. The relation size
is varied from 16 MB to 640 MB and the cache size
is 64 MB. The data distribution is uniform. From
these figure, we can observe that the performance
difference between SE and LHT(or LHT-R) be-
comes large when the access cost ratio becomes
large.)

640

4.6 Effect of Data Skew

In this subsection, we show the simulation results
in existence of data skew. We employ the same
data distribution for relation R and S and any
- load-balancing mechanism is not considered in or-
der to clarify the tolerance to data skew in a DSM
machine. : v
The amount of data skew, load N %, is indi-
cated as a fraction of the total relation size which
is allocated to one node. The rest of relation is
divided evenly amongst all the other nodes. This
data skew distribution is also used in [6].

4.6.1 Effect of Data Skew in LHT Strategy
180 uniform : Total ——s—
30% : Total —otee-
160 30% : Total - p
50% : Total .- .a.
140 60% : Total ~- - o
SE : Total —e— L7
g 120 ~)
< " a
“E 10 -~
e F - a
£ 80t - ;
: -
= 60 | e
w0l
20t .
0 ! " s L " . n
0 30 160 240 320 400 480 560

Relation_Size(Mbyte)

Figure 9: Effect of Data Skew : Total Execution
Time of LHT strategy

We show the execution time of LHT strategy by
varying the data skew from uniform(load 25%) to
load 60% in Figure 9. The relation size is varied
from 16MB to 640MB and the cache size is fixed
at 64 MB. For reference, the execution time of SE
strategy is plotted.

In the SE and SHT strategy, the data skew does
not affect its performance largely, since any node
can reference the whole hash table and the data
buffer to be referenced is allocated evenly to the
whole nodes. On the other hand, in the LHT
strategy, the part of data whose hash value is the
same is allocated to the same node which process
them. So, the data skew affects the performance
of LHT strategy largely as the data skew impacts
on the performance of parallel hash join process-
ing in shared-nothing architecture.

As shown in Figures 9, the execution time for

the LHT strategy increases when the data skew -

becomes large. At the build phase, the execution
time for the LHT strategy is smaller than that
for the SE strategy when the skewed data can be

hold on the local memory and the cache. How-
ever, when the data to be processed in the node
overflows the local memory and the cache size, the
execution time increases moderately since the cost
of remote memory access increases. At the probe
phase, the execution time for the LHT strategy
becomes larger than that for the SE strategy, since

‘the cost of remote access, especially local write

access with invalidation to the cache of the other
nodes, increases as described in section 2. Thus,
the total execution time for the LHT strategy be-
comes large when the data skew is high.

Effect of Data Skew in LHT-R Strat-

4.6.2
egy
120 T v
uniform : Total —+——
30% : Tota] --»--- o~
100 40% : Total - = (3
50% : Total - -© o
60% : Toul - 2- o
- : Total == g .
g %0 e o
~r L .
E - 8
= s P -
gI 60 g .o . e "/___,
3 P = = PR e
g w e
0}
0 L L L . L L L
0 30 160 240 320 400 480 560 640

Relation_Size(Mbyte)

Figure 10: Effect of Data Skew : Total Execution
Time of LHT-R strategy

We show the execution time of the LHT-R strat-
egy by varying the data skew from uniform(load
25%) to load 60% in Figure 9. The relation size is
varied from 16MB to 640MB and the cache size is
fixed at 64 MB. For reference, the execution time
of SE strategy is plotted.

As shown in Figures 10, the execution time for
the LHT-R strategy also increases as well as that
for the LHT strategy when the data skew becomes
large. Since, as described in section 2, the build
phase of LHT-R strategy is the same as the LHT
strategy, the execution time for the build phase
increases when the skewed data cannot be held
on the local memory and the cache: In contrast to
the build phase, we can observe that the execution
time for the probe phase of the LHT-R strategy
is not affected by data skew. This is because the
remote or local memory access with invalidation
does not happen at the probe phase of LHT-R
strategy.)

4.6.3 Effect of Data Skew with Varying

Memory Access Cost

Ta): Tntaf -
LHT(LHT-R) a2 : 0 -
LHT-R_a2 :Tc

200 | LHT. d(loadm%) Tntal

150 |

Execuation_Time(sec)

50 |

240 320 400 480 560

Relation_Size(Mbyte)

Figure 11: Effect of Data Skew with Varying Re-
mote Memory Access Cost(twice)

640

1000 v T T v v <
SE_al0 :Total ——
LHT alQ :Total ---e--
T-R al0 ‘Total - - o
400 |y (LHT alO(lond 40%):Total - .

HLHT-R alogload 40%; “Total - -a-.-
LHT_al0 (load 60% To\al - e
LHT-R_al0 (load 60%):Total -- -e--- -

600 | -

400

Execution_Time(sec)

200

240 320 400 480 560
Relation_Size(Mbyte)

Figure 12: Effect of Data Skew with Varying Re-
mote Memory Access Cost(10 times)

As observed above, both the cost of remote
memory access and the data skew affects the per-
formance of parallel join processing in a DSM ma-
chine. When the data skew changes, the amount
of remote memory access cost also varies in LHT
and LHT-R strategies. So, we also study the per-
formance of LHT and LHT-R strategy by varying
the data skew and the cost ratio of local memory
access to remote memory access.

Figure 11 and 12 shows the execution time of
each strategies when the cost ratio is twice and 10
times respectively. For reference, the execution
time for the SE strategy is plotted. From these
Figures, we can observe that, in comparison with
the results of Figure 9 and 10, , both the execution

640

time for the LHT and LHT-R strategy increase
moderately. Especially, the performance of the
LHT-R strategy becomes better than that of SE
strategy even when the data skew is load60%. Its
performance is improved by 10% compared to the
SE strategy in the case that the access cost ratio is
10 times and data skew is 60 %. This means that
even when the cost of remote memory access is
substantially high, the strategy considering node
locality is also important.

5 Conclusions

In this paper, we discuss the performance of the
four strategies for parallel hash join processing on
DSM machines by using simulator, since the re-
sults of previous work was limited since the sys-
tem resources are fixed. The simulation results
of our strategies are measured by varying cache
size, node size, access cost of remote memory and
data distribution. From measurement results, it is
shown that DSM architecture is a promising plat-
form for parallel DBMS since the system scalabil-
ity comes up to our expectations. Moreover, we
can show that the LHT-R strategy shows better
performance in comparison to the other strategies
even when the data skew exists. Although the
performance of SE strategy is slightly affected by
the data skew, the execution time for the LHT-
R strategy is better than that of the SE strategy
whether the data skew exists or not. That is, it is
efficient for parallel database processing on DSM
architecture to investigate memory access charac-
teristics and choose the optimal access strategy
adopting these characteristics.

References

1] C.Amza et al.:
works of Wi

28,1996

T\endMarks Shnred memory. Computing on Net-
c ter, Vol.29. No.2, pp.18-

(2

L.Bouganim, et al.: Dynamic Load Balancing in Hierarchical Par-
sllel Database Systems, Proc. of 96 VLDB, pp.436-447(1996)

[3) J.B.Carter. ot al.: Impl tation and P

of Munin;
Proc. of the 13th ACM Sym. on OS. ppl52-164. 1991 -

4

A.Shardal and J.F.Naughton: Using Shared Virtual Memory for
Parallel Join Processing, Proc. of SIGMOD '93, pp.119-128, 1993
[5] 1.Chapin, et al.: Memory System Performance of UNIX on CC-
NUMA Multiprocessors, SIGMETRICS 95, 1995

{6] S.Pramanik and W.R.Tout : The NUMA with Clusters of Pro-
cessors for Parallel Join. Int. Journal orn Knowledge and Data
Engineering. Vo.9. No.4, pp.653-660(1998)

[7] M.Nakano, H.Iinai and M.Kitsuregawa : Performance Analysis of
Parallel Hash Join Algorithms on a Distributed Shared Memory
Proc. of DE. pp.76-85(1998)

