gooooOoOoOopoopoooooo
IPSJ SIG Technical Report

20050 FI O 800150
20050 NL O 1690 150

0 20050 90 30

Graph Branch Algotithm: An Optimum Tree Search Method for
Scored Dependency Graph with Arc Co-occurrence Constraints
Hideki Hirakawa
Knowledge Media Laboratory
TOSHIBA Corporate Research & Development Center
1, Komukai-Toshiba-cho, Saiwaiku, Kawasaki, 212-8582, Japan
email: hideki.hirakawa@toshiba.co.jp

Preference Dependency Grammar (PDG) is a framework for the morphological, syntactic and semantic
analysis of natural language sentences. PDG gives packed shared data structures for encompassing the
various ambiguities in each levels of sentence analysis with preference scores and a method for calculating
the most plausible interpretation of a sentence. This paper proposes the Graph Branch Algorithm for
computing the optimum dependency tree (the most plausible interpretation of a sentence) from a scored
dependency forest which is a packed shared data structure encompassing all possible dependency trees
(interpretations) of a sentence. The graph branch algorithm adopts the branch and bound principle for
managing arbitral arc co-occurrence constraints including the single valence occupation constraint which

is a basic semantic constraint in PDG.

1 Introduction

Dependency representation as well as phrase
structure representation is a basic framework used
for various kinds of NLP applications As described
in Ref.1), various dependency parsing methods are
proposed. Some methods utilize lexicalized phrase-
structure parsers with the ability to output depen-
dency information??) and some methods obtain
dependency trees directly?~8). Many of depen-
dency parsers generate only projective dependency
trees but some parsers treat non-projectivity®).

Training corpuses and statistical information are
used for computing the most appropriate depen-
dency tree in many parsers. One class of parsers
choose the optimum decision during parsing pro-
cess?)8). Another class of parsers generate a depen-
dency graph encompassing all possible dependency
trees for a sentence and searches for the optimum
tree'):5):6):10) Generally, the total score of a de-
pendency tree is defined as sum total of scores of
dependency arcs in it.

Ref.5)06) adopts dynamic programming prin-
ciple for searching the optimum tree from a de-
pendency graph containing WPP *3 nodes. Ref.1)
treats a dependency graph containing word nodes
and search the maximum spanning tree with high-
est score based on the Chu-Liu-Edmonds algorithm
or the Eisner’s algorithm”. Ref.9) proposed a de-
pendency graph called a “Semantic Dependency
Graph” (SDG), which represents ambiguities in
word dependencies and their semantic relations.
Ref.10) proposed an algorithm for searching the op-
timum tree from a semantic dependency graph with
preference scores based on the branch and bound
method!?. I call this kind of optimum tree search
method the “Graph Branch Method”.

*3 WPP is a pair of a word and a part of speech (POS).
The word “time” has WPPs such as “time/n” and
“time/v”.

The sentence analysis method based on the se-
mantic dependency graph is effective because it em-
ploys linguistic constraints as well as linguistic pref-
erences. However, this method is lacking in terms
of generality in that it cannot handle backward de-
pendency and multiple WPP because it depends
on some linguistic features peculiar to Japanese.
“Preference Dependency Grammar” is a general
sentence analysis framework employing a new data
structure called the “Dependency Forest” (DF)')
rather than the semantic dependency graph. The
dependency forest is a packed shared data struc-
ture which encompasses all dependency trees cor-
responding to parse trees in a packed shared parse
forest'®) for a sentence. The dependency forest
has none of the language-dependent premises that
the semantic dependency graph has, so it is ap-
plicable to English and other languages. PDG
has one more advantage that it can generate non-
projective dependency trees because the mapping
from phrase structure to dependency structure is
defined in grammar rules.

The optimum tree search algorithm for a seman-
tic dependency graph is not applicable to the de-
pendency graph. This paper gives a brief explana-
tion of the dependency forest and shows the graph
branch algorithm for obtaining the optimum solu-
tion (tree) in the dependency forest.

2 SDG and DF

2.1 SDG and its Drawbacks

Fig.1 shows a semantic dependency graph for
“Watashi-mo Kare-ga Tukue-wo Katta Mise-ni
Utta”'®. The nodes in the graph correspond to
the content words in the sentence and the arcs show
possible semantic dependency relations between the
nodes. Each arc has an arc ID and a preference
score. Interpretations of a sentence are well-formed
spanning trees that satisfy two constraints, i.e., no
cross dependency and no multiple valence occupa-
tion. The score of an interpretation is the sum total

01010

島貫
テキストボックス
社団法人　情報処理学会　研究報告
IPSJ SIG Technical Report

島貫
テキストボックス
2005－ FI － 80（15）
2005－ NL － 169（15）
　2005／9／30

島貫
テキストボックス
－101－

研究会temp
長方形

of arc scores in a semantic dependency tree. The
bold arcs in the graph in Fig.1 shows the optimum
interpretation with a maximum score of 130.

The semantic dependency graph is designed
based on the Japanese kakari-uke relation and as-
sumes the following features of Japanese.

(a) A dependant always locates to the left of its
governor (no backward dependency)

(b) POS ambiguities are quite minor compared
with English *4

The semantic dependency graph and its opti-
mum solution search algorithm adopt these as their
premises. Therefore, this method is inherently in-
applicable to languages like English that require
backward dependency and multiple POS analysis.
2.2 DF and Optimum Tree
2.2.1 Overview of DF

The dependency forest is a packed shared data
structure encompassing all possible dependency
trees for a sentence. The dependency forest consists
of a dependency graph (DG) and a co-occurrence
matrix (CM). Fig.2 shows a dependency graph for
the example sentence “Time flies like an arrow.”

The dependency graph consists of nodes and di-
rected arcs. A node represents a WPP and an arc
shows the dependency relation between nodes. An
arc has its ID and preference score. CM is a matrix
whose rows and columns are a set of arcs in DG
that prescribes the co-occurrence relation between
arcs. Only when CM(i,j) is o, arc; and arc; are
co-occurrable in one dependency tree.

The dependency forest has correspondence with
the packed shared parse forest*>. This means that
the dependency forest provides a means to treat all
possible interpretations of a sentence in dependency
structure representation.

utta(sold)

Arcname : ga
Arc ID : ¢
Score :35

Arc name

ga :agent

wo : target

ni :direction
de : location

watashi-ha Tsukue-wo Kare-ga
)] (desk) (he)

Optimum Semantic Dependency Tree: [a, d, e, T, I]

Fig.1: Example of semantic kakari-uke
graph and its optimum solution

*4 Word boundary ambiguity corresponding to the com-
pound word boundary ambiguity in English exists in
Japanese. Treatment of this ambiguity is a practical
problem for the semantic dependency graph even when
applied to Japanese sentence analysis

*5 The correspondence between the parse tree and the
dependency tree is generally 1 to N and vice versa.

0_rt32

vpp20 prets -
a1

0
- sub24 Vpp18 det14
[otimen 2255 1ty <= 2 ikelp | 3avdet | 54 arowrn]

"2 PP % objio 7 Dependency
imev J&{ 1flym J<12x(2like! ¢ Graph
0,timelv o4 1fly/n b3 2 likelv
2 [24] 4 |23[19]18|20]14]16]15[31]29|32
2|— o e][e] (@)
Meaning of Arc Name 24| |— Ol [O] |0|O
sub : subject 4 = |0 |0|0O]| |O (@)
obj : object 230 - [e][e) (@)
npp : noun-preposition 19 ol |- ol |0 (@)
vpp : verb-preposition 18] |O —| |O] [O|O
pre : preposition 20 o —|0| [O (0]
nc : noun compound 14]0|0[0]|O[0]|O[0]|—|0[0|0[0|O
det : determiner 16|0 o o|— (@)
15| [O[O] |O|O|O|O| [—[Of |O
Co-occurence 31 (6] 0] (0] o=
Matrix 290 [@) [e][e] -
32 Ol O] [O[O] [O -

Fig.2: Score-added DF for “Time flies like an arrow”

2.2.2 Well-formed Dependency Tree

One sentence interpretation is represented by one
well-formed dependency tree which satisfies the fol-
lowing well-formed dependency tree conditions'!):

(a) No two nodes occupy the same input position
(single role constraint)

(b) Every input word has the corresponding node
in the tree (coverage constraint)

(c) Each arc pair in a tree has a co-occurrence re-
lation in CM (co-occurrence constraint)

Conditions (a) and (b) are collectively referred
to as “covering condition”. A dependency tree
that satisfies the covering condition is called a well-
covered dependency tree. In semantic dependency
graphs, a spanning tree of a graph is a well-covered
tree. This simplifies the development of an opti-
mum solution search algorithm. The algorithm for
the dependency forest requires the concept of cov-
ering condition.

2.3 Relation Between SDG and DF

Nodes in a dependency forest are a set of nodes in
the WPP trellis produced from an input sentence
whereas nodes in a semantic dependency graph are
a set of nodes forming a path in the WPP trellis,
i.e., a subset of the dependency graph. Therefore,
the dependency forest contains the semantic depen-
dency graph. On the other hand, well-formedness
constraints introduced to a semantic graph, i.e. the
cross dependency and multiple valence occupation
constraints, are a type of arc co-occurrence con-
straints representable by means of a co-occurrence
matrix. Therefore, the dependency forest is a gen-
eralized and more powerful data structure cover-
ing the representative power of the semantic de-
pendency graph.

3 Optimum Tree Search

The graph branch method works on the branch
and bound principle and searches the optimum
well-formed tree from a dependency graph by ap-
plying partial sub-problem expansions called graph
branching. The algorithm in Ref.10) applies the
graph branch method to the semantic dependency

01020

研究会temp
長方形

島貫
テキストボックス
－102－

graph. Unfortunately, this algorithm is not directly (MC3) If P. has no feasible solutions then P has no

applicable to the dependency forest search problem.

solutions.

The following shows a new algorithm for applying (MC4) If a feasible solution with an incumbent value

the graph branch method to the dependency forest.
3.1 Branch and Bound Method

The branch and bound method is a principle for
solving computationally hard problems such as NP-
complete problems. The basic strategy is that the
original problem is decomposed into easier partial-
problems (branching) and the original problem is
solved by solving them. Pruning called a bound
operation is applied if it turns out that the opti-
mum solution to a partial-problem is inferior to the
solution obtained from some other partial-problem
(dominance test), or if it turns out that a partial-
problem gives no optimum solutions to the original
problem (maximum value test). The dominance
test is not used in the graph branch method. Usu-
ally, the branch and bound algorithm is constructed
to minimize the value of the solution. The graph
branch algorithm in this paper is constructed to
maximize the score of the solution because the best
solution is the maximum tree in the dependency
forest.

The following features for the maximum bound
value test with respect to the problem P and its
partial-problem P. must be satisfied in the branch
and bound method.

(MC1) g(P.)>f(P) where g(P.) is the maximum value

of P., and f(P) is the maximum value of P.

(MC2) If g(P.) = I(P) where 1 gives a value of a fea-

sible solution to P, then the feasible solution is
a solution to P.

=

‘Set of active partial problems (not yet terminated nor
expanded)

'Set of generated partial problems

" set of optimum solutions

" incumbent value

1(P) gives value of feasible solution of a partial problem P

- g(P) gives upper-bound value of a partial problem P

" s(A) selects one partial-problem in A

' Set of partial problems with no feasible solution or
g(P)=t(P)

f : f(P) is the optimum solution of P

D If Pi D Pj, Pi dominates Pj

S1(nitial value setup): A'={Pg}, N:= {P¢}, z=-00, O:={}
S2(search) : Tf A={} goto S9 else Pi:=s(A). Goto S3.
S3(incumbent value update)

If 1(Pi)>z then z:=l(Pi), O'=ix} (x is a feasible solution
of Pi satisfying f(x) Z1(x)). Goto S4.

S4(G test) : I PiEG goto S8 else goto S6.

S5(upper bound test) : If g(Pi) <z goto S8 else goto S6.

S6(dominance test) : If there exists Pk (£Pi)EN satisfying Pk
D Pi goto S8 else goto S7.

S7(branching operation) : Generate child partial problem Pi,
Pis,..Pix of Pi. Set A'=AU{Pi1,Pis,.. Piy—{Pi}, N:=N U
{Pi1,Pis,..,Pit. Goto S2.

S8(termination of Pi) : Set A'=A—{Pi}. Goto S2.

S9(stop) : Computation stop. If z=-c0 then PO has no feasible
solutions else z is the optimum value f(P0) and x in O
is the optimum solution to PO.

QU)UQ’—‘N OZ

Fig.3: Skeleton of branch and bound algorithm

z is obtained for some partial-problem, and if
g9(P.)<z, then partial-problems branched from
problem P have no better solutions than z.

These conditions are called model conditions in
this paper. In the case of MC2-MC4., partial-
problem P. can be terminated. Fig.3 shows a gen-
eral branch and bound algorithm for obtaining one
optimum solution'?).

3.2 Graph Branch Algorithm

Fig.3 shows a skeleton of the algorithm. In or-
der to make it running code, each operation in the
algorithm must be realized for the target problem.
The graph branch algorithm applies the branch and
bound method to the optimum tree search prob-
lem with the binary arc co-occurrence constraint
by introducing the graph branch operation for the
partial-problem expansion operation. Fig.4 shows
the graph branch algorithm which has been ex-
tended from the original skeleton to search all opti-
mum trees for a dependency graph. The following
sections explains how the components of the branch
and bound method in Fig.3 are implemented in the
graph branch algorithm.

P, © Initial problem, Pi : Partial problem
AP: Active partial problem list,

0 : Set of incumbent solutions, z @ Incumbent value

start: /* S1(initial value setup) */
AP = [P}z =-1;0 := {}:
UB = get_ub (Py): /* Upper bound of P, */

search_top: /* S2(search) */
if(AP == {}) { goto exit: }
else{ Pi := select_problem(AP); }
/* Compute the feasible solution FB and the lower */
/* bound LB (= the score of FS) for Pi. */
(FS,LB) := get_fs(Pi):
/% If no feasible solution found, terminate the problem. */
if(FS == no_solution) { goto terminate_problem; }
/% 83 (incumbent value update) : If LB is better than z, */
/* update incumbent solution and incumbent value. */
if(LB>z) {z:=LB; 0:={FS}; }
/% S5 (upper bound test): */
if(UB < z) { goto terminate_problem; }
/* Compute inconsistent arc pair list IAPL. */
IAPL := get_iapl (Pi);
/* If lower bound (score of feasible solution) is less */
/* than upper bound, execute graph branch operation. */
if(LB < UB) { BACL := IAPL: goto branch; }
/* Lower bound equals to upper bound => optimum solution %/
elsif(LB == UB) {
0 := {FS} U 0: /* Add this FS as incumbent solution %/
/% S8 (search more optimum solutions) */
/* (a) existence of an inconsistent arc pair */
iT(IAPL 1= {}) { BACL := IAPL; goto branch: }
/* (b) existence of a rival arc */
BACL := arcs_with_alternatives (FS):
if(BACL 1= {}) { goto branch; }
else | goto terminate_problem: } }

branch: /* S6(branching operation) */
/* Generate child partial problems based on BACL */
ChildProblemList := graph_branch (Pi, BACL) :
AP := AP U ChildProblemList — {Pi}; goto search_top;

terminate_problem: /% S7(termination of Pi) */
AP := AP - {Pi}. goto search_top;

Fig.4: Graph Branch Algorithm

01030

研究会temp
長方形

島貫
テキストボックス
－103－

3.2.1 Partial-problem

Partial-problem P; in the graph branch method
is a problem searching all the well-formed optimum
trees in a dependency forest DF; consisting of the
dependency graph DG; and co-occurrence matrix
CM;. Partial-problem P; consists of the following
elements.

a) Dependency graph DG;
b) Co-occurrence matrix CM;
) Feasible solution value LB; (corresponding to
I(P) in Fig.3)
(d) Upper bound value UB; (corresponding to
g(P) in Fig.3)
(e) Inconsistent arc pair list TAPL;.

The co-occurrence matrix is common to all
partial-problems, so one CM is shared by all
partial-problems. DG, is represented not by arcs
in DG; but by arcs not in DG; but in the whole
dependency graph DG. “rem][..]” shows arcs re-
moved from DG. For example, “rem[b,d]” repre-
sents a partial dependency graph [a, ¢, €] in the case
DG = [a,b,c,d, e]. This reduces the memory space
and the computation for a feasible solution as de-
scribed below. TAPL; is a list of inconsistent arc
pairs. An inconsistent arc pair is an arc pair which
does not satisfy some co-occurrence constraint.
3.2.2 Algorithm for Feasible Solution and Lower

Bound Value

In graph branch method, a well-formed depen-
dency tree in the dependency graph DG of the
partial-problem P is assigned as the feasible so-
lution F'S (corresponding to x in Fig.3) of P *S.
The score of the feasible solution F'S is assigned as
the lower bound value LB (corresponding to I(P)
in Fig.3). The function for computing these val-
ues get_fs is called a feasible solution/lower bound
value function. Fig.5 shows the algorithm of get_f's.
Basically, get_fs searches one feasible solution in
higher-score-first and depth-first manner. When an
arc which violate co-occurrence constraint against
one of the selected arcs is found, get_fs backtracks
at step5 to the nearest choice point which resolves
the contradiction. This assures that the obtained
solution satisfies the co-occurrence condition. Fur-
thermore, if get_fs finds no solution, then the prob-
lem P has no solution. Since get_fs selects one arc
for each position in a sentence, the obtained arcs
satisfies the well-covered condition.

Arc groups S; to S, are sorted according to their
scores in stepl. This operation is introduced to ob-
tain a better (higher score) feasible solution, since
the better feasible solution lead to a higher incum-
bent value which bounds more partial-problems.

*6 A feasible solution may not be optimum but is a pos-
sible interpretation of a sentence. Therefore, it can
be used as an approximate output when the search
process is aborted.

3.2.3 Algorithm for Obtaining Upper Bound Value

Given a set of arcs A which is a subset of a depen-
dency graph DG, if the set of dependent nodes *7 of
arcs in A satisfies the covering condition described
above, the arc set A is called the well-covered arc
set. The maximum well-covered arc set is defined
as a well-covered arc set with the highest score.
In general, the maximum well-covered arc set does
not satisfy the single role constraint and does not
form a tree. In the graph branch method, the score
of the maximum well-covered arc set of a depen-
dency graph G is assigned as the upper bound value
UB (corresponding to g(P) in Fig.3) of the partial-
problem P. Upper bound function get_ub calcu-
lates UB by scanning the arc lists sorted by the
surface position of the dependent nodes of the arcs.

The above settings satisfy the model conditions.
In these settings, P and get_ub corresponds to P.
and g(P.) respectively. (MC1) is satisfied because
get_ub(P)>f(P) is true for f(P) (the score of the
optimum tree). (MC2) and (MC4) are satisfied
because get_ub is the score of the maximum well-
covered arc set. (MC3) is satisfied since get_ub(P)
always has its solution. Therefore, partial-problem
P is prunable if the incumbent value z satisfies
z>g(P) *5.

G: Dependency graph of a partial problem,

n: Number of words in a input sentence
FS:Area for saving arc IDs of a feasible solution
BP: Area for saving the nearest backtrack points
N(S): Number of elements in arc set S

score(FS): Sum total of scores of arcs in FS

step1(grouping and sorting arcs): Classify the arcs in graph G
by their starting nodes, and generate the sets of arcs
S1,82,...,5n. Sort elements in each Siwith respect to their
weights in descending order. Then, sort Si,Ss,...,Sn with
the maximum score of the arcs in the set in descending
order. This is renamed S1,Sz,...,Sn,

step2(initialize): FS:=[1,BP:=[l,I'=1,j'=1 ki=1,1:=0

step3(termination check1): If i>n then terminate by returning
the feasible solution 'S and its score score(FS). If iZn
then goto step4.

step4(termination check?2): 1f N(S.)éj then goto stepb else set

FS:=no_solution and terminate. (No feasible solution)
step5(constraint check): If j>N(S) (no arcs in S; satisfies the
co-occurrence constraint), goto step6. Perform the
co-occurrence constraint check between j-th element
a(i,)) of Si and each element ei,es,..ei1 in FS in

If a(i,j) does not satisfy the

co-occurrence constraint with element ex (1=5k=i-1),

set I'=max(L,k), j=j+1, goto step5. If all co-occurrence

reverse 01"der.

constraint checks are satisfied then goto step7.
step6(backtracking): Remove eier+1,....ei1 from S. Set ji=
BP[1]+1, i:=1. Goto step4.
step7(next node): Add a(i,j) to the last of FS. Set BP[i]'5j,
i:=i+1, j=1. Goto step3.

Fig.5: Algorithm for obtaining F'S and LB

*7 The dependent node of an arc is the node located at
the source of the arc.

*8 In the case of obtaining all optimum solutions ,the
terminate condition should be changed to z > g(P).

01040

研究会temp
長方形

島貫
テキストボックス
－104－

3.2.4 Branch Operation

Fig.6 shows a branch operation in the graph
branch method called a graph branch operation.
Child partial-problems of P are constructed as fol-
lows:

(1) Search an inconsistent arc pair (arc;,arc;) in
the maximum well-covered arc set for the de-
pendency graph of P.

(2) Create child partial-problems P;, P; which
have new dependency graphs DG; = DG —
{arc;} and DG; = DG — {arc;} respectively.

Since a solution to P cannot have both arc;
and arc; simultaneously due to the co-occurrence
constraint, the optimum solution of P is obtained
from either/both P; or/and P;. The child partial-
problem is easier than the parent partial-problem
because the size of the dependency graph of the
child partial-problem is less than that of its parent.

In Fig.4, get_iapl computes the list of inconsis-
tent arc pairs IAPL(Inconsistent Arc Pair List)
for the maximum well-covered arc set of P;. Then
the graph branch function graph_branch selects
one inconsistent arc pair (arc;,arc;) from TAPL
for branch operation. The selection criteria for
(arc;,arc;) affects the efficiency of the algorithm.
graph_branch selects the inconsistent arc pair con-
taining the highest score arc in BAC L(Branch Arc
Candidates List). graph_branch calculates the up-
per bound value for a child partial-problem by
get_ub and sets it to the child partial-problem. Si-
multaneously, graph_branch executes bound oper-
ation by immediately pruning the child partial-
problem whose upper bound value is less than the
incumbent value z.

3.2.5 Selection of Partial-problem

select_problem in Fig.5 corresponds to the search
s(A) in Fig.3. The best bound search is em-
ployed for select_problem, i.e. it selects the partial-
problem which has the maximum bound value
among the active partial-problems. It is known
that the number of partial-problems decomposed
during computation is minimized by this strategy
in the case that no dominance tests are applied'?).

a DG: Dependency graph
G of parent problem
Removg arg Removearc,
o o N\
ag;
ag

DG;: Dependency graph

DG;: Dependency graph
i e & I for child problem P,

for child problem P,

Fig.6: Graph Branching

PO

rem :[]

UB :63,[14,2,15,23,18]

LB :50,FS:[14,2,16,23,29]
BACL : [(2,15),(15,23),(23,18),(2,18)]

Z:-1— 50
0:{1—([14,2,16,2329] }

P, yd P, N\

rem :[2] rem :[15]
UB :61,[14,24,1523,18] UB :59 [14,2,16,23,18]
LB :51, FS{14,24,1531,18] LB :- FS:not exist
BACL : [(15,23),(24,23),(23,18)] BACL : [(23,18)(16,18),(2,18)]
Z:50 — 51 Z: 51 (no change)
0:{[14,2,16,23,29]} — ([14,24,15,31,18]} 0:([14,2,16,2329] } (no change)
Ps l P
rem :[232] rem :[4,232]
UB :58[14,24,154,18] > UB :51,[14,24,15,31,18]
LB :42 FS{1432,154,20] LB : - FS:not exist
BACL : [(24.4)(4.18)] BACL : [1

Z: 51(no change)

Z: 51(no change)
0:([14,24,15,31,18]t (no change)

0:([14,24,15,31,18]} (no change)

Fig.7: Search diagram for the example sentence

3.2.6 Searching All Optimum Trees

In order to obtain all optimum solutions, partial-
problems whose upper bound values are equal to
the score of the optimum solution(s) are expanded
at S8(SearchMoreOptimumSolutions). In the
case that at least one inconsistent arc pair remains
in a partial-problem (i.e. TAPL#{}), graph branch
is performed based on the inconsistent arc pair.
Otherwise, the obtained optimum solution F'S is
checked if one of the arcs in F'S has an equal rival
arc. The equal rival arc of arc A is an arc whose
position and score are equal to those of arc A. If
an equal rival arc of an arc in F'S exists, a new
partial-problem is generated by removing the arc in
F'S. S8 assures that no partial-problem has an up-
per bound value greater than or equal to the score
of the optimum solutions when the computation
stopped.

4 Example of Optimum Tree Search

This section presents an example showing the be-
havior of the graph branch algorithm using the de-
pendency forest in Fig.2 and some typical ambigu-
ous sentences.

4.1 Example of Graph Branch Algorithm

The search process of the branch and bound
method can be shown as a search diagram con-
structing a partial-problem tree representing the
parent-child relation between the partial-problems.
Figure 7 is a search diagram for the example de-
pendency forest showing the search process of the
graph branch method.

In this figure, box P; is a partial-problem with
its dependency graph rem, upper bound value U B,
feasible solution and lower bound value LB and in-
consistent arc pair list TACL. Suffixi of P; indi-
cates the generation order of partial-problems. Up-
dating of global variable z (incumbent value) and
O (set of incumbent solutions) is shown under the
box. The value of the left-hand side of the arrow
is updated to that of right-hand side of the arrow
during the partial-problem processing. Details of
the behavior of the algorithm in Fig.4 are described

01050

研究会temp
長方形

島貫
テキストボックス
－105－

below.

In Sl(initialize), z, O and AP are set to —1,
{} and {Py} respectively. The dependency graph
of Py is that of the example dependency forest.
This is represented by rem = []. get_ub sets
the upper bound value (=63) of Py to UB. In
practice, this is calculated by obtaining the max-
imum well-covered arc set of Py. In S2(search),
select_problem selects Py and get_fs(FPp) is exe-
cuted. The feasible solution F'S and its score
LB are calculated based on the algorithm in Fig.5
to set F'S = [14,2,16,23,29], LB = 50 (P, in
the search diagram). S3(incumbent value update)
updates z and O to new values. Then,
get_iapl(Py) computes the inconsistent arc pair
list [(2,15), (15,23), (23, 18), (2, 18)] from the maxi-
mum well-covered arc set [14, 2, 15,23, 18] and set it
to TAPL. S5(maximum value test) compares the
upper bound value UB and the feasible solution
value LB. In this case, LB < UB holds, so BACL
is assigned the value of TAPL. The next step
S6(branchoperation) executes the graph_branch
function. graph_branch selects the arc pair with
the highest arc score and performs the graph branch
operation with the selected arc pair. The follow-
ing is a BACL shown with the arc names and arc
scores.

[(ne2[17], prel5[10]), (prel5[10], sub23[10]),
(sub23[10], vppl8[9]), (nc2[17], vpp18[9])]

Scores are shown in []. The arc pair con-
taining the highest arc score is (2,15) and (2,18)
containing nc2[17]. Here, (2,15) is selected and
partial-problems Pj(rem[2]) and P;(rem[15]) are
generated. Py is removed from AP and the new
two partial-problems are added to AP resulting
in AP = {P;,P»}. Then, based on the best
bound search strategy, S2(search) is tried again.
select_problem selects P; because the upper bound
value of P; (=61) is greater than that of P, (=59).
Since the upper bound of P; (=61) is greater than
the feasible solution score (=51), get_iapl is exe-
cuted and sets BACL to the value shown in P;
in Fig.7. The graph branch function graph_branch
gets two candidates for child partial-problems cor-
responding to rem[24,2] and rem[23,2] because
the inconsistent arc pair (24,23) is selected as the
source of the graph branch operation (arc 24 has
the highest score of 15). The former candidate for
rem[24, 2] is pruned immediately, because its upper
bound value (=46) is smaller than the incumbent
value (=51) (termination by the upper bound test).
Therefore, graph_branch returns {Ps(rem[23,2])}.
The upper bound value UB of P3 is 58 which is
less than that of its parent problem P;. The pro-
cessing for P is completed and P; is removed from
AP. select_problem selects P, by comparing the
upper bound values of P and P; in AP. Partial-
problem P» is terminated because it has no feasi-
ble solution (F'S = no_solution). Then, the next
partial-problem Pj is processed. P3 has a feasible
solution with a score of 41. Updating of the in-

b3f3°0t23x0 ﬂ 2\(’)pp16'15\ m pre24,10
sub33,20 obj6, npp14,10 , '/_\

-
deta0 \ det11.0 detaZo

npp29,5

33|46 ([14)16/11]12(29|26|27|23|24|42

ol [i]-n-0 33[—[O[O[o[o[o[o]o[o]o]0[0[0
1 saw - [saw]-v-1 4[o[=[oololo[o]o]ololo[o]o
> Hldeo s |o[o[—|o[o[o[o]o[o[o]o[o]o
a el 1a[ololo]=]_lololololololo[o
3,irl “[girl]-n-3 16|0[O[O[[=[O[o] [o[o[o]o[o
4with :[with]-pre-4 11{o[o[o[0[O[—[o]|o[o]o[o[o[o
5a : [a]-det-5 12[o[o[o[o]olo[=[o[o]o[o[o[o
6,telescope : [telescope]-n-6 29|0[0O|0O|0O| [O|O]—= O|0|O
7Vin : in]-pre-7 viijjelle]l[el[e][e]le][e] - O|0|0
Sthe iliheldets RSN EEREIE

N 23 —

bt Ui 2410]oloololololololo[o[=[o
: 42[o[olofofolololo[olololof—

Fig.8: DF for the example sentence in-
cluding PP attachments

cumbent value does not occur because the obtained
score is lower than the existing incumbent value.
The next partial-problem P, has no feasible solu-
tion, so all processing is terminated at S8(stop). At
this time, the values of O and z are the optimum
solution(={[14, 24, 15,31, 18]}) and its score (=51)
respectively. This solution corresponds to the de-
pendency tree (a) in Fig.??.
4.2 Prototypical Ambiguous Sentences

In addition to the previous example for homo-
phone ambiguities, this section shows two examples
of prototypical ambiguous sentences.
4.2.1 PP-attachment Ambiguity

Fig.8 shows a dependency forest for “I saw
a girl with a telescope in the forest”. There
are no homophones in the forest but two prepo-
sitional phrases with attachment ambiguities.
The preposition “with” has two possible de-
pendencies (nppl4,vppl6) and “in” has three
(vpp27,npp26,npp29). The combination number of
these arcs is 2 * 3 = 6, but there exists five well-
formed dependency trees due to the existence of
the co-occurrence constraint between arcs 16 and
29 (C'M(16,29)#0) corresponding to the no cross-
ing arc constraint. The scores of these arcs are

PO
rem [
UB :70,[24,2312,11,6,44233,16,27]
LB :70,FS:[24,2312,11,6,4,42,33,16,27]
BACL: [(27)]
Z:-1—=170
0:{}—{[24,23,12,11,6,4,4233,16,27] }
Pl
rem :[27]
UB :70,[24,23,12,11,6,44233,16,29]
LB :70,FS: [242312,11,6,4,4233,16,26]
BACL : [(16,29)]=
Z: 70 (no change)

O: { [242312,11,6,44233,16,27] } —
{ [24.2312,11,6,4,42,33,16,27] [24,23,12,11,6,4,42,33,16,26] }

P2

rem :[2927]

UB :70,[2423,12,11,6,4,42,33,16,26]

LB :65 FS:[24.23,12,11,6.4,42,33,14,26]
BACL:[]

Z: 70 (nho change)
0:{ [242312,11,6,4,42,33,16,27], [24,23,12,11,6,4,42,33,16,26] }

Fig.9: Search diagram for the example
sentence including PP attachments

0 1060

研究会temp
長方形

島貫
テキストボックス
－106－

and14,5

root26,0

and12,10

and18,12
and25,20

or9,3

0,Earth : [Earth]-n-0 2512|4222/ 9|6|18[14|26
1,and : [and]-and-1 25— Q|0O[0|0|0|0|0
2,Moon : [Moon]-n-2 12 1= 1Ol [O|O|0|00
3,0r : [or]-or-3 4 —10|0|0|0[0[0|0
4,Jupiter : [Jupiter]-n-4 2[0|0[0[—[0]|0[0|0[O|0
5,and : [and]-and-5 22(0| |O|O]|—| [O|0O|0|O
6,Ganymede : [Ganymede]-n-6 90000 —10|0|0|0
root : [root] -x-root 6 |O|0[00|0|0[=I0]|0|0

18|010|010[00|0|=|0|0

14|0|0|00[0]|0|0|0]| =0

26|O[0[0[0|0|0[0[0[0]|—

Fig.10: DF for the example sentence in-
cluding coordinates

assumed to be calculated based on the preposi-
tion, the governor and dependant nodes of the
preposition. vppl6 has a higher score compared
with nppl4 because “telescope” is a tool for seeing
something. On the other hand, vpp27,npp26 and
npp29 have the same scores. The search diagram
for this example is shown in Fig.9. P, generates
the optimum solution (UB = LB) with a score of
70. S8(search more optimum solution) in Fig.4
is executed. P, has no graph branch candidates
in the inconsistent arc pair list (IAPL == {}).
arcs_with_alternatives(FS) selects arc vpp2T7 as a
candidate of graph branching because it has rival
arcs with the same score (npp26,npp29). Then P;
is generated to obtain the second optimum solution
including npp26. Next P> with rem[26,27] is gen-
erated and a feasible solution to P» is calculated.
This solution is not added to the incumbent solu-
tion list because it has a lower score (65) than the
obtained optimum solutions. This example has two
optimum solutions.
422 Coordination Scope Ambiguity

Fig.10 shows a dependency forest for “Earth and
Moon or Jupitor and Gamymede”. Corresponding
to the combination of the scopes of the three coor-
dinations, “Earth” and “Moon” have three and two
outgoing arcs, respectively. Since there exists a co-
occurrence constraint (no crossing arc constraint)
between andl2 and or22, the dependency forest
has five well-formed dependency trees. Arc scored
are assigned assuming preference knowledge like
“Planet names tend to co-occur” and “The name of
a planet and its secondary planet tend to co-occur”.

The search diagram for this example is shown in
Fig.11. The feasible solution to the initial problem
Py happens to be the optimum solution. No branch
operation is performed because IAPL of P, is [] and
all arcs in the optimum solution have no rival arcs.

5 Dynamic Programming and Branch and
Bound Method

Ref.10) described related work in the graph
branch method and mentioned some researches on
optimum tree search algorithms based on the dy-

namic programming (DP) framework. This sec-
tion describes why PDG has not adopted some
DP-based algorithm but rather the graph branch
method based on the branch and bound framework
for the optimum tree search.

Ref.5) proposed an algorithm for obtaining the
optimum kakari-uke tree and its score from a set of
all possible scored kakari-uke relations. This algo-
rithm can be extended to treat general dependeny
relations®). This algorithm is generalized into the
minimum cost partitioning method (MCPM) which
is a partitioning computation based on the recur-
rence equation given below!®). MCPM is also a
generalization of the probabilistic CKY algorithm
and the Viterbi algorithm *°.

Considering the phrase (w;,...w;;a;,...,a;;A)
partitioned into (wj, ..., wk; a4, ..., ar; B) and
(W41, ey W); Qlot1, ..., a5 ¢ C) where wg, ap, and
A-C mean word, analog information (like prosodic
information), and features like phrase name, re-
spectively. MCPM computes the optimum solution
based on the following recurrence equation for
total cost F.

F(i,j,A) = min[F(i,k,B) + F(k + 1,5,C) +
cost(wi, ..., W, s, ..., a5, k, A, B, C)]

F(i,j,A) is the total cost of phrase A covering
from the i-th to the j-th word in a given sentence.
cost(w;, .. wj,a;, ..., aj, k, A, B, C) is a cost function
where k is a partitioning position. The minimum
cost partition of the whole sentence is calculated
very efficiently by the DP principle for this equa-
tion. The optimum partitioning obtained by this
method constitutes a tree covering the whole sen-
tence satisfying the single role and no cross depen-
dency constraints. However, the single valence oc-
cupation constraint adopted in PDG for basic se-
mantic level constraint is not assured to be satisfied
by MCPM.

Fig.12 shows a dependency graph for the
Japanese phrase “Isha-mo wakaranai byouki-no
kanjya” encompassing dependency trees corre-
sponding to “a patient suffering from a disease
that the doctor doesn’t know”, “a sick patient
who does not know the doctor”, and so on. The
dependency graph has two kinds of ambiguities,
i.e. semantic role ambiguity and attachment
ambiguity. For example, wakaranai(not_know)
has four outgoing arcs with different semantic
roles (agent and target) and different attachments
(byouki(sickness) and kanjya(patient)) as shown

Po

rem :[]

UB 36, [26,14,18,6,2.4,22]

LB 36, FS:[26,14,186,2,4,22]
BACL: []

Z:-1 — 36
0:{} —{[26,14,18,6,2,4,22] }

Fig.11: Search diagram for the example
sentence including coordinates

*9 Specifically, MTCM corresponds to probabilistic CKY
and the Viterbi algorithm because it computes both
the optimum tree score and its structure.

01070

研究会temp
長方形

島貫
テキストボックス
－107－

target6 5
agent5,15

target4,7
agent3,5

[Isha—mo} [Wakaranai} [Byouki—no} { Kanja }

target2,10

agent1,1! in-state7,10

(doctor) (not_know) (sickness) (patient)
|
OS,[10]: (in-state7,10)
|

L |

0OS,[15]: (agent1,15)

|

0S,[22]: (agent1,15) + (target4,7)
|

0S,[25]: (agent5,15) + (in-state7,10)

|] 1 |
NOS,[10]: (target2,10) OS,[25]: (agent5,15) + (in-state7,10)
\ I |

0S[15]: (agent1,15) NOS,[20]: (target4,10) + (in-state7,10)

Well-formed optimum solutions for covering whole phrase

Fig.12: Optimum solution search satis-
fying the single valence occupation con-
straint

in Fig.12. The single valence occupation con-
straint prevents wakaranai(not_know) from being
connected with the same two semantic role arcs.
081 - 0S4 represent the optimum solutions for the
phrases specified by their brackets computed based
on MCPM. For example, OS> gives an optimum
tree with a score of 22 (consisting of agentl and
target4) for the phrase “Isha-mo wakaranai byouki-
no”. The optimum solution for the whole phrase is
either OS; + 0S4 or OS3 + OS5 due to MCPM.
The former has the highest score 40(= 15 + 25)
but does not satisfy the single valence occupation
constraint because it has agentl and agent5 simul-
taneously. The optimum solutions satisfying this
constraint are NOS; + OS; and OS; + NOS> as
shown at the bottom of Fig.12. NOS; and NOS>
are non optimum solutions for their word coverages.
In this case, MCPM generates a non-optimum tree
in 0S5+ 08, if it adopts the strategy of neglecting
inconsistent trees. Otherwise, MCPM generates an
high score but an ill-formed tree in OS; + OS,.
This shows that MCPM is not assured to obtain
the optimum solution satisfying the single valence
occupation constraint. On the contrary, the graph
branch algorithm is assured to compute the opti-
mum solution(s) satisfying any co-occurrence con-
straints in the co-occurrence matrix including the
single valence occupation constraint. It is an open
problem whether there exists an algorithm based
on the DP framework which can handle the sin-
gle valence occupation constraint and arbitral arc
co-occurrence constraints.

6 Concluding Remarks

This paper has described the graph branch algo-
rithm for obtaining the optimum solution for a de-
pendency forest used in the preference dependency
grammar. The proposed graph branch algorithm
has wider applicability compared with the seman-
tic dependency graph because it can handle whole
morphological ambiguity caused by homonyms and
word boundary divisions. The advantage of the
graph branch method compared with the minimiz-
ing total cost method is that it can handle arbi-

tral arc co-occurrence constraints including the sin-
gle valence occupation constraint, which is a basic
semantic-level constraint in preference dependency
grammar.

Refer to Ref.10) for a discussion of related work,
the computational complexity and some optimiza-
tion techniques for the graph branch algorithm.

References

[1] McDonald,R., Crammer,K and Pereira,F: Span-
ning Tree Methods for Discriminative Training
of Dependency Parsers , UPenn CIS Technical
Report MS-CIS-05-11, (2005)

[2] Collins, M.: Head-Driven Statistical Models for
Natural Language Parsing, Ph.H. thesis, Uni-
versity of Pennsylvania, (1999)

[3] Charniak, E.: A manimum-entropy-inspired
parser Proceedings of NAACL, (2000)

[4] Nivre, J. and Scholz, M.: Deterministic Depen-
dency Parsing of English Text Proceedings of
COLING’04, (2004)

[5] Ozeki,K.: Dependency Structure Analysis as
Combinatorial Optimization, Information Sci-
ences 78(1-2), 77-99, (1994)

[6] Katoh, N. and Ehara, T.: A fast algorithm for
dependency structure analysis (in Japanese),
Proceedings, 39th Annual Convention of the In-
formation Processing Society, (1989)

[7] Eisner,J: Three new probabilistic models for de-
pendency parsing: An exploration Proceedings
of COLING’96, (1996)

[8] Yamada, H. and Matsumoto, Y.: Statistical de-
pendency analysis with support vector machine
Proceedings of IWPT’03, (2003)

[9] Hirakawa. H. and Amano, S.: Japanese sen-
tence analysis using syntactic/semantic prefer-
ence (in Japanese), Proceedings of the 3rd Na-
tional Conference of JSAI, pp. 363-366, (1989)

[10] Hirakawa, H.: Semantic dependency analy-
sis method for Japanese based on optimum tree
search algorithm, Proceedings of the PACLING
2001, (2001)

[11] Hirakawa, H.: Dependency Forest: Packed
Shared Dependency Structure Corresponding to
Parse Forest (in Japanese), IPSJ, Natural Lan-
guage Processing NL-167-9, (2005)

[12] Ibaraki,T.: Branch-and-bounding procedure
and state-space representation of combinato-
rial optimization problems, Information and
Control,36,1-27,(1978)

[13] Tomita, M.: Generalized LR Parsing , Kluwer
Academic Publishers, Boston, MA, (1991)

[14] oooo,000,“0000000ooooog
oooooo, 0000000 50000000
00000000, pp.9 -14 (1999)

01080

研究会temp
長方形

島貫
テキストボックス
－108－

