HHATLE-RRIE 73— 2
(2000. 3. 21)

Interoperability of Smart Card Application

Yibin XU* Shigeki YOKOI* Takami YASUDA**
*Graduate School of Human Informatics, Nagoya University
**School of Informatics and Science, Nagoya University

In this paper, we have analyzed the reason that today’s smart card lack of application interoperability
with considering both the card and the card terminal. Two approaches of solutions: building external
software architectures to handle different types of cards and card readers, and improving the inner
architectures of the card and card terminal have been discussed. Some important specifications and

architectures have been summarized with comparing on their features and working scope.

1. Introduction
Today each card and terminal manufacturer
develops its own card and terminal using its
own unique operating systems. The application
developed for these cards and terminals is
bonded to a specific card and terminals
operating environment. This situation has
resulted in several key problems of the smart
card: difficulty in
applications, excessive development cost and
extended time to market. Therefore, application
interoperability has become a key point in

supporting multiple

expansion of the smart card technology. In this
paper, we discuss the features and solutions of
application interoperability in smart card.

2. Application interoperability of today's
smart card

server application =%

data base

Server

Card terminal

2.1 Mechanism of smart card solution

All smart card applications are performed by
smart card solutions. The simplest card
solution includes a card and a card terminal.
The card terminals are computing platforms
with a card reader, an 1/O device into which the
card is inserted. The card and terminal each
has an independent operating system and a
corresponding application. In fact, all
applications of smart cards include two parts,
one runs on the card and the other runs on the
terminal. We distinguish these two parts as
card application and terminal application. The
terminal application provides a dialogue to
“talks” with a card user, and transfers his
requirement to the card. The card executes the
command and sends back a result to the
terminal. A more complicated card solution
includes networks and servers (see figure 1).

card application |

card O3

Card

Figure 1. Smart card solution.

._7_

2.2 Origin of problem

EEPROM

hard ware

Figure 2. The architecture of a traditional
smart card.
The architecture of a smart card is shown in
figure 2. The card OS is designed to support a
set of low-level commands, for example READ
RECORD, UPDATE RECORD, etc., and the
commands are card OS dependent. The card
OS and command are installed in ROM when
the card is produced, and can not be updated
after. The application data is stored in
Electrical Erasable Programmable ROM with a
file system that has directories forming a
hierarchical tree like structure. At the top of
this tree (see Figure 2), is a Master file (MF).
This file is mandatory. Leading off the Master
File, there are either Dedicated Files (DF)
which can be

regarded as application

instructions

i
Command + path

!

Card dependent

directories or Elementary Files (EF), which are
used to hold data.

In the majority of cases, smart card
applications will use the card simply to hold
small amounts of data with appropriate
security - around it (for example, access key).
Therefore, developing a card application is a
process of creating a data layout for the
which - is card OS

application, always

dependent,

The terminal applications included a set of
instructions to be sent to the card through the
card readers. The instruction includes a
command and the data location. For example, if
we want to read a data “DATA” from the EF2
file in figure 2, we send the command as;

Select MF, DF1, EF2 and read "DATA" from
EF2 at Offsetn. '

The application has to be modified each time
changes are made in the card data structure.
Moreover, the card instruction must be sent via
a card terminal APL However, each reader
usually comes with a unique set of APIs. This
cost time and effort to the application developer
each time a new vendor's card or reader is
introduced. The
process is shown in figure 3.

application development

Card reader
dependert

Figure 3. Application development for traditional smart card.

f'Stam:i::\ml ;
APls

Terminal
program

Figure 4. Architecture for managing various cards and card readers.

Due to the reasons above, there is no
application interoperability in smart cards.
Each card application is designed for a specific
type of cards and card readers.

3. Solutions to application interoperability
Generally, there are two ways to approach
application interoperability for smart card. One
is building external software architecture to
handle various cards and card readers, another
is improving inner architecture of the card and
terminal.

3.1 External software architecture

3.1.1 Conception

The conception of handling different cards via
an architecture is to build a library for each
type of card, which contains the card specific
information, such as command and data
structure. The
independent on the card, get the information

applications, which are
through the library and communicate with the
card. The architecture is built to handle the
libraries for different types of cards.

The same thing may be done for the card
readers. Architectures are built to manage the

card readers’ specific APIs. Standard APIs are
provided to the developers for programming,
and when the application is executed, it is
translated to the specific APIs for each card
reader (See figure 4).

3:1.2 Important architectures and specifications
In this section, we introduce some important
architectures for smart cards and card
terminals.

) for handling smart cards

IBM smart card toolkit --The IBM Smart Card
Development Toolkits[1] 1is
assisting in creating data layout on the card,

designed for

managing the card specific information, such as
card layout and card data structure, and
helping the terminal application developer to
develop card-independent applications. The
differences of card reader are not considered in
IBM Smart Card Development Toolkit.

(@ for handling both cards and card terminals

PC/ISC (Personal Computer/Smart Card)
Interface[2] -- published by the PC/SC
Workgroup, which covers most of the leading
companies of smart card industry, such as Bull,
Gemplus, IBM, Microsoft, Schlumberger, Sun

Microsystems, Toshiba, etc. Microsoft Corp.
owns and maintains the PC/SC specification.
The PC/SC workgroup identified three areas to
standardize: The interfacing of card terminals
to the PC; The high-level terminal APIs; And
the mechanisms to allow multiple applications
to effectively share the resources of a single
smart card and card terminal. PC/SC is now
the most widely supported standard for card
reader, and it addresses to a limited extent to
card operating systems. However, right now,
PC/SC only addresses the PC Windows 9x/NT
32-bit platforms ®CiSC
multithreading).

requires

Open Card Framework (OCF)[3] -- announced
by IBM, Netscape, NCI, and Sun Microsystems,
which target platforms are network computers,
Web browsers, or any future platform that runs
Java and has to interact with smart cards. It
provides architecture for various cards and card
readers management and a set of terminal
APIs. The terminal applications are coded in
Java, so they are naturally presented with the
capability for Internet application. For Java
Cards, OCF provides the services of
downloading from the
Internet and installing them to the card.

card applications

3.2 Improvement of inner architecture

3.2.1 interpretive smart card

An interpretative smart card has an interpreter
locating above the card operating system. It
supports the card to run programs that may be
written in a standard language. And it tries to
resolve the problem of rigid data structure and
direct data access method in traditional smart
cards. The data in an interpretative card is
managed by each card application. The
instruction to an interpretative card is no

necessary to indicate the data location.

As well as we know, there are two types of
interpretative card operating systems,
JavaCard and Multos. Since their architecture
and mechanism are similar, here we take Java
card as an example to show how the
interpretative card works.

Figure 5 shows the architecture of a Java Card.

Figure 5. The architecture of a Java Card.
In Java Card, a JavaCard virtual machine is
built above the card native OS, which support
the card to run programs written in JavaCard
APIs[4]. Each card application (card applet)
manages its application data as parameters of
the object. For example, a card applet
“Cardholder”, which stores the information of
the cardholder, has parameters of “Name’,
“PIN”, "SecretKey’, etc. If we want the
parameter “Name”, we send a command as:
Select cardapplet "Cardholder”, read out the
"Name".
Since the instruction to the card doesn't include
the data location, the terminal application can
be developed without card specific information.

3.2.2 Java terminal

Addressing various OS and APIs of card
terminal, a Java Virtual Machine can be
adapted to the terminal platform. A Java

terminal has a similar architecture as the Java
Card, which uses Java as a standard
programming language.

Therefore, for Java Cards and Java terminals,
the application can be developed without
dependence on the card neither the terminal.

3.2.3 Standards and specifications
Here are some standards and specifications for
interpretative card and Java terminal:

MULTOS specification[5] - the first
specification for interpretative smart card. It is
openly licensed and controlled by international
organizations MAOSCO Consortium, which
includes 14 world leading companies, such as
American Express, FEuropay International,
= MasterCard International, Fujitsu Group,

Hitachi, ete. Up to now, Multos is running on its

specific card OS. MEL (MULTOS Executable

Language), the language used by Multos cards,

is an assembly programming language.

JavaCard Specification[4] -- A specification
form Sun Microsystems. Introduced in 1996,
the Java Card platform has been widely
adapted by the card OS designers (with over 30
licensees representing more than 90% of the
manufacturing capacity of the smart card
industry). The language used by Java cards is
JavaCard APIs -- a subset of the generic Java
language.

Visa Open Platform (VOP)[6] — specified by
Visa Group for its members. Addressing the
card, VOP has selected Java Card as the
working platform, and addressing thé card
terminal, Visa has developed a Java virtual
machine and terminal APIs, which fits small

terminals (such as a mobile phone, TV set top
box, etc) in size and functionality. VOP also
provides tools for card application management
and personalization, which enables cards to be
customized and issued in a systematic way.

3.3 Co-operative and competitive specifications
Table 1 lists the software architectures and
specifications we have mentioned above with
the scope of their coverage.

It is important to understand that these
architectures and specifications are established
addressing different aspects in smart card
solution. Many standards and specifications
make reference to and use aspects of other
standards. So, even though they may appear to
redefine parts of other specifications, in fact the
spirit of those specifications are attempting to
address a completely different aspect of smart
card standardization. These specifications are
rather than
competing - complementary with respect to the

considered complementary
scope of their objectives as well as to the
environments in which they will be deployed.

However, when a smart card solution is built,
we need to make a choice among the cards,
terminals and architectures, The selection
should be made with considering of the
operating environment for the smart card
application. For example, if we are targeting
non-Java applications for Windows and need
only to support a particular card issuer, PC/SC
may be an obvious choice due to its wide
support. If the terminal application is for using
in the Internet and based on a Java platform
with sufficient memory resource, such as a
computer, OCF will be a good choice because of
its powerful Java virtual machine and full

Table 1. Working scope of specifications and architectures for smart cards and card terminals

JavaCard Multos VOP IBM smart PCISC OCF
Specification Specification card toolkit
Card architecture v N
Card APIs v y N
Various cards handling N < v
Card application management < N
Terminal architecture Y
Terminal APIs + < y
Various card reader handling ‘f N
Programming language Java MEL Java C,C+ C Java
Terminal platform Awide range of Windows Windows | Platforms running
terminals (PC, 9x/NT, 9x/NT Java (network
ATM, mobile...) O8/2 Warp computers, Web
environments. browsers...)

functionality. If we want to develop our
applications with Java, running on Java cards
and terminals with limited resource, VOP is the
only choice available now.

4. Conclusion

Card-dependence and card reader-dependence
are two main barriers for smart card
application interoperability. The solutions can
be approached form two ways: building
external software architecture, or improving
inner architecture of the card and terminal.
Some software architectures have been
provided to handle different types of card and
card reader. Nevertheless no of them is able to
cover all types of card, neither the card readers.
It is a question whether it is possible (or
necessary) to build a huge architecture for

various computers and devices. With Java
running on the card, the terminal and the
server, the smart card application can be
designed and developed in a coordinate and
systematic way.

Reference

[1] dJorge Ferrari, Robert Machinnon, Susan .Poh
and Laskhman Yatawara: Smart Cards: A
Case Study, International Technical Support
Organization, SG24-5239-00, (1998) pp. 123-
131 .

[2] “Interoperability Specification for ICCs and
Personal Computer Systems”, Bull CP8,
Gemplus SA, Hewlett-Packard Company, et
al, Revision 1.0, December 1997

[8] “OpenCard Framework 1.1.1 Programmer’s
Guide’, OpenCard Consortium, Third
Edition, April, (1999)

handling all types of cards and card terminals. [4] “Java Card™ 21 Virtual Machine

Specification”, Sun Microsystems, Inc,
Improving the inner architecture of smart cards Revision 1.0, March, (1999); ”Java Card
and card readers is a direct way to realize the Applet Developer's Guide”, Sun
application interoperability In addition, the Microsystems, Inc, Revision 1.12, August,
best application coordination and efficiency can (1998)

be obtained. Comparing with Multos card, Java
Card has been accepted much widely and
quickly by smart card industry. It is due to the
enormous successes of Java in other fields such
as Internet, and the wide acceptance of Java by

[6] “A Guide to the Multos Scheme v.1.1.2”,
MAOQOSCO Litd., August, (1999)

[6] “Visa Open Platform Overview’, Visa
International Service AsSociation, April,
1999

