757 422ECAD 3314
(1988 7 22)

7 4 > F - Y o e R R OO B RO

&% #H=x
ARERBERFLEBEBETFI®H

AVEL-F T FTT 49 I ARBTEIRLEAWRABO —DOR. FEKEE
EhrHETREARODBERAINZILETOENRNETZE VS SHEA (Y 4V F
T YD EYIEB) BH B, COMBREHUTHEXEDP>ZBHOZ7ALIY X AW
BEXHATLEIYN., HEOHAEERILZ OV TRAVHARINATLRLV LS TS 5.
AHRETE. 940 FT YV EYITHBOHEER IR DLV TERUL., BiEE
EPEABRLEAITIBEELERBREUVLRER., COLISRZ7TLIYILATHEESELSH
DEFBELHLHMI2BEORRBUELETHII LV 5 58R28/R. FOED. I 1V
FY « JYSDEYIBELRTIDLRORVTF - Y EBREODLVTHBRIF LTV 3,

Computational Complexity of

Window C1lipping Problem

Tetsuo Asano

Department of Applied Electronics,
Osaka Electro-Communication University
18-8 Hatsu-cho, Neyagawa, 572 Jjapan

One of the most fundamental problem in computer graphics is to enumerate
all the 1line segments that intersect an arbitrary axis-parallel rect-
angular window, known as the window clipping problem. The purpose of this
paper is to investigate the computational complexity of the probiem and to
present an algorithm and a data structure for solving +the problem
efficiently. Some pessimistic result is shown, that is, the lower bound
of the time required to answer such a query is proportional to the square
root of the number of line segments if storage proportional to the number

of line segments is available.

1)

1. Introduction

Due to the recent remarkable deve-
lopment of the technology in computer
graphics geometrical data processing has
become more and more important. To meet
the requirement a number of efficient
algorithms and data structures suitable

for storing geometrical information has

been proposed. In fact a number of
commercial line drawing programs are
available.

One of the most fundamental tasks
in those programs are to define a new
line segment by specifying two endpoints
on the screen by a mouse cursor or other
equipment and to delete or move a line
segment by specifying a point near a
target line segment. To be precise, we
would like to find a line segment which
intersects a small fixed size square or
Such a

Another

a small circle of fixed radius.
task is known as line clipping.
important task is to clip line segments
by a (large) axis-parallel

that

rectangular
the

an

to enumerate all
that

window, is,
intersect
which

Those

line segments

arbitrary specified window, is

known as window clipping. two
that

find

problems are similar to each other,

is, both of them are to

intersections with a query rectangle.
The difference is the size of a query

rectangle.

A number of algorithms have been

proposed for the window clipping

problem. The first most-commonly used
one
[NS79].

[CB781,

is the Cohen-Sutherland algorithm

Then, Cyrus-Beck algorithm
[LB84],
algorithm [SPY861,

algorithm[NLN871}

Liang-Barsky algorithm
Sobokow~Pospiril-Yang

and Nicholl-Lee-Nicholl

followed. The purposes of all those

algorithms were to reduce the number of

arithmetic operations to determine
whether a line segments a query rect-
angle and to do some experiments on the
computation time. From a standpoint of
asymptotic analysis of computation time
all those algorithms can be said to be
exhaustive methods. In this paper we
are interested in how much we can reduce
the number of tested

line segments

asymptotically.

The first efficient algorithm was

presented by M.H. Overmars[Ov85al in
1985. Assuming that there is no inter-
section among given line segments, he

presented an algorithm which can answer

a query in Ok + log n) time, where k is

the number of line segments reported,
and which builds a data structure in O(n
log n) time using O(n) space for fixed

sized windows and O(n log n) space for

arbitrary sized windows. He also
presented an algorithm for dynamic
version of the problem, i.e., which

answers a query in O(k + logzn) time,
inserts a new line segment in 0(logzn)
time and deletes a line segment in O(log
n) time using O(n log n) storage. The
data BBl[al-tree,

However,

structure wused is a

similar to an interval tree.
in an ordinary situation his assumption
that there is no pair of line segments
intersecting each other

able. Then,

is not accept-

is there any algorithm

which can answer a query in poly-log

time, say in 0(logzn)? It will be shown

that the answer is "No" if only O(n) or

Then,

present an algorithm with sublinear time

O(n log n) space is allowed. we

and a data structure for it.

(2)

Unfortunately, in a practical situa
-tion the assumption of no intersection

among given line segments is not

acceptable. No efficient algorithm has
been known for the general case. In
this paper we present an algorithm which
enumerates all the line segments inter
-secting a query rectangular window in
Ok + l\fn— logsn) time among n given line
segments
Then,

Chazelle[Ch87] we show that these bounds

using O(n log n) storage.

based on the recent results by
for space and query time are optimal up
That is,
half planar query whose lower bound has
be O(k + 4/M)

reduced to a window clipping query in

to polylog-factors. we prove a

can be

been proved to

linear time and space.

2. The Case of No Intersection

If there is no intersection among
line segments, we can construct an
algorithm for answering a window

clipping query in poly-log time using

linear storage. Such an algorithm was

presented by Overmars[Ov85a, Ov85bl. In

his algorithm two data structures are
used; one for storing endpoints of line
segments and the other for open line
Using the first data struc

find all

segments.

-ture we can those line
segments having their endpoints within a
query rectangular window. The other is

for enumerating all line segments that

cross a horizontal or vertical side of
the window.
The first data structure is

realized by a range tree proposed by
Bentley and Friedman [BF79]1. Using the
data structure, we can store a set of n

points in the plane using O(n log n)

storage such that range queries can be

answered in O(k + logzn) time, where k

is the output size. Moreover, we can

2n) time and

insert a new point in O(log
delete a point in O(log n) time.

For the second data structure for
storing a set of line segments so that
those line segments crossing at least
one side of a query rectangular window
Overmars

like

can be found

[Ov85a]

efficiently,
proposed a segment-tree
data structure which he called BBlal-
tree.

that an

segment tree is enough to enumerate all

Here we show ordinary

the line segments crossing a side of a

query window. Since a window consists

of four sides, two vertical and two
horizontal, what we have to do is to
show that given an arbitrary line

segment s, which is horizontal or

vertical, we can find 1line segments
intersecting s in an efficient way. For
simplicity we assume that there is no

vertical or horizontal line segment.
We build a horizontal segment tree
by projecting all line segments onto the

x-axis, that is, a line segment is

represented by its horizontal interval.

A line segment s is stored in every node

v such that the x-interval covers that

corresponding to v while it does not

cover that of the parent of v. In each

node line segments associated with it

are stored in a balanced binary tree in
the sorted order of their y-coordinates
of intersections with left boundary of
the interval corresponding to the node.
Similarly a - vertical tree is

built.

segment

Given an axis-parallel rectangular
window, we perform segment-intersection
query for four sides of the window. For

a horizontal side h we use the vertical

(3%

segment tree. First we find a leaf node
v associated with the y-coordinate of h
and enumerate all the ancestors of v.
At each such node we first locate the
leftmost endpoint of h and then locate
the rightmost one. Since line segments
are stored in a balanced binary tree

with x-coordinates of their intersec-

tions with top horizontal boundary of

the interval corresponding to the node

as the key. Then, it is easy to to see

that we can locate

Thus,

them in O(log n)
the

line segments intersecting an arbitrary

time. we can enumerate all
specified horizontal line segment in O(k
+ log n) time even in the worst case,
vwhere k is the output size. Since there
are O(log n) nodes to be examined, a
total ok +

Since we used a segment tree we

query-answering time is

logzn).

need storage proportional to n log n.

3. An Algorithm for Window Clipping
In the preceding section we showed
that we can answer a window clipping

query in poly-log time under the

assumption that there is no intersection

among given line segments. In practical

situations, however, such assumption is

not acceptable. In this section we

present a window-clipping algorithm

without the assumption.

An algorithm to be presented is

based on the range tree and the above-

stated segment-tree data structure.

Here we are concentrated on the problem

of enumerating all line segments inter-

secting an arbitrary specified vertical

line segment, which is a side of a query

window. As before, we project each line

segment onto the x-axis to represent

each line segment by it x-interval.

in each node as

Given a vertical line segment s, we
first find a set of nodes of the segment

tree whose x-interval contains the x-

coordinate of the query line segment s.

The problem is to enumerate all line

segments among those ones stored in each

such node that intersect s. The diffi-

culty is here is that we cannot use a

binary search on 'the set of line

segments since the order of segments

| change at their intersections.

The idea is to view line segments
Then,

we use a duality transformation from a

infinite lines.
line to a point and from a point to a
line (see, for
raper[LP84]).

line segments are mapped to points in

example, a survey

Using the transformation,

the plane. A query vertical line
segment is mapped into two parallel
lines. What is required to find is to

enumerate all points between the two

parallel lines. The problem is almost

the same as that known as half-planar
search, for which an algorithm with
linear storage and sublinear guery time
is known.

to Willard

First such algorithm is due
[Wi82], the

complexity of which

computational
is recently improved
linear storage and O(A/T *log2n)
Welzl[We88]

partition-tree data structure.

into

query time by using a

Using the data structure, we can

enumerate all point between arbitrary

+ A/
Thus,
the total query time would be O(k + 40

specified parallel lines in O(k

logzn) time using linear storage.

logsn) time, where k is the output size.

4. Lower Bound for Window Clipping
Problem
In this section we consider the

€4y

lower bound for the window clipping

problem. We consider the following

three problems.

Problem P1: Let S be a set of line

segments in the plane. Given an arbi-

trary vertical line segment s, report

all the line segments intersecting s.

Problem P2: Let S' be a set of lines in

the plane. Given a vertical half line

(xg, vo) - +00), report all the

lines of S' intersecting the half line.

(Xo,

Problem P3: Let V be a set of points in

the plane. Given an arbitrary line L,
report all the points of V below L.

Problem P3 is known as a half-
planar search problem.

Chazelle [Ch87]

Very recently,

showed that the lower

bound for a half-planar query is O(A/n)
time if only linear space is available
to store given points.

Problem P2 is

As is easily seen,

easier than Problem Pl. It
that Problem P2

is also seen

is equivalent to Problem

P3 under duality transformation. Thus,
we can conclude that Problem Pl is at
least as difficult as Problem P3 for

which O(+/M) lower bound
that is,
bound of the time required to answer a
in Problem P1 is OC /M)

allowed. So is

is known in its

time complexity, the lower

query if only
linear space is the
lower bound of the query time for the

window clipping problem.

References

[BF791 J.L. bentley and J.H. Friedman,

"Data Structures for Range Searching”,

ACM Comput. Surveys, 11, pp.397-409,
1979.

[CB78] M. Cyrus and J. Beck, "Genera-
lised Two- and Three-Dimensional Cli-
pping", Computers and Graphics, vol. 3,
no. 1, pp.23-28, 1978.

[Ch871 B. Chazelle, "Polytope Range

Searching and Integral Geometry", Proc.
IEEE
Computer Sciences, 1987.

[DE84]1 D. P. Dobkin and H.

SYmposium on Foundations of
Edelsbrunner,
"Space

Objects",

for
IEEE

Searching Intersecting

Proc. Symposium on
Foundations of

387-392, 1984.

Computer Science, pp.

[LB84] Y.D. Liang and B.A. Barsky, "A
New Concept and Method for Line
Clipping"”, ACM Transaction on Graphics,
vol. 3, no. 1, pp.1-12, 1984.

[LP84]1 D.T. Lee and F.P. Preparata,
"Computational Geometry -- A Survey",

IEEE Trans. on COMPUTERS, vol. C-33, no.
12, pp.1072-1101, 1984.

[NLN87] T.M. Nicholl, D.T. Lee and R.A.
Nicholl, "An Efficient New Algorithm for
2-D Line Clipping: Its Development and
ACM
Computer Graphics, pp.253-262, 1987.
[NS79]1 W.M. R.F.
"Principles of

2nd

Analysis", Proc. Symposium on

Newman and Sproull,
Interactive

ed.,

Computer
Graphics", McGraw-Hill,

York, 1979.

New

[Ov85al M. H. Overmars, "Range Searching
in a Set of Line Segments", Proc. lst
ACM Symposium on Computational Geometry,
pp.177-185, 1985.
[Ov85b] M. H. "“Geometric Data

Tech.

Overmars,
Structures for Computer
RUU-CS-85-13,
Utrecht, 1985.

Graphics",

Report University of

(5%

[SPY86] M.S. Sobkow, P. Pospisil and Y.-
H. Yang, "A Fast Two-Dimensional Line
Clipping Algorithm",. University of
Saskatchewan Technical Report, 86-2.

[SS68]1 R.F. Sproull and I.E. Sutherland,
"A Clipping Divider", FJCC 1968, Thomp-
son Books, Washington, D.C., pp.765-775.

[We88] E. Welzl, "Partition Trees for
Triangle Counting and Other Range
Searching Problems”, ACM Symposium on
COmputational Geometry, 1988.

[Wi82] D. Willard, "Polygon Retrieval",
SIAM J. Comput., 11, pp.149-165, 1982.

{6)

