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On Identifying Symmetry of a Three-Dimensional Object
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ABSTRACT An algorithm for identifying symmetry of a three-dimensional object
given by its octree is presented and the symmetry degree, a measure of object symme-
try, is proposed. The algorithm is based on traversal of the octree obtained by the
principal axis transform of an input octree. An object can be at an arbitrary position
and with arbitrary orientation within the octree space and all types of symmetry, i.e.
bilateral, axial and point symmetry can be identified. The operation of the algorithm
is illustrated using some synthetic test objects. The results, comprising an identified
symmetry type and the corresponding symmetry degree, were satisfactory.
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1. INTRODUCTION

Symmetry is one of the most important fea-
tures of objects. Identifying symmetry is an inter-
esting problem in itself in computational geome-
try, but the notion of symmetry can be useful in
other fields as well. Among possible applications
an obvious one is in data compression, since for
representing symmetrical object it is enough to
keep a model of its symmetrical half and the in-
formation about the position of the plane or the
axis of symmetry. In computer vision, symmetry
can be used as a special object’s feature which
would reduce the number of candidates for
matching in the library. A more advanced appli-
cation can be automatic correction of an “al-
most symmetrical” object to a symmetrical one.
This may be useful, for example, in computer
vision for object models obtained from camera
or range images, in CAD systems for object
models built on the basis of digitized line draw-
ings, or in computer graphics for models of
biomedical organs obtained by computer tomog-
raphy.

In spite of the importance and usefulness of
the notion of symmetry, there have been, to the
best of our knowledge, no techniques reported
for identifying symmetry of three-dimensional
(3D) objects, although there were some efforts
in the case of 2D images. One of the first results
was reported in [1]. It is rather limited in scope
because an image symmetry can be detected
along 4 directions only (horizontal, vertical, the
left and the right diagonal). Quadtrees were used
for image representation and it was shown that
they facilitate efficient checking for symmetry,
but the method has almost no practical impor-
tance since an image has to be aligned with the
quadtree space. The same authors, however,
used this idea for data compression, obtaining
so-called “minimal quadtrees” [10]. Kanade and
Kender developed a method for detecting ordi-
nary and skewed symmetry of line drawings [8].
Skewed symmetry was used as a cue for the rec-
ognition of 3D objects from one view [9].
Slightly more general approach was reported by
Attalah [2]. His system can identify the axes of
ordinary symmetry of a figure which consists of

a collection of finite number of points, seg-
ments, circles, etc. In [5], a method which deals
with an arbitrary 2D image and is able to detect
both ordinary and skewed symmetry was pre-
sented, but its time complexity can be excessive
(heuristic search for the axes of symmetry which
satisfy the predefined analytic constraint) and it
is not fully automatic because the symmetry
evaluator which checks symmetry for a supposed
axis is not reliable. An interesting research was
recently done by Marola. He considered “almost
symmetric” planar images and introduced the
so-called coefficient (measure) of symmetry
[11]. The results have been used for object de-
tection and location {12].

Symmetry is also a subject of an active re-
search in psychophysics and the theory of per-
ception. There have been some attempts to
quantitatively describe symmetry and several
symmetry measures were proposed [18, 17], but
no attempts to locate symmetry axes in an ana-
lytical way are reported (it is interesting that a
special device called symmetrograph was con-
structed to locate symmetry axes mechanically

(18]).

Thus, even in 2D it seems that there is not
one standard technique for symmetry identifica-
tion, and it is not clear how to extend available
methods to a 3D case. In this paper, we claim
that our procedure is capable of identifying sym-
metry of an arbitrary 3D object without impos-
ing any constraints on its shape, position and ori-
entation. It is only assumed that an object is rep-
resented by its octree (for the reasons explained
below). Bilateral, axial and point symmetry can
be identified and the level of symmetry is ex-
pressed (measured) by means of the so-called
symmetry degree.

This paper is organized as follows: after the
review of some facts about principal axes, and a
short overview of octree data structure in section
2, detailed explanation of the proposed algo-
rithm is given in section 3. Results are presented
and discussed in section 4, followed by conclu-
sion and ideas about further work in section 5.
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2. TOWARDS THE SOLUTION

Two issues have turned out to be crucial for
the solution of the symmetry identification prob-
lem: strong analytic conditions for symmetry and
a general object representation scheme which
can support all required computations. These
topics are briefly discussed in the sequel.

2.1. An analytic conditions for symmetry

First, a short explanation of the notion of
principal axes is given, because our analytic con-
dition is based on them. Consider an object in
the N-dimensional space. Principal axes can be
defined [7] as a set of N vectors which satisfy
the following conditions:

a. they point in the direction of the maxi-
mum variance of data;

b. they are mutually orthogonal.

Principal axes are actually eigenvectors of
the so-called covariance matrix. Each eigenvalue
is equal to the variance of data along a corre-
sponding eigenvector. Principal axes have a com-
mon intersection point at the object’s centroid,
but their orientation is undefined. Since covari-
ance matrix is symmetrical, the eigenvalue prob-
lem associated with it always has real solutions.

On the other hand, principal axes have the
following important relations with the object
symmetry [15]:

" Theorem I: Any plane of symmetry of a
body is perpendicular to a principal axis.

Theorem 2: Any axis of symmetry of a body
is a principal axis.

These facts can be used as necessary condi-
tions for an axis (a plane) to represent an axis (a
plane) of symmetry of a given object. But these
conditions are not sufficient, thus symmetry has
to be verified or rejected by direct examination.
For doing this, it will be convenient to use the
coordinate system placed at an object’s centroid
with principal axes as coordinate axes. In that
case, symmetry has to be examined with respect
to the coordinate axes and the coordinate planes.
Point symmetry with respect to the origin (i.e.
the centroid) can also be examined.

Aligning an object from an arbitrary coordi-
nate system to the one described above is known

as a principal axis transform [7] (sometimes re-
ferred to as Hotelling, eigenvector or discrete
Karhunen-Loeve transform). It has important
property of being invariant to the rotation and
translation of an object.

The proposed condition for symmetry is se-
lective enough because in general case there will
be 7 types of symmetry to check for: bilateral,
with respect to 3 coordinate planes; axial, with
respect to 3 coordinate axes and point symmetry
with respect to the origin (i.e. the centroid). It
will be shown later that some hints (for which
type of symmetry to check first) can be em-
ployed to speed up this search. )

2.2. Object representation

In the case N=3, the covariance matrix is the
matrix of inertia, comprising central moments of
order two. Hence, the chosen object representa-
tion scheme has to support the following opera-
tions: computing of moments, linear transforma-
tion (translation and rotation) and symmetry
evaluation. It will be shown that the octree data
structure satisfies all these requirements.

(@  p* ® A
4
6
o o)
s |7 2
3 < /
P x
X
(c)
B BLACK
O WHITE
@ GRAY

01234567

Figure 1. An object and its octree. (@) Octant labels
(octant 0 is occluded). (b) An object, and (c) its octree.

An octree is a hierarchical data structure
which represents a given object as a juxtaposition
of cubes of different sizes, obtained by recursive
and regular decomposition of the 3D space (Fig.
1). Cubes are organized in a tree of degree 8.
Decomposition is applied until either all cubes
are completely inside or outside the object or the
predefined depth of recursion (called octree



resolution) is reached. Octree cubes (sometimes
called nodes or octants) are classified as
BLACK and WHITE (representing presence
and absence of the object, respectively; these two
are referred to as leaf nodes), and GRAY (they
intersect the boundary the object, and they are
further decomposed). Potential GRAY nodes at
the resolution level cannot be further decom-
posed. They are marked as BLACK or WHITE
according to a certain “leaf criterion”. Octree
nodes at the resolution level are called voxels.

Octree encoding methods can be divided
into pointer and pointer-less schemes. The for-
mer are based on a hierarchical nature of the
octree, while the latter take advantage of the fact
that each octree node has either 8 or zero sons.
The choice of the encoding scheme is influ-
enced by an actual application.

Octrees are direct extension of quadtrees in
3D; both structures are based on the coherence
of data they represent. Octrees have been used
for various applications in computer graphics
and pattern recognition. Recent surveys are
available: [13, 14, 3]. Octrees are attractive be-
cause: (a) any object can be represented, regard-
less of its shape; (b) calculations of mass, mo-
ments and set operations are extremely simpli-
fied and (¢) an octree can be constructed auto-
matically from 2D camera views, range data,
cross sections, other representation schemes, etc.
Disadvantages include (@) explosion of the num-
ber of octree nodes for high resolution models
and (b) quantization error as a result of the ap-
plication of a leaf criterion.

Regarding the requirements stated before it
can be noted that octrees support computation
of moments and symmetry evaluation very well.
Linear transformations are not immune to a
quantization error, but it does not affect their
performance significantly.

3. ALGORITHM OVERVIEW

Under the assumption that for a given object
its octree representation is available, an algo-
rithm for symmetry identification can be formu-
lated in three steps as follows:

Step 1: Compute the parameters of the prin-

cipal axis transform.

Step 2: Perform the principal axis transform
of the input octree, and build the “principal
octree”.

Step 3: Traverse the principal octree and
judge the symmetry by computing corresponding
symmetry degrees for bilateral, axial and point
symmetry.

These steps are explained in more detail be-
low. Estimation of the execution time is also in-
cluded.

3.1. Parameters of the principal axis
transform

The mass and the centroid of an object can
be expressed by the means of moments of order
zero and one, respectively. Moments of order
(p+q+r) for p, g, r € Ng (N is the set of non-
negative integers) are given by

Mpqr=fff xPy%2To(x, y, 2) dxdy dz (1)
S

where S is the whole octree space and p is a den-
sity function assumed to be piecewise continu-
ous (thus bounded) and equal to zero except ata
finite part of S. The mass and the coordinates of
the centroid are given by

m=Mpygg-
Gy, Z)=(M100’ My, Mom)
oree Mooo Moo  Mooo

Now, central moments of order (p+g+r) for
D, g, r € Ng are defined as:

Hpgr =f f f (X‘Xc)p(}"‘yc)q (Z‘Zc)r
5 «p(x, y, z) dx dy dz )

where S and p have the same meaning as before.
Note that in the case of octrees, integration in
equations (1) and (2) becomes summation over
all BLACK octree nodes (since p=0 for WHITE
nodes). Function p becomes the mass of a par-
ticular cube, with point (x, y, z) being its center.
This computation is rather straightforward (but
see [4] for some slight improvements). As men-
tioned earlier, in the 3D space a covariance ma-
trix is the matrix of inertia which is given by the
means of central moments of order two:
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Now, the eigenvalue problem for matrix I is
solved. Suppose that obtained eigenvectors e, e,
and e3 are given by their unit components €; (;,
j=1,2,3). Then the transformation matrix for
the principal axis transform can be expressed by

T = Trans(-x, -y,, =z,) - Rot

where Trans represents translation to the cen-
troid, and Rot is a rotational component defined
by

Rot =

[
S
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N
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Note that the eigenvalue problem for matrix
I always has solutions, thus matrix 7 always ex-
ists. However eigenvectors are uniquely defined
(up to their direction) only if all eigenvalues are
distinct. If 2 (3) eigenvalues are equal, direc-
tions of 2 (3) eigenvectors are not unique (but
condition of mutual orthogonality holds). These
degenerative cases correspond to appearance of
multiple axes and/or planes of symmetry. They
are not further elaborated here.

3.2. Octree transformation

In this step the input octree is transformed
using transformation matrix 7 defined above.
The problem with an octree transformation is
that, save a few exceptions (translation for a vec-
tor with integer components, rotation by multi-
ples of 90°), a quantization error is introduced
again. Thus, a leaf criterion has to be chosen
carefully to prevent changes in object’s mass
and shape. Precision can be improved by in-
creasing the resolution of the output octree, but
the number of its nodes will increase too. Note
that for small objects such resolution increase is
mandatory, in order to preserve their shape. Re-

gardless of a transform, the most precise octree
is kept all the time, and all transformations are
computed with respect to it.

Among several methods (although similar in
nature) reported for octree transformation, the
method of Weng and Ahuja has been adopted
[16]. The leaf criterion is formulated so that a
voxel of the output octree is marked BLACK if
and only if its center lies on or inside some
transformed BLACK node of the input octree.
This scheme tends to keep the object’s mass un-
changed. The average execution time is reported
to be O(rK), where K is the the number of nodes
of the input octree and r is the resolution of the
output octree.

We shell refer to the transformed octree as
the principal octree of an object.

3.3. Symmetry evaluation

The particular type of symmetry is judged ac-
cording to the corresponding symmetry degree, a
measure of symmetry which we define as the
normalized size of the symmetric subset (core)
of the object (this measure is known as “self-
overlap” [18]). In other words symmetry degree
(sd) is the ratio:

sd = Msym
m
where Msym is the mass of the symmetric subset
of the object, and m is the object mass. It is clear
that in a general case 0 < sd < 1. The value

Mmsym is computed from the principal octree.

In [1] a recursive method for identifying ax-
ial symmetry of an image from its quadtree with
respect to coordinate axes was developed. It is
based on a notion of classes of symmetry and it
can be extended to deal with octrees. However,
instead of doing that, we developed a simpler,
direct method based on octree traversal and lo-
cation of symmetric “brothers”. Two octree
nodes are symmetric brothers, e.g., with respect
to the z-axis if they are (a) of the same size, and
(b) if the center of one of them is Cy(x, y, z)
then the center of the other one is Co(-x, -y, z).
Instead of comparing coordinates of centers it is
enough to compare position of nodes in the



octree using symmetry mapping tables. In the
case of axial symmetry with respect to z-axis (see
Fig. 1a) the corresponding table is given below;

d o 1 2 3 4 5 6 7
s(d) 3 2 1 0 7 6 5 4

Pairs of symmetric octants (e.g., 0 and 3, 1
and 2, 4 and 7, 5 and 6) are simultaneously trav-
ersed, with node d of one of them compared
with node s(d) of the other one. Beginning with

Mgm = 0, comparison is done for all pairs of
symmetric brothers using the following rules;

a. if at least one node is WHITE do nothing
(proceed with next pair of nodes),
b. if at least one node is BLACK increase

Msym for double the mass of the other node, and

c. if both nodes are GRAY traverse their
sons using the table above, and compare them
using these rules.

Note that in our approach sd is always
greater then zero, because only lines and planes
passing through the centroid are considered, but
for the same reasons it is not necessarily the
maximum sd for a given object (for maximum
sd lines and planes passing off the centroid have
to be considered too).

It was mentioned earlier that eigenvalues of
the inertia matrix represent variance of data
along the corresponding eigenvectors. Hence,
equality of two eigenvalues may indicate axial
symmetry, equality of all three eigenvalues may
indicate point symmetry and distinct eigenvalues
may indicate bilateral symmetry. These relations
can be used as hints for which type of symmetry
to check first. However, as noted before (in Sec-
tion 3.1.), degenerative cases (2 or 3 eigenvalues
equal) correspond to multiple axes and/or planes
of symmetry. At the present state of the algo-
rithm, when they appear indicated type of sym-
metry can be identified but, in a general case,
multiple symmetry cannot.

3.4. Execution Time

Average execution time for the algorithm is

0 (2+ry+ca27) k)

where ry and r, are the resolutions of the input

octree and the principal octree, respectively, K is
the number of nodes of the input octree, and ¢ is
the number of symmetry evaluations in step 3
(up to 7). Three factors in the term multiplied
by K reflect time requirements for steps 1, 2 and
3, respectively. In step 1, one octree traversal is
done to compute the object’s mass and centroid,
and another one to compute central moments.
Time for step 2 is given in section 3.2. In step 3,
for each symmetry evaluation one traversal of
the principal octree is done, and its number of
nodes is proportional to its surface. The measure
given here assumes an arbitrary position of the
object, i.e. such that the number of octree nodes
before and after the transform is almost un-
changed. Taking in account that typically rp-ry <
2, and the nature of operations in step 2 (rota-
tion) and step 3 (only traversal and comparison),
the dominant component is the time necessary
for step 2.

4. IMPLEMENTATION AND RESULTS

The algorithm was implemented in C on a
workstation. Octrees are encoded using a
pointer-less scheme known as the linear octree
[6]. An octree viewer was implemented using
back-to-front painters algorithm. Among several
tests performed with synthetic objects, four re-
sults are given here.

In the first three tests, octree resolutions were
r1=3 and rp=6. Note that because these objects
belong to the class of small objects (only several
nodes at ry=3) rp must be set greater than ry
(valid results were obtained with rp=4 too, but
higher resolution was chosen to improve display
quality). The program report consists of the
eigenvalue problem solution (eigenvectors origi-
nate at the centroid of an input object) followed
by computed symmetry degrees for each symme-
try type. Complete results of test 1 are shown in
Fig. 2. Three different types of symmetry were
identified with sd=1. In test 2, one asymmetric
object was processed (Fig. 3). The highest re-
ported sd is 0.679. The object in Fig. 4a was
used in both tests 3 and 4. In test 3, one axis and
two planes of symmetry were identified (Fig.
4b). Note that this object has four planes of sym-
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Input octree (left)
6 nodes
F mass=3072.0
centroid=(8.0, 8.0, 12.0)

Principal octree (right)
1072 nodes
mass=3004.0

centroid=(0.0, 0.0, 0.0)

(T 4e]s

i ev; e
1 84219.04999 (-0.5, -0.5, 0.7071068) ©
2 163328. ( 0.7071068, -0.7071068, 0.0 ) ,
3 176900.95 (0.5, 0.5, 0.7071068)
SYMMETRY
Axial Bilateral
axis sd normal sd 2
eq 0.6418109 eq 0.6418109
e2 1.0000000 €2 1.0000000 X )\y
e3 0.6418109 e3 0.6418109
Point: sd=1.000000
Fig. 2d.

Fig. 2. Results of test 1. (a) An input, and (b) the principal

octree with accompanied data. (c) Symmetric half with respect to bilateral symmetry. Each octree (a-c)

is shown in perspective (left) and three orthographic projections (right; top to bottom along z, y and
x-axis). (d) The program report (ev—eigenvalues, e—eigenvectors; the highest sd’s are given in italics).

i ev e

1 151097.1779  (-0.0693103, -0.3754182, 0.9242604)
2 382665.3812  (-0.3260622, 0.884128, 0.3346657)

Fig. 3. Results of test 2. 3 459188.2192  ( 0.942804, 0.2781706 0.1836888)

(a) An input octree, SYMMETRY

and (b) the program Axial Bilateral

report. axis sd normal sd
eq 0.3633315 e1 0.4119620
€2 0.3275573 e2 0.4320850
e3 0.2839575 e3 0.6791503

Point: sd=0.227501
Fig. 3b.

Fig. 4. Results of tests 3 and 4. (a) The object used in both tests. (b) The program
report for test 3 (no quantization error). (¢) The program report for test 4 (input
octree rotated first).

ev; e i ev; e

[ i
l1 72715.‘88309 (1, ot, 0) 1 71600.85098 ( 0.8940015, -0.4480626, 0.0011503)
2 72715.88309 (0, 1, 0) 2 72431.20813 ( 0.448062, 0.8940022, 0.0007697)
3 120288. (0, 0, 1) 3 119731.9865 (-0.0013733, -0.0001727, 0.999999 )
SYMMETRY SYMMETRY
Axial Bilateral Axial Bilateral
axis sd normal sd axis sd normal sd
eq 0.6142857 eq 1.0000000 €1 0.5972034 e 0.9490302
e2 0.6142857 e 1.0000000 €2 0.5972034 e2 0.9490302
e3 1.0000000 e3 0.6142857 e3 0.9598557 e3 0.6134416
Point: sd=0.614286 Point: sd=0.604420
Fig. 4b. Fig. 4c.



metry. In test 4 the influence of noise was simu-
lated. The same object was first rotated for 20°
around the z-axis and the result was recorded in
the octree with r=6, which contains a quantiza-
tion error. The symmetry identification algo-
rithm was applied to the transformed octree (not
shown), and the principal octree was computed
with the same resolution. Thus in this case
ry=rp=6. Obtained sd’s and principal axes con-
tain a small error (Fig. 4c).

Note the excellent performance of the algo-
rithm for synthetic objects without noise (tests 1,
3). The simulation of noise in the input octree
gave quite satisfactory results with only slight er-
ror in sd and position of axes (test 4). Similar
type of noise can be expected for octrees of real
objects constructed using, e.g., camera images.
In such environments a certain threshold th for
sd has to be established. Symmetry is claimed if
sd > th. As noted before, the symmetry degree
described here is not the maximum one for the
given object, which can be considered as defi-
ciency if such sd is needed, but this is actually a
merit which facilitate classification of asymmet-
ric objects (test 2). At present the algorithm does
not support identification of all axes and planes
of symmetry of an object (test 3).

S. CONCLUSION

An algorithm for identifying symmetry of an
arbitrary 3D object is presented and imple-
mented. To the best of our knowledge this is the
first such algorithm reported so far. The only
prerequisite is that the object is given by its
octree. The algorithm has been verified by se-
lected examples using synthetic objects.

Identification of all axes and planes of sym-
metry remains to be solved. To do this, the rela-
tions between a symmetry of cross-sections of an
octree with positions of multiple planes of sym-
metry are studied now. The algorithm will be
also tested with octrees of real objects. It can be
easily adjusted to deal with 2D images repre-
sented by quadtrees.

Symmetry is a very important feature of ob-
jects, and the ability to identify this feature will
find numerous applications in computer vision,

intelligent CAD systems and in some other re-
lated fields.
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