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Recognition of 3-D Shape from Stereo Contours

Jaemoon Chung and Shigehiro Fukushima
Faculty of Computer Science and Systems Engineering
Kyushu Institute of Technology

lizuka 820, Japan

Abstract A new geometrical model is proposed to understand and recognize the three-
dimentional shape of an object from its stereo contours. One assumption is made for recostruction
in this model: the object is composed of a set of disks, each of which is a cross section of a sphere
within the object. The analysis of planar data from each direction is based on the Symmetric Axis
Transform (SAT) by Blum. The concept of the Maximal Sphere is introduced, in order to make
the corresponding relationships between a pair of planar data analyzed. Each Geometrical Disk,
derived from the analysis of above relationships, can be sufficiently described with its position,
orientation, and magnitude. Whole shape is easily recoverable from its description with a set of
various Geometrical Disks. The description is unique for a pair of stereo contours. Such disks
may be effective primitives for recognition of the 3-d shape of an object. The effectiveness of this
model is demonstrated with several sweet potatoes, which have natural (that means smoothly
curved) shapes with a space-curved spine.

W key words Stereo Matching, Symmetric Axis Transform, Maximal Sphere,
Geometrical Disk, 3-D Shape Recognition
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1 Introduction

If a human being sees a planar figure displayed only by its
contour, still he may be able to imagine a 3-d shape relating
to it. He may be able to describe the 3-d shape with a set
of generalized cones as in [4]. In fact, researches have been
trying to extract the descriptor of a planar shape from its
boundary information [5-9].

In this paper, we propose a new geometrical model for re-
construction, description, and recognition of the 3-d shape
of an object. This mode! is developed on the basis that an
object’s planar contour may be one of the most important
cues, for a human being to understand the shape of an ob-
ject. It is well known that the binocular approach is neces-
sary to understand any 3-d environment sufficiently. There-
fore, the standpoint of this model may be called shape-from-
stereo-contours. Determining the correspondence between
a pair of images is the most difficult problem in the binoc-
ular approach. We use the characteristics of a sphere to
solve this problem. The assumption for reconstruction of
3-d shape is as follows: an object has certain cross sections,
each of which has a shape of a disk as well as is a cross
section of a sphere contacting the object from inside. The
contact is along the disk edge. In the above assumption,
the key concepts of Mazimal Sphere and Geometrical Disk
are included. The mazimal sphere is a 3-d extension of the
mazimal disk in the Symmetric Axis Transform (SAT). The
SAT is one of the planar shape descriptors [5]. In this pa-
per, the SAT is used to analyze each planar contour, the
silhouette outline of the view of the object from each direc-
tion.

A 3-d recognition system has two major parts: the shape
description from sensed images through reconstruction, and
the matching of the described shape to stored models. As
mentioned previously, stereo vision has been difficult due
to the problem of finding correspondence between images.
Therefore, we think, the 3-d recognition systems have ap-
peared which use a monocular data. One of these systems
is a model-based 3-d vision system. This system needs rea-
soning of a 3-d model from a 2-d silhouette image of an
object [1,2]. For the reasoning, view point transformation
is applied to the 3-d models stored in a database. The
shape of a model is described with generalized cylinders.
A generalized cylinder is specified by parameters about its
axis curve and cross section shape. A complex object is
described by hierarchic representation with a collection of
various generalized cylinders [3]. However, the scope of ob-
Ject description is limited within the range of parameters
adequately describable. This means that the cut-down of
information is inevitable in shape description with the gen-
eralized cylinders, in order to retain the model database for
efficient matching within acceptable size. ~

In this paper, a new descriptor of 3-d shape is also pro-
posed. The disk, addressed in the assumption for recon-
struction above, is related to this. This disk plays roles of
primitives not only for 3-d shape description but also for
recognition. The disk is called Geometrical Disk, in order
to emphasize that it is completely characterized by its posi-
tion, orientation, and magnitude. The whole of a 3-d shape
can be described by a set of various these disks. Although
the shape is limited to a disk, variety of representation is
possible other than a simple disk. This means that all per-
spective projections of a disk can be included in the parts of
the reconstructed shape theoretically. It is possible to de-
sign a new type of 3-d vision system by using these disks as

primitives for shape representation. These systems incopo-
rate the stereo-vision, and may perform the 3-d recognition
function without the burden of the cut-down of informa-
tion, view point transformation, and hierarchical reasoning.
These are inevitable in a model-based 3-d vision system with
single vision.

This paper is organized as follows. In Section 2, the
concept of the Mazimal Sphere is described in relation to
the SAT. Sections 3 deals with the analysis for recover-
ing. Section 4 includes the representation and the recov-
ering of a 3-d shape with this model. Finally, experimental
results are shown in Section 5. In this section, this model
was implemented to demonstrate its effectiveness experi-
mentally. Several pairs of images of sweet potatoes were
analyzed, whose shapes are relatively complex with space-
curved spines.

2 The Maximal Sphere
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Fig.1  Symmetric axis transform

The symmetric (or medial) azis generated by applying the
SAT to a contour can be considered as the locus of the cen-
ter of a mazimal disk (MD) as shown in Fig.1 [8]. The MD
is a disk which is contained inside the contour and touches
at least two points of the boundary contour. Several al-
gorithms have been proposed for computing the SAT for
a contour approximated by a polygon [10-15]. In practice
to compute the SAT, it is inevitable to sample a train of
points from a planar boundary due to the use of digital sen-
sors such as CCD cameras. If the magnitude of an object
and the spatial resolution of these digital devices are ap-
propriately adjusted, the problem of inconsistency may be
ignored. (The inconsistency may occur due to digitization
of the contour.) In this paper, the Voronoi diagram and the
Delaunay triangulation were applied to the digital contours
[13,14] for implementation of the SAT. The former is used
to find symmetric axis and the latter is used to find pairs
of symmetric points on the contour. The Delaunay triangu-
lation was implemented using the divide-and-conquer algo-
rithm by Lee and Schachter [11] for efficient computation;
the Voronoi diagram was derived from this triangulation.

Proposition 1
For the simply connected conlour of a planar figure,
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any mazimal disk MD is langent to the conlour atl ils
touching point.

Proposition 1 is proved in [16]. This means that the line
connecting a touching point and the center of the disk meets
perpendicularly with the tangent line at the touching point.
For an MD, the perpendicular bisector of the straight line
connecting the touching points passes through the center of
the MD.

Proposition 2

A disk, contained in a sphere and expressible with a
cross seclion of the sphere, can be uniquely identified
by the center posilion of the sphere, and the center
position and the diameler of the disk ilself. The orien-
tation of the disk is also needed if the cenler posilions
of the sphere and the disk are the same.

AMAXIMAL
SPHERE (MS1)

LEFT SENSOR &
COORDINATE ~ SYSTEM

Fig.2  The Maximal Sphere related to SAT

Proposition 2 is trivial. On the bases of Propositions 1
and 2 and the assumplion for reconstruclion, let’s consider
the shape of Object 1 in Fig.2 as a general case, although
it is easier to think about the case of Object 2, a cone. As
shown in Iig.2, we assume that a cross section of Object 1
can be expressed as a disk which is a part of a sphere within
the object. Object 1 is viewed with a pair of cameras from
left and right directions, respectively, to take a pair of sil-
houette contours. The point pair (Py, P;) and (Ps, Py) are
two end-points of the disk within the sphere, viewed from
the left and right directions, respectively. L12 and .34 are
connecting line between the point pair (P, P») and (Ps,
Py), respectively. And L12 and L34 also pass the center of
this disk. The SAT is applied to each of the contours. Then,
we assume that M D1 and M D2 are silhouettes of a sphere
MS1 viewed from the left and right directions, respectively.
Thus, the centers of these MD’s correspond to the center
of this sphere. The point pairs (P{,P;) and (P§,P}) corre-
spond to (P1, P;) and (P, Py), respectively. The point pairs
(P{,P3) and (P§,P}) can be determined from the fact that

they have a common three-dimensional point, the center of
MS1, which are projected as points MDC1 and MDC2,
respectively. The points M DC1 and M DC?2 are on sym-
metric axis SA1 and SA2, respectively. The straight lines
L12' and L34/ correspond to L12 and L34. Points C1’ and
C2' bisect L12' and L34', respectively. These points corre-
spond to the center of the disk D1.

The above observation is valid due to the characteristics
of a sphere as follows. All normals on the surface of the
sphere meet at the center of the sphere. Therefore, all nor-
mals on the edge of the disk, a section of the sphere, also
meet at the center of the sphere. By Proposition 2, cor-
respondence can be found between a pair of images. This
sphere is named Mazimal Sphere (MS) in relation to MD.
This is three dimentional extension of the MD in the SAT.

Using the mutual relations between MS and MD, the
analysis for a pair of contour images is implemented through
two steps.

At the first step, the SAT is applied to each one of the
contours. Then, a set of triples of points are generated for
each contour. Each triple is composed of three points: one
point is on the symmetric axis as M DC1 (M DC2); and the
other two are corresponding points on the contour as Py, Pj
(P4, Pi). The point MDC1 (M DC?2) is the center of the
inscribing circle which touches the contour at the points P{
and Pj (P§ and Pj). These three points of a triple are re-
lated to a specific MD. To find correspondence between a
pair of sets of such triples, the following are assumed for the
view from a direction.

Assumption :

1. A point on the symmetric axis of a triple is the center
point of a certain MS.

2. A pair of corresponding touching points in a triple are
two end-points of a disk within the MS.

3. The bisection point of the straight line, connecting the
two corresponding touching points in a triple, is the
center of the disk.

The correspondence between the two contours can be de-
termined by considering the above relationships with the
given sensing condition. The sensing condition comprises
the characteristics of the cameras and the coordinate sys-
tems of the cameras and of the world.

At the second step, the state of each disk is calculated
for a pair of triples, for which the correspondence was de-
termined through the the first step. Consider the straight
lines L12" and L34’ which connect a pair of the touching
points. The center position of the disk is calculated by an-
alyzing the two bisection points C1’ and C2' of the straight
lines. The orientation of the disk is calculated by analyz-
ing the orientations of the two straight lines. Finally, by
analyzing the center positions of both the MS and the disk
contained in the MS, the magnitude of the disk can be de-
termined. By applying the second step to all triple pairs, all
disks can be obtained. The description with a set of these
disks can be used for recovering and recognition of the 3-d
shape of the object.

Proposition 8

By applying the SAT to a silhouette contour, the sym-
melric aris and the sel of MD’s are uniquely deter-
mined.

Proposition 3 is the basis of unique recoverability of the
proposed geomerical model. This is because the MS is a 3-d
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extension of the MD by the SAT. Proposition 3 is proved in
(16].

We can know that the SAT embodies a definition of local
symmetry and has rich representations in the sense of being
information-preserving [8]. The proposed model also has
a capability of rich and detailed representation of the 3-d
shape of an object, because it completely depends on the
SAT. Especially, this model is more effective for smoothly
curved objects.

3 Analysis for Recovering
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Fig.3 (a) Sensor coordinate systems.
(b) Analysis of orientation
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Consider the cartesian world coordinate system arranged
based on the left camera system as shown in Fig.3(a). The
plane coordinate system of this camera is composed of u-
and v-axes which meet perpendicularly. We assume that
the z- and y-axes of the world coordinate system are defined
parallel to the u- and v-axes of the left camera coordinate
system, respectively. The z-axis of the world coordinate
system is defined so that the camera is aimed at a point at
minus infinity on z-axis. For stereo vision, the right camera
is located at the position rotated from the left by 6 radian
counterclockwise around the y-axis. Let’s call z’-axis in-
stead of z-axis and z'-axis instead of xz-axis for the right
camera. In the right camera system, the u- and v-axes are
parallel to the z’- and y-axes, respectively, and the camera
itself is aimed at a point at minus infinity on the 2’-axis.
The sensing condition is calibrated as follows. As shown
in Fig.3(a), the origin of this world coordinate system is on
the y-axis. The origin of the coordinate system for each
camera may be determined for an adequate corresponding
point on the y-axis. The characteristics of the two cameras
are assumed to be the same, and the entire camera plane is
assumed uniform. For convenience, we assume orthogonal

projection for the imaging. This means that the cameras
are located sufficiently far away from the imaging planes.
Therefore, the camera parameter considered like the focal
length! is infinity. This means that the magnification ratio
between u-, v-axes and z- (or 2'-), y-axes is equal to 1.

Consider the necessary conditions to determine the one-
to-one correspondence among the triples for the pair of con-
tours. The conditions are derived from the characteristics
of the MS and its contained disk.

1. The center of an MS: find a pair of epipolar points on
the symmetric axes for the respective contours. This is
done by examining the w-values for such points to see
if they are equal.

2. The center of the disk: examine the v-values of the bi-
section points of the straight lines connecting the two
corresponding touching points for the respective con-
tours to see if the v-values are equal.

3. Magnitude of the MS: examine if the radii of the MS’s
are equal for the two contours.

4. If more than two triples pass the above three condi-
tions, the triples with closer u-values of the points on
the symmetric axis may be matched.

In examining the equality in terms 1, 2, and 3 of the above
conditions, some margins can be permitted within an error
bound. This fills the gap between the assumed shape model
and the real shape. The further analysis about the proper
margins may generate a description closer to the real. Based
on the term 4 of the above conditions, multiple objects can
be analyzed at same time. For a pair of triples from the
above procedure, the analysis is implemented to calculate
the state of each GD as follows.

Consider Fig.3(a) for calculation of a point in the world
coordinate system. The point P(z,y,z) is imaged as
Pi(u,v) and P,(u.,v.) on the left and right cameras, re-
spectively. When variable w is not zero, and w; and w, are
dummy terms in z-coordinates, we can represent this rela-
tions by Eq.(1) and (2).

1 00 0
01 0 0
(ug, v, wp, 1) = (v, wy, wz, w) 00 1 —1/f (1)
0 0 0 1
(tr, vp, w0y, 1) = (we, wy, wz, w)
cos§ 0 sinf O 100 0
0 1 0 0 010 0 2)
—sinf 0 cosf O 0 0 1 -1/f
0 0 0 1 00 0 1

where fis the focal length; and 8 is the angle between the
two cameras.

Because f is infinity, the world coordinates of point
P(z,y, z) can be expressed by the camera coordinates as

Eq.(3).
=

y = v, U (3)

u;-cosf — u,

z = ———
sin 6

"The length between the view point and the imaging plane
is called focal length here. If the camera (or imaging system)
focuses to infinity, this is exactly the same as the focal length of
the lens.
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Therefore, the center point of the disk can be calculated
as follows. A pair of bisection points (for example, Cl’
and C?2'), of two straight lines connecting two correspond-
ing touching points in a triple pair, can be applied to this
equation. The u- and v-axes values for those points which
are imaged on the left and right camera coordinate systems
are selected as (u,v1) and (u,,v,), respectively. By substi-
tuting these values into Eq.(3), the center point of the disk
is determined.

The orientation of the disk in the world coordinate sys-
tem is determined as follows. As shown in Fig.3(b), let the
orientations of the straight lines connecting the two corre-
sponding touching points in the left view and the right view
be 7, and 7, in each respective camera coordinate systems.
In Eq.(4) and (5) and Fig.3(b), ¢, J,k and ! are unit vec-
tors in the directions of z-, y-, z- and z’-axes, respectively.
Then, we can describe these orientations by Eq.(4).

ai +bj (4)
dl+ g

L

T3

where b = b’ in the coordinate relation of this camera lo-
cation. By vector composition of », and 7, with the given
coordinate systems, the orientation of the disk # in the world
coordinate system is represented by Eq.(5).

r=ai+bj +ck (5)
where
a = sina
b = cosa (6)
sina - cosf — cosa - tan B
c =
sin
where
—1 Pu(v) — Pa(v)
o =tan~! LD 7
Pra(u) = Pn(u) @)
Pr - R"’
5= et P(0) = Pao)

Py'?(u) - Prl(u)

See Fig.3(b) for a, B, Pii(u), Pa(u), Pii(v), Pa(v), P(u),
Pra(u),Pri(v) and Pra(v).

Finally, the magnitude of the disk can be derived as fol-
lows. As mentioned in the previous section, the magnitude
of a disk can be obtained by analyzing the lengths of a pair
of lines, each of which connects two touching points of it’s
triples. But, this method requires complex calculation for
the perspectives of the slant disk. Therefore, for this cal-
culation, we use the characteristics of a sphere and a circle:
locus of all disks with an identical diameter is on a sur-
face of a sphere, which is within the MS and whose center
coincides with the center of the MS. Therefore, the diam-
eter of the disk can be calculated from the center position
of the MS and the disk itself, and the radius of the MS.
The center position of the MS can be found by substituding
u-, v-axis values of center positions of a pair of MD’s into
Iiq.(3). From the length of the line connecting the touching
point and the center of it’s MD, the radius of the MS can
be obtained. Let us denote the z-, y-, z-axis values of the
center position of the MS and the disk as z,, y,, z, and
x4, Yd, 24, respectively. The radius of the MS is denoted as
ry. The distance between the above two center points d,q
is given by Eq.(8).

9

doa= /(@4 =2 + (Wa— 1) + (a= 2" (8)

Therefore, the diameter d of the disk can be calculated from
Eq.(9).

d=2y/]r} — d3y| )

The state of GD is determined for the world coordinate
system through the analysis. By implementing the analysis
for all corresponding triple pairs, the set of GD’s can be
obtained.

4 3-D Shape Representation and
Recovering

Through the analysis, a GD can be described with its po-
sition, magnitude, and orientation in the world coordinate
system. A description can be Expression (10) for the ith
GD.

z; Yi Zi Ll,' aj b,‘ [ (10)

where z;, y; and z; indicate the center position of the GD.
This can be determined by Eq.(3). d; is the diameter of the
GD which can be found by Eq.(9). a;, b; and ¢; are three
components in z-, y- and z-axes directions, respectively, of
the unit vector representing its orientation. These are de-
termined by Eq.(6). An example of this GD description is
shown in Fig.4.

DIAMETER = d i

zi GEOMETRICAL
DISK
2z K

Fig.4 An example of GD

Once the whole part of the object is analyzed, all GD’s
are known. If the object is described with n-pieces of GD’s,
the description can be given by Expression (11).

Ty K2 21 d a b C1
o Y2 zop do as by ¢y

(1)

oy o ono doai by ¢

Tn Yn zn  dn  an b, ¢
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Fig.5 (a) Initial state for recovering
(b) Consideration for orientation

To recover the 3-d shape from Expression (10), the GD’s
edge must be determined in the world coordinate system.
To do this, firstly, we imagine a disk with diameter d;, which
is on the z-z plane. Therefore, its orientation », is the same
as the direction of the y-axis. The center position of the disk
is the origin of the coordinate system as shown in Fig.5. The
point of the edge of this disk is given by Eq.(12).

r = %i-cos(
y = 00 (12)
z = —éinsin('

where ( varies from 0 to 27 radian.

To recover the 3-d shape, the orientation 7, of the disk
in Fig.5(a) can be changed to r as shown in Fig.5(b) or
Eq.(15).

r=a;t+ b7 +cik (13)

where from Fig.5(b),

a = cos =
B = cos™! P S 14

VaTtat (0
vy = cos”! G

where

if a;=b;=0 then @ = 0,8 = 7/2, and =0,

ifa;=¢;=0 thena=0,8=0, and v =7/2,

if bj=c;=0 then « = /2,8 =0, and vy =7/2.
For Expression(10), the point of the disk edge are changed
by Eq.(15). Recovered point is obtained by considering the
rotation 12 and translation T of this disk. The rotation is

related to Eq.(16). The translation z;, y, z is given by
Expression (10). Thus,

O=IR+T (15)

where O = ( o, Yo, %o, 1) denotes the recovered point of
GD’s edge. I = ( z, y, z, 1) is the initial point given by
Eq.(10). T = ( «i, i, zi, 1) denotes the translation of the
center of the GD and is given by Expression(10). R is the
rotation of this GD given by Eq.(16).

R=R.RsRy (16)

where v/ = #/2 — ~,

cosa —sinae 0 0

sinae cosa 0 0

Ro = 0 0 1 0
0 0 01

cosf 0 sinf O

0 1 0 0

p=1 _ sinf 0 cosf O
0 0 0 1

1 0 0 0

| 0 cosy' —siny’ O
By = 0 siny cosy O
0 0 0 1

5 Experiments

Instead of using two cameras, only one camera was used
in this experiment. The sensing condition was constructed
as described previously in Section 3. As shown in Fig.3(a),
the object was rotated clockwise by 6 radian around the
y-axis after taking one view from the left direction. Then,
the other view was taken. This procedure guarantees the
equality of the characteristics of the assumed two cameras.

As shown in Fig.6, several sweet potatoes were selected
as the objects for the experiment. These are considered to
be objects of natural shapes, i.e. smoothly curved, which
have relatively complex space-curved spines. Fig.7 shows
the overlaid sensor data of the objects in Fig.6, viewed from
two directions and processed by the SAT. In order to show
drastically the difference between a pair of sensed data, the
angle between cameras, #, was set to about 20 degrees in
Fig.7(c). However, smaller angles give the advantage of sat-
isfaction with the fact that this model is more effective es-
pecially for smoothly curved objects. The overlaid sensor
data is demonstrated in Figs.7(a) and (b) for the experi-
mental analysis actually done. The angle between cameras,
0, is about 5 degrees in this case. Fig.8 shows the recovered
results for the three sweet potatoes, viewed from two direc-
tions.
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(a) ObjectA

(b) ObjectB

(é) ject (o]

Fig.6  Sweet potatoes used for experiments

6 Concluding Remarks

A new geometrical model has been proposed for understand-
ing and describing the 3-d shape of an object from its stereo
contours. This model is globally composed of the concept
of the Mazimal Sphere and the Geometrical Disk. The for-
mer is the basis to analyze the 3-d shape for it’s recovering.
The latter is a primitive for description and recognition of
the 3-d shape. The standpoint of this study is shape-from-
stereo as well as shape-from-contour. The new model based
on geometry named Mazimal Sphere is basically for resolv-
ing the difficulties in finding correspondence between a pair
of stereo images. The model has been proved to be sound
through experiment. The proposed primitive, Geomel-
rical Disk, is very efficient because of the simplicity in de-
scription and the richness in representation of a 3-d shape.
‘T'herefore, this model may lead to a new type of 3-d vision

system, with a pair of contour detecting sensors. By using
this system, 3-d recognition is possible without the neces-
sity of reasoning between 3-d models and a 2-d shape, view
point transformation, and hierarchical reasoning for com-
plex shapes.

Moreover, the proposed geometrical model is practically
available, because correspondance finding based on contour
detection is relatively simple, compared with other stereo
matching bases. This model produces also uniquely recov-
erable output for a pair of given inputs as shown in the
previous section. Although the theory was implemented for
data taken by cameras, this model is applicable to planar
contour shapes, taken by any kinds of sensors.

(a) ObjectA

(b) ObjectB

(c) Object C

Fig.7  Overlaid images taken from stereo sensors
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(b) ObjectB

Fig.8

(a) ObjectA

(c) Object C

Recovered 3-D shapes
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