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Abstract

The animation of human figures has been a challenging task. Traditional keyframing requires a skillful animator
to tediously specify many degrees of freedom to produce a desired motion. It is therefore desirable to provide
an animator with efficient tools to generate and modify movement.

In this paper, several techniques from signal processing are introduced which facilitate motion editing in that
existing movements can be modified and combined interactively and at a higher level compared to conventional
systems. Multiresolution motion filtering is used to produce certain animation effects such as exaggeration of a
movement; dynamic timewarping is applied to automatically align movements in time; motion waveshaping is
a rapid nonlinear signal modification method useful for tasks such as limiting joint angles of articulated figures;
finally, motion displacement mapping allows convenient editing of motion-captured data with a keyframing-like
interface.



1 Introduction

Whereas it is fairly straightforward to animate sim-
ple rigid objects, the process of animating human
movement with a computer is a challenging task.
Traditionally, an animator has to tediously specify
many keyframes for many degrees of freedom to ob-
tain a desired motion. At the same time, temporal
and spatial components of a movement, coordination
of the limbs, interaction between figures as well as in-
teraction with the environment need to be resolved.
One of the problems is that the human body pos-
sesses over 200 degrees of freedom and is capable of
very complex movements. Another challenge in ani-
mating human movement is the fact that humans are
very sensitive observers of each others motion, in the
sense that we can easily detect erroneous movement.

Much of the recent research in motion control of
articulated figures has been directed towards reduc-
ing the amount of motion specification to simplify
the task of the animator. The idea is to build some
knowledge about motion and the articulated struc-
ture into the system so that it can execute certain
aspects of movement autonomously. This has lead to
the development of higher level control schemes [2,
3, 12] where the knowledge is frequently specified in
terms of rules, and physically-based modeling tech-
niques {5, 9] in which knowledge is embedded in the
equations of motion, constraints and possibly an op-
timization expression. Both approaches often suffer
from lack of interactivity and don’t always produce
the motion which the animator had in mind.

Motion capture techniques have come to the res-
cue since they preserve the distinctive “signature”
of the real movement. However, motion capture has
the disadvantage that special equipment is required
and current systems allow for only limited editing ca-
pabilities to adapt a movement once it is captured;
this requires the whole data capture process to be
repeated if a motion sequence slightly different from
an already captured one is desired.

Because of the motion specification problem for
human figures, it is desirable to develop tools that
make it easy to reuse existing motion data. For
this purpose, we adopt techniques from the image
and signal processing domain which provide new and
useful ways to edit, modify, blend and align motion
parameters of articulated figures. In Section 2, we
present the method of motion multiresolution filter-
ing to produce certain animation effects to existing
articulated motion, such as exaggerating or toning
down a movement. Section 3 discusses the principle
of dynamic timewarping in the context of multitar-
get motion interpolation, in order to automatically
align movements before blending. Section 4 intro-
duces waveshaping as a rapid nonlinear signal mod-
ification method useful for tasks such as mapping
joint limits of articulated figures. Finally, the princi-
ple of motion displacement mapping is explained in
section 5; this is an extremely general tool which per-

mits editing of motion-captured data with the ease
of keyframing. By providing analytic solutions at in-
teractive speeds and acting on several or all degrees
of freedom of an articulated figure at the same time,
these techniques provide a high-level, global control
to motion editing and therefore make the reuse of
predefined sequences and libraries of animated mo-
tion more valuable.

2 Motion Multiresolution
Filtering

A great number of image processing techniques have
been applied in computer vision for the reconstruc-
tion of a a 3-D scene from one or more images. How-
ever, there has been less published discussion of the
use of signal processing operations to edit or mod-
ify captured motion for creative purposes. The “lag,
drag, and wiggle” effects produced by recursive filters
in Inkwell [14] represent more relevant previous work
in the application of signal processing to keyframed
2D animated motion. In another related approach,
Unuma et al. [18] apply Fourier transformations to
data on human locomotion for animation purposes.
Based on frequency analysis of the joint angles, a
basic ‘walking’ factor and a ‘qualitative’ factor like
“brisk” or “fast” are extracted. These factors are
then used to generate new movements by interpola-
tion and extrapolation in the frequency domain, such
that now, for instance, a walk can be changed con-
tinuously from normal to brisk walking.

To apply multiresolution filtering to motion, we
treat a motion parameter as a sampled signal. A
signal contains the values at each frame for a par-
ticular degree of freedom. For animation purposes,
we are often concerned with signals defining joint an-
gles or positions of joints, but the signal-processing
techniques we have implemented also apply to higher
level parameters like the trajectory of an end-effector
or the varying speed of a walking sequence.

The method of multiresolution filtering has been
extensively exercised by Burt et al. [1] as an im-
age representation method advantageous for certain
kinds of operations, such as seamless merging of im-
age mosaics and intra-image interpolation (noise re-
moval). It has also been applied to temporal dissolves
between images [17]. Images may be stored as low-
pass (Gaussian) or bandpass (Laplacian) pyramids of
spatial filterbands, where each level represents a dif-
ferent octave band of spatial frequencies. Operations
like merging two images are then performed band-by-
band before reconstructing the image by adding up
the resulting bands. In this way, the fine detail of an
image corresponding to the higher frequencies can
be treated separately from the coarse image features
encoded by the low frequencies.

The first step in applying Burt’s multiresolution
analysis is to obtain the lowpass pyramid by suc-
cessively convolving the image with a B-spline filter



kernel (e.g. 5 x 5), while the image is subsampled by
a factor of 2 at each iteration (as shown at the left
of Figure 1, where Gy is the original image). This
process is repeated until the image size is reduced
to one pixel, which 1s the average intensity, or DC
value. The bandpass pyramid is then calculated by
repeatedly differencing 2 successive lowpass images,
with the subtrahend image being expanded first in
each case (right of Figure 1, where Lg is the highest
frequency band). The image can be reconstructed
without manipulation by adding up all the bandpass
bands plus the DC. The same procedure can be per-
formed on two or more images at the same time,
whereby operations like merging are executed band
by band before reconstructing the final result. The
Gaussian pyramid is similar to wavelet analysis [4] in
terms of a cubic B-spline scaling function. The cor-
responding Laplacian pyramid is simply a bandpass
counterpart, where each successively higher level of
detail has an interpolated copy of the level beneath
subtracted from it.
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Figure 1: Left: lowpass pyramid; right: bandpass
pyramid.

The principles of image multiresolution filtering
are now applied to motion parameters of an articu-
lated figure such as joint angles or positions. This is
motivated by the following intuition: low frequencies
contain general, gross motion patterns, whereas high
frequencies contain detail, subtleties, and (in the case
of digitized motion) most of the noise. Each motion
parameter is treated as a one-dimensional signal from
which the lowpass (G) and bandpass (L) levels are
calculated.

2.1 Motion Filtering Algorithm

The length m (number of frames) of each signal de-
termines how many frequency bands (fb) are being
computed:

let 2" < m < 27*1 then fb=n.

Instead of constructing a pyramid of lowpass and
bandpass sequences where each successive sequence

is reduced by a factor of two, alternatively the se-
quences are kept the same length and the filter kernel
(w) is expanded at each level by inserting zeros be-
tween the values of the filter kernel (a, b, ¢ below) [1].
For example, with a kernel of width 5,

wy = [cbabc],
wy = [c0b0a0b0],
w3z = [c0006000a000b000c]etc,

where a = 3/8, b = 1/4 and ¢ = 1/16. Since
we are dealing with signals rather than images, the
storage penalty compared to a true pyramid is not as
significant ( fbx i versus 4/3 x 7, where 7 = number of
data points in original signal), while reconstruction is
faster since the signal does not have to be expanded
at each level. Here is the algorithm in more detail;
where steps 1 to 5 are done simultaneously for each
motion parameter signal:

1. calculate lowpass sequence of all fbsignals (0 <
k < fb) by successively convolving the signal
with the expanded kernels, where Gy is the
original motion signal and Gy is the DC":

Giy1 = wrg1 X Gy;

This can be calculated efficiently by keeping
the kernel constant and skipping signal data
points (i ranges over all data points of a signal)?:

2
Giy1(i) = Z wi(m) Gi (i + 25 m);

m=-2
2. obtain the bandpass filter bands (0 < k < fb):
Ly = Gy — Gy
3. adjust gains for each band and multiply L;’s by

their current gain values (see example below).

4. blend bands of different motions (optional, see
multitarget interpolation below).

5. reconstruct motion signal:

fb=1
Go = Gfb + Z Ly.
k=0

2.2 Examples

An application of motion multiresolution filtering is
illustrated in Figure 2. Displayed like an equalizer
in an audio amplifier, this is a kind of graphic equal-
izer for motion, where the amplitude (gain) of each
frequency band can be individually adjusted via a

!In the case where ¢ -+2%m lies outside the domain (bound-
aries) of the signal, we keep the signal values constant (i.e.
equal to the first/last data point).



slider before summing all the bands together again
to obtain the final motion. A step function shows
the range and effect of changing frequency gains. We
applied this approach successfully to the joint angles
(70 degrees of freedom) of a human figure. The same
frequency band gains were used for all degrees of free-
dom. In the example illustrated at the top of Fig-
ure 2, increasing the middle frequencies (bands 2, 3,
4) of a walking sequence resulted in a smoothed but
exaggerated walk. By contrast, increasing the high
frequency band (band 0) added a nervous twitch to
the movement (not shown in Figure 2), whereas in-
creasing the low frequencies (bands 5, 6) generated
an attenuated, constrained walk with reduced joint
movement (Figure 2 middle). Note that the gains do
not have to lie in the interval [0, 1]. This is shown at
the bottom of Figure 2, where band 5 is negative for
a motion-captured sequence of a figure knocking at
the door, resulting in exaggerated anticipation and
follow-through for the knock.

Figure 2: Adjusting gains of bands for joint angles.

From the examples, it becomes apparent that some

constraints such as joint limits or non-intersection
with the floor can be violated in the filtering pro-
cess. Our motion-editing philosophy is to employ
constraints or optimization after the general charac-
ter of the motion has been defined (see displacement
mapping in section 5 below; or a more general opti-
mization method [10]). Many animators disdain con-
sistent physics, which is a good reason to decouple
motion editing from constraint satisfaction. Finally,
we suggest that a multiresolution approach could also
be quite useful in defining motion sequences, rather

than simply modifying them. Much like an artist cre-
ating a picture blocks out the background first with a
big brush, then adds more and more detail with finer
and finer brushes, a generic motion pattern could be
defined first by low frequencies, and then “finetuned”
by adding in higher frequency refinements?.

3 Multitarget Motion
- Interpolation

Multitarget interpolation refers to a process widely
used in computer animation to blend between dif-
ferent models. The technique was originally applied
in facial animation [15]. We might have a detailed
model of a happy face, which corresponds paramet-
rically to similar models of a sad face, quizzical face,
angry face, etc. The control parameters to the model
might be high level (like “raise left eyebrow by 0.7”),
very high level (like “be happy”), or they might sim-
ply be the coordinates of the points on a surface mesh
defining the shape of part of the face. By blending
the corresponding parameters of the different models
to varying degrees, we can control the expression of
the face.

We can apply the same technique to motion. Now
we might have a happy walk, a sad walk; angry walk,
etc., that can be blended freely to provide a new re-
sult. Figure 3 shows an example of blending two
different motions of a human figure, a drumming se-
quence and a “swaying arm sideways” sequence. In
this case, the blend is linear, i.e. add 0.4 of the drum
and 0.6 of the arm-sway. In general, the blend can
be animated by “following” any trajectory in time
(see Guo et al. [8] for a discussion of this approach).

Figure 3: Multitarget motion interpolation.

As indicated in step (4) of the multiresolution al-
gorithm above, we can mix multitarget interpolation
and multiresolution filtering to blend the frequency
bands of two or more movements separately. This
is illustrated in Figure 4 for the same two motions
(a drum and an arm-sway) as in Figure 3. Adjust-
ing the gains of each band for each motion and then
blending the bands provides finer control while gen-

2Personal communication, I{en Perlin, New York Univer-
sity, 1994.



erating visually much more pleasing and convincing
motion.

Figure 4: Multitarget interpolation between
frequency bands.

However, there is a potential problem when ap-
plying multitarget interpolationto motion which re-
lates to the notion of parametric correspondence as
stated above: for all our face models to “correspond
parametrically” implies that the parameters of each
of the models has a similar effect, so that if a pa-
rameter raises the left eyebrow of face number one,
a corresponding parameter raises the left eyebrow in
face number two.

In motion, parametric correspondence means much
the same thing, except that now a correspondence
with respect to time is required. If we are blending
walk cycles, the steps must coincide so that the feet
strike the ground at the same time for correspond-
ing parameter values. If the sad walk is at a slower
pace than the happy walk, and we simply blend them
together without first establishing a correspondence
between the steps, the blend will be a curious dance
of uncoordinated motions, and the feet will no longer
strike the ground at regular intervals; indeed, they
are no longer guaranteed to strike the ground at all

. (see Figure 5). Thus, multitarget motion interpo-
lation must include both a distortion (remapping a
function in time) and a blend (interpolating among
different mapped values). In the visual domain a
transformation like this is termed a “morph.”

3.1 Dynamic Timewarping

The field of speech recognition has long relied on a
nonlinear signal matching procedure called “dynamic
timewarping” to compare templates (for phonemes,
syllables or words) with input utterances [8]. Apart
from being subject to the usual random error, each
acoustic input signal also shows variations in speed
from one portion to another with respect to the tem-
plate signal. The timewarp procedure identifies a
combination of expansion and compression which can
best “warp” the two signals together.

In our case, timewarping is applied in the discrete
time domain to register the corresponding motion pa-

[ors] ——>

timewarp + blend | =

Figure 5: Blending two walks without (top) and
with (bottom) correspondence in time.

rameter signals such as joint angles. In Figure 5, the
timewarping was done simultaneously for all 70 ro-
tational degrees of freedom of the human figure for
the duration of the movement sequences. If we have
a military march and a drunken stagger, two new
gaits can immediately be defined from the timewarp
alone: the military march at the drunken pace, and
the drunken stagger at the military pace. Figure 6
shows an example for one degree of freedom (knee
angle) for the two walks warped in Figure 5. How-
ever, we are not limited to these two extreme warps,
but may freely interpolate between the mappings of
the two walks.

knee angle (degrees)

frames

Figure 6: Top: knee angles curves of two walks;
middle: bold = solid curve warped to match dashed;
bottom: bold dashed = dashed curve warped to

match solid. :



3.2 Timewarp Algorithm

The problem can be decomposed and solved in two
steps: finding the optimal sample correspondences
between the two signals, and applying the warp. The
vertex correspondence problem is defined as finding
the globally optimal correspondence between the ver-
tices (samples) of the two signals: to each vertex of
one signal, assign (at least) a vertex in the other sig-
nal such that a global cost function measuring the
“difference” of the two signals is minimized. In this
sense, the problem is related to contour triangulation
[7] and shape blending [16], and is solved by dynamic
programming optimization techniques. The solution
space can be represented as a two-dimensional grid,
where each node corresponds to one possible vertex
assignment (see Figure 7). The optimal vertex corre-
spondence solution is illustrated in the grid by a path
from (0,0) to (9,9). In general, there are O(n"™/n!)
such possible paths.

We adopted Sederberg’s shape blending algorithm
[16], which guarantees a globally optimal solution by
visiting every node in the grid once (O(n?) with con-
stant amount of work per node). Upon reaching node
(n,n), the optimal solution is recovered by back-
tracking through the graph. Sederberg’s approach
measures the difference in “shape” of the two signals
by calculating how much work it takes to deform one
signal into the other. The cost function consists of
the sum of local stretching and bending work terms,
the former involving two, the latter three adjacent
vertices of each signal. Intuitively, the larger the dif-
ference in distance between two adjacent vertices of
one signal and the two vertices of the other {given
by two adjacent nodes in the graph), the bigger the
cost. Similarly, the larger the difference in angles be-
tween three adjacent vertices of one signal and the
three vertices of the other (given by three adjacent
nodes in the graph), the bigger the cost (for details,
see [16]; an illustration is given in Figure 7).

cost function terms:

- stretching work between 2 adjacent vertices in signal (difference in sagment lengths).

- bending work betwean 3 adjacent vertices in signal (diif2tence in angtes).
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Figure 7: Vertex correspondence problem and cost
functions.

The second part of the problem is to apply the
warp given the optimal vertex correspondences. As

in speech recognition [6], three cases are distinguished:

substitution, deletion and insertion. This is indicated
in the optimal path by a diagonal, horizontal and ver-
tical line, respectively, between two nodes. For the
following explanations, we assume that signal B is
warped into A, and the warped signal is denoted by

By. Then if B; and A; are related by a substitution
it follows that By, = B;. In case of a deletion, where
multiple samples of B, (Bj, Bj41,- .-, Bj4k), corre-
spond to one A;, By, = mean(B;, Bjt1,...,Bjqk)
Finally, an insertion implies that one sample of B,
Bj, maps to multiple samples of A, (A;, Aiy1, ...
In this case, the values for By, Bu,,,;- -, Buiy, are
determined by calculating a cubic B-spline distribu-
tion around the original value B;.

4 Motion Waveshaping

The transformations discussed so far are operations
on the time history of a signal. Operations which
are evaluated at each point in the signal without ref-
erence to its past or future trajectory are occasion-
ally termed point processes. Such operations include
scaling or offsetting the signal, but are more gener-
ally described as a functional composition.

“Digital waveshaping” is the term applied to func-
tional composition in computer sound synthesis. In
this domain, a normalized input signal = (e.g. scaled
to the range from —1 to +1) is directed through a
discrete shaping function f (or waveshaping table)
to synthesize steady-state or time-varying harmonic
sound spectra [13]. In practical terms, if f is defined
as the identity function f(z) = z, the signal will pass
through unchanged. If f is defined as a partial cycle
of a cosine function going from minimum to maxi-
mum over the [—1,+1] range, the values of z will be
exaggerated in the middle and attenuated at the ex-
tremes. If f is a step function, z will be quantized
to two values.

An example of how this idea can be adopted for
animation is illustrated in Figure 8. Here the de-
fault identity shaping function has been modified to
limit the joint angles for a motion sequence of an
articulated figure waving. The implementation of
our shaping function is based on interpolating cubic
splines [11}; a user can add, delete and drag control
points to define the function and then apply it to all
or some degrees of freedom of an articulated figure.

1.0

~1.0

-1.0

Figure 8: Capping of joint angles via a shape
function.

Another application of waveshaping is to map the
shape of input motions to a “characteristic” func-
tion. The shaping function in Figure 9 applied to the
motion-captured data of a human figure sitting and
drinking introduced extra undulations to the original
monotonic reaching motion. In this way, it is possible

s Aigr).



to build up a library of shaping functions which will
permit rapid experimentation with different styles of
movement.

1.0

-1.0

-1.0

Figure 9: Adding undulations to motion.

5 Motion Displacement
Mapping

Displacement mapping provides a means to change
the shape of a signal locally through a displacement
map while maintaining continuity and preserving the
global shape of the signal. To alter a movement, the
animator just changes the pose of an articulated fig-
ure at a few keyframes. A spline curve is then fitted
through these displacements for each degree of free-
dom involved, and added to the original movement
to obtain new, smoothly modified motion. The basic
approach is illustrated in Figure 10. Step 1 is to de-
fine the desired displacements (indicated by the three
vertical arrows) with respect to the motion signal; in
step 2, the system then fits an interpolating cubic
spline [11] through the values of the displacements
(note that the first and last data points are always
displacement points). The user can then adjust the
spline parameters in step 3 before the system cal-
culates the displaced motion satisfying the displace-

ment points (step 4).
L/\ /AW = l./\ AN
v VA

Figure 10: Steps in displacement mapping.

The displacement process can be applied itera-
tively until a desired result is achieved. Since the
operation is cheap, a fast feedback loop is guaran-
teed. In the top part of Figure 11, we took the out-

put of a multiresolution filtering operation on joint
angles of a human walking figure, where some of
the joint limits were violated and the feet did not
make consistent contact with the ground, and read it
into LifeForms [2], a system to animate articulated
figures. There we adjusted some of the joints and
translated the figure at a few keyframes for which
displacement curves were quickly generated and ap-
plied to the motion of the figure as described above.
To refine the resulting motion, a second loop was ex-
ecuted; a frame of the final result is shown on the top
right of Figure 11. The same technique was used in
modifying the rotoscoped motion of a human figure
sitting and drinking (Figure 11, middle). Here, three
out of the 600 motion-captured frames were modi-
fied to include some additional gestures of the arms
and legs. In Figure 11, bottom, the joint angles for
the arm and neck of a motion-captured knocking-
at-a-door-sequence were changed for one frame via
motion displacement mapping to obtain a knock at
a higher impact point.
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Figure 11: Examples of applying displacement
curves.

6 Conclusions

In this paper we have assembled a simple library of
signal processing techniques applicable to animated
motion. The techniques provide a rapid interactive
loop and facilitate reuse and adaptation of motion
data. By automating some aspects of motion editing
such as time-registration of signals or increasing the
middle frequencies for several degrees of freedom at
the same time, these techniques can serve as building
blocks for high-level motion processing.

Motion displacement mapping provides a means
by which a basic movement such as grasping an ob-
Ject from one place on a table can be easily modi-
fied to grasping an object anywhere else on the ta-



ble. This allows simple and straightforward modi-
fication of motion-capture data through a standard
keyframing interface. Timewarping as a non-linear
method to speed up or slow down motion is useful in
blending different movements. It could also play an
important role in synchronizing various movements
in an animation as well as in synchronizing anima-
tion with sound. Multiresolution filtering has been
demonstrated as an easy tool to change the quality
of a motion. Waveshaping represents a simple but ef-
ficient way to introduce subtle effects to all or some
degrees of freedom. As the use of motion capture is
becoming increasingly popular and libraries of mo-
tions are increasingly available, providing alternate
methods for modifying and tweaking movement for
reuse can be of great value to animators. We be-
lieve that a wide range of animation tasks can be ad-
dressed with these techniques at a high level which
is complimentary to and extends conventional spline
tweaking tools.
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