# ボリュームグラフィックス (VG) クラスタによる 3D LIC レンダリングの並列化

| 村木 茂              | 鈴木 靖子     | 藤代 一成       |
|-------------------|-----------|-------------|
| (独)産業技術総合研究所      | 三菱電機(株)   | お茶の水女子大学大学院 |
| ポリュームグラフィックス連携研究体 | 情報技術総合研究所 | 人間文化研究科     |

### あらまし

我々は 3D Line Integral Convolution (3D LIC) 法のボリュームレンダリングが 3 次元ベクトル場の 可視化方法として有望であると考えている。本稿では我々が共同で開発中の高並列計算可視化シ ステム「VG クラスタ」に対話的な 3D LIC アニメーション機能を実装し,3 次元流の可視化処理 としての有効性を検討する.

## Parallel 3D LIC Rendering by the Volume Graphics (VG) Cluster

| Shigeru Muraki              | Yasuko Suzuki             | Issei Fujishiro           |
|-----------------------------|---------------------------|---------------------------|
| Collaborative Research Team | Information Technology    | <b>Graduate School of</b> |
| of Volume Graphics, AIST    | R&D Center,               | Humanities and Sciences,  |
|                             | Mitsubishi Electric Corp. | Ochanomizu Univ.          |

#### Abstract

Volume rendering of three-dimensional Line Integral Convolution (3D LIC) is a promising visualization technique for 3D vector fields. In this paper, we implement an interactive 3D LIC animation function on a Volume Graphics (VG) cluster prototype system, which is in the development stage in our collaborative research, and discuss the effectiveness for the 3D flow visualization.

### 1. はじめに

ホワイトノイズテクスチャを流線方向にぼ かす Line Integral Convolution (LIC)法[1]は, 現在最も注目されている 2 次元流の可視化技 法である.これを3次元に拡張し(3D LIC), ボリュームレンダリングで画面に投影するこ とにより、流れの3次元構造が映像化できると 考えるのは自然なことであろう.しかし 3D LIC の単純なボリュームレンダリングは,3次 元流線の濃淡値を奥行き方向に重ねてしまう ため、流れの可視化手段としてあまり効果的で ないと考えられていた[2,3].我々は十分に高速 なボリュームレンダリングが可能であれば,位 相シフトアニメーション法により動画像化し た 3D LIC 時系列に対して,対話的に視点位置 や伝達関数を変更しながらボリュームレンダ リングを行うことで、流れの3次元構造が容易 に把握できると考えている.

現在我々が開発中のボリュームグラフィッ クス(VG)クラスタ[4]はこうした用途に適し た高並列計算可視化システムである.本稿では VGクラスタプロトタイプ上に,3次元ベクト ル場からの3DLIC時系列生成処理と,対話的 な動ボリュームデータ可視化処理を並列に実 装し,検討を行ったので報告する.

2. 3D LIC 法

## 2.1. LIC 法

LIC 法はホワイトノイズテクスチャとベク トル場データを入力し,流線に沿ってテクスチ ャをぼかしたような画像を生成する流れの可 視化法である.オリジナルの2次元 LIC アル ゴリズム[1]では,図1のような2次元直交格 子にベクトル場を与え,ある一つのセルの中心 P(x,y)を始点として各セルのベクトルにそ って一定の長さの折れ線状の局所流線を生成 する.このとき,まずP(x,y)から正方向に折



図1 LIC 法における局所流線の定義

れ線の長さ

$$\Delta S = \sum_{i=1}^{n} \Delta S_i$$

が定数/以下になるようにセル数nを定める.

ここで $\Delta S_i$  はセル*i* を横切る折れ線の長さと する.同様に負方向についても,P(x,y)の中 心を始点として*m* 個の画素値を抽出する.次 に,各 $\Delta S_i$ を重みとしてn+m 個の画素値(色) を対応する大きさのホワイトノイズテクスチ ャから抽出し,n+m 個の画素値の重み和を計 算してP(x,y) における出力画素値

$$= \frac{\sum_{i=0}^{n} F_{in}(\lfloor P_{i} \rfloor) h_{i} + \sum_{i=0}^{m} F_{in}(\lfloor P_{i} \rfloor) h_{i}'}{\sum_{i=0}^{n} h_{i} + \sum_{i=0}^{m} h_{i}'}$$
(1)

を算出する .これは流線に沿ったホワイトノイ ズテクスチャの線積分に相当する . ここで  $h_i = \int_{S_i}^{S_i + \Delta S_i} k(\omega) d\omega$ ,  $S_0 = 0$ ,  $S_i = S_{i-1} + \Delta S_i$  であ り,  $F_{in}(x, y)$ はホワイトノイズテクスチャの 画素値,  $P_i, P_i'$ は正負方向の *i* 番目に通過する 画素 , $k(\omega)$ は Box フィルタ等の窓関数である . 以上の操作をすべての画素について繰り返す ことで, 2 次元 LIC 画像が得られる .

### 2.2. 位相シフトによる動画生成

LIC 法により生成された  $F_{out}(x, y)$  は流線を 表現しているが,流れの向きは表現していない. これは LIC 計算の線積分が流れの方向を考慮 しないからである.この問題は窓関数 k(ω) に ハニングリプルフィルタを用いて,周期的に位 相を変化させたアニメーションを生成するこ とで解決されている.ハニングリプル関数は

$$\frac{1+\cos(d\omega+\beta)}{2}$$

で与えられる周期関数であるが,LIC は有限長 の線積分であるため,トランケーションアーチ ファクトを減少するハニング窓関数

$$\frac{1+\cos(c\omega)}{2} \quad \{\omega: -\pi/2c \le \omega \le \pi/2c\}$$

を掛け合わせたハニングリプルフィルタ

$$k(\omega) = \frac{1 + \cos(c\omega)}{2} \times \frac{1 + \cos(d\omega + \beta)}{2}$$

を使用する.ここでc,d は膨張定数, $\beta$  は流 れを模擬するための位相シフト(ラジアン)で ある.計算を容易にするために,定数aから定 数bまでの積分をあらかじめ計算すると,

$$\int_{a}^{b} k(\omega)d\omega = \frac{1}{4} \left[ b - a + \frac{\sin(bc) - \sin(ac)}{c} + \frac{\sin(bd + \beta) - \sin(ad + \beta)}{c} + \frac{\sin\{b(c - d) + \beta\} - \sin\{a(c - d) + \beta\}}{2(c - d)} + \frac{\sin\{b(c + d) + \beta\} - \sin\{a(c + d) + \beta\}}{2(c + d)} \right]$$

となる.この積分値が式(1)の重み $h_i, h'_i$ に適用 される.

### 2.3. LIC の 3 次元化とその問題

3D LIC ボリュームは,先に述べた 2 次元の 原理をそのまま 3 次元に拡張して生成する.セ ルP(x, y, z)における流線は,図 2 に示すよう に 3 次元の流線として生成され,この流線にそ って 3 次元ホワイトノイズテクスチャのボク セル値をぼかし,2 次元の場合と同様のパラメ タを用いて出力セル値 $F_{out}(x, y, z)$ を決定する. しかし 3D LIC の可視化法として単純に  $F_{out}(x, y, z)$ のボリュームレンダリングを行う



図23次元局所流線の定義

ことは,多数の流線が視線方向に重なってしま うため,従来は効果的でないと考えられてきた. このため,ボリュームレンダリングを部分領域 に用いた手法がいくつか成果をあげているが, 一枚の結果画像からボリューム全体を理解す ることは困難である[2,3].ボリュームレンダリ ングのスピードが格段に向上すれば,位相シフ トによりF<sub>out</sub>(x,y,z)の時系列を生成し,周期 的にボリュームレンダリングを行いながら,対 話的に視点位置や伝達関数を変更することで, 3次元の流れが十分に把握できるのではない かと考えられる.以下では我々が開発中の高並 列計算可視化システムボリュームグラフィッ クス(VG)クラスタを用いて,それを検証す る.

### 3. 3DLIC の並列化

### 3.1. VG クラスタ

大規模ボリュームデータを対象とした高速 な計算・可視化処理を実現するために,我々は ボリュームレンダリング機能を強化したPCク ラスタシステム「ボリュームグラフィックス (VG)クラスタ」を開発している(図3).こ のシステムはPC用グラフィックスエンジンを 複数使用したソートラスト型並列ボリューム レンダリングを得意とするPCクラスタである [4].ソートラスト型に付随する通信ボトルネ ックを解消するため,特別に開発したフレーム



図 3 LIC アニメーション生成中の VG クラスタ

重畳装置 (Image Compositing Hardware)を備 えている点に特徴がある.図4はホストPC1 台,スレーブPC8台の,合計9台のPCから 成るVGクラスタの構成例である.

まず可視化の対象となるボリュームデータ が2進分割により空間的に均等な大きさの8 つのサブボリュームに分解され,各スレーブ PC に分配される. 各スレーブ PC はボリュー ムグラフィックスエンジン (VGB)を用いて サブボリュームのボリュームレンダリング(サ ブイメージ)を生成する.次に各サブイメージ がスレーブ PC の PCI バス ( PCI32 ) に挿入さ れた専用インタフェースカード (IFB) を経由 して,フレーム重畳装置に送られ,そこで先の 2 進分割情報と視点位置によって定まる優先 順位にしたがった色と不透明度を考慮した合 成処理(重畳処理)が行われる.生成された画 像は,ホストPCのPCIバスのインタフェース カード (IFB) を経由してグラフィックスボー ド (GB) のフレームメモリに書き込まれ,画 面に表示される.VGB によるサブイメージ生 成処理とフレーム重畳装置へのサブイメージ 転送処理は並列に実行することが可能であり、



図4 VG クラスタ (9PC システム)の構成図

ダブルバッファリングによりサブイメージ転 送時間をサブイメージ生成時間の中に隠蔽す ることができる.これによりアニメーション生 成時にサブイメージ転送時間が無視できるの で,VG クラスタは VGB 単体のレンダリング 速度で動画像を生成できる.フレーム重畳装置 単体では最大8つまでのPCのサブイメージし か重畳できないが,オクトリー状に接続したフ レーム重畳装置によって,原理的には VGBの 基本描画性能を低下させることなくいくらで も多くのPCを使った並列ボリュームレンダリ ングシステムが実現できる.

我々のプロトタイプシステムで使用してい る VGB (TeraRecon, Inc. 製 VolumePro 500) は最大 256<sup>3</sup> ボクセルのボリュームデータを 512×512の画面サイズで30フレーム / 秒以上 の速さで描画できる他,ボリュームメモリを分 割して複数のボリュームデータを格納し連続 に描画するアニメーション生成機能を持つ.し たがってフレーム重畳装置の階層接続によっ て,任意サイズの静止ボリュームデータや動ボ リュームデータをリアルタイムで可視化する ことが可能である.

### 3.2. 3D LIC 計算と可視化の並列化

VG クラスタはボリュームレンダリングを行 わない限り単純な分散メモリ型並列計算機と しても使えるので, $F_{out}(x, y, z)$ を生成する処 理の並列化には二通りの方法が考えられる.-つはボリュームレンダリングと同様に空間を 分割する方法、もう一つはアニメーション生成 時の位相シフト値毎に並列化する方法である. 前者はレンダリングと整合性が良く,3次元ベ クトル場の生成と同時に可視化を行うシミュ レーションステアリング等に都合がよい.しか し 3D LIC 生成は時間のかかる処理であり,現 状の PC の計算性能では VolumePro 500 のフレ ームレートに相当する速さで 3 次元ベクトル 場から 3D LIC ボリュームを生成することは難 しい.また 3D LIC では約1ボクセルにわたっ て流線を追跡する必要があるため ,空間分割に よって流線が切断されることがないように、  $F_{out}(x, y, z)$ の計算のためのサブボリュームは, レンダリングに必要なサイズのサブボリュー ムよりも周囲に1ボクセル程度大きめに取る必 要がある .さらに ,分割生成された  $F_{out}(x, y, z)$ をハードディスク等に保存するには、各スレー

|                  | Data1            | Data2     | Data3     |
|------------------|------------------|-----------|-----------|
| Num. of voxels   | 135 <sup>3</sup> | $180^{3}$ | $240^{3}$ |
| Num. of phases   | 32               | 16        | 8         |
| Num. of vortices | 2                | 3         | 4         |
| l                | 60               | 40        | 20        |
| Granularity      | 2                | 2         | 4         |

表1 3D LIC 時系列データ

| 表 2 | アニ | :メ- | -シ: | ョン | 生成 | <b>达</b> 速 | 度 |
|-----|----|-----|-----|----|----|------------|---|
|     |    |     | -   |    |    |            |   |

|       |                 | $512^{2}$ | $768^{2}$ |
|-------|-----------------|-----------|-----------|
|       | Rend. Time [ms] | 19.4      | 34.8      |
| Data1 | Merge Time [ms] | 9.3       | 20.9      |
|       | Frame Rate      | 51.5      | 28.7      |
|       | Rend. Time [ms] | 19.4      | 34.8      |
| Data2 | Merge Time [ms] | 9.3       | 20.9      |
|       | Frame Rate      | 51.5      | 28.7      |
|       | Rend. Time [ms] | 19.3      | 34.7      |
| Data3 | Merge Time [ms] | 9.3       | 20.9      |
|       | Frame Rate      | 51.8      | 28.8      |

ブ PC 上のデータを一箇所に集め,並べ替える 作業が必要になる.

位相シフト値毎に並列化する方法は空間分割の必要がない半面,一つの PC でボリューム データ全体を処理する必要があり,大規模なデ ータを扱う場合にはメモリの制限を受けやすい.

そこで本稿では,一つの PC で $F_{out}(x, y, z)$ が 計算でき,単体の VolumePro 500 では可視化で きない程度の大きさの 3D LIC 時系列を位相シ フト値毎に並列生成し,VG クラスタプロトタ イプを用いて空間分割による対話的なアニメ ーション生成を行うことにする.

### 4. 実験

渦のシミュレーションプログラムを用いて, 表1に示す3種類の3次元ベクトルデータを生 成した.Num. of vortices はデータ中の渦の数, lはLIC計算時の流線長の閾値,Granularity は ホワイトノイズテクスチャのボクセルサイズ である.ボクセル数(Num. of voxels)と位相 シフト数(Num. of phases)は,3D LIC 時系列 の大きさを示す.つまり Data1 は 135<sup>3</sup> ボクセ



図 5 VG クラスタによる 3D LIC ボリュームレ ンダリングの 1 コマ (Data2 768<sup>2</sup>)

ルのボリュームデータ 32 個からなる時系列デ ータである.これらの値は,各スレーブ PC の VolumePro 500 のメモリをできるだけ有効に使 えるように設定した.各 PC で異なる位相シフ ト値で計算された 3D LIC ボリュームは,NFS で共有されたホスト PC のハードディスクに並 列に書き込まれ時系列データとなる.Data1,2, 3 の 3D LIC 時系列の生成時間は CPU(Pentium III 933MHz,メモリ 512 MB)を8 個使用して それぞれ 83 分,60 分,36 分であった.

次にホスト PC 上の 3D LIC 時系列データを VG クラスタの空間分割機能により 512<sup>2</sup>,768<sup>2</sup> の 2 種類の画面サイズで可視化した結果が表 2 である.ここで Rend. Time はサブイメージ生 成時間, Merge Time はフレーム重畳装置によ るサブイメージ重畳時間であり,後者はパイプ ライン処理により隠蔽されるため,アニメーシ ョン生成時のフレームレートは Rend. Time の 逆数になる.画面が大きいほど描画速度は遅く なったが,ボクセル数は描画速度にほとんど影 響しなかった.図5は Data2を768<sup>2</sup>の画面サ イズで描画したアニメーションの1 コマであ る.静止画ではわからないが,アニメーション で繰り返し描画し,対話的に視点位置を操作す ることにより,渦の3次元構造が明瞭に確認で きた.また, /が長いほど3D LIC が長い尾を 引くため,渦同士の関係が明瞭になることや, 位相シフト数が少ない程1周期のフレーム数 が少なくなりダイナミックに見えることなど も確認できた.これらのことは他のデータ,画 面サイズでも同様に確認された.

本実験で用いたソフトウェアは, TeraRecon, Inc. 製 VolumePro500 用ライブラリ(VLI 1.1), 三菱プレシジョン(株が開発中の VG クラスタ 用フレーム重畳装置 API (MergeLib)を用いて PC クラスタコンソーシアム製 SCore 3.3 (RedHat Linux 6.2J ベース)上で C++で記述した.

### 5. まとめ

LIC 法を 3 次元化し VG クラスタに実装する ことにより,大規模な 3 次元ベクトル場データ から 3D LIC 時系列を並列に生成し,ボリュー ムレンダリングのアニメーションを対話的に 操作できることを確認した.これによって,従 来効果的でないとされてきた単純な 3D LIC の ボリュームレンダリングが,視点位置や伝達関 数を対話的に変更できる環境においては,高解 像度 3 次元流の非常に有効な可視化方法とな り得ることが示された.今後さらに,流速表示 技法[5],流線照明モデル[6],選択的ボリュー ムレンダリング[7,8]等の技術を取り入れるこ とにより,より効果的に 3 次元流を可視化でき るようになると考えられる.

今回生成した 3D LIC 時系列は単一の VolumePro 500 ではリアルタイムレンダリング が不可能な大きさであったが,VG クラスタシ ステムの高いスケーラビリティーにより, VolumePro 500 のリアルタイムレンダリング性 能を保ったままメモリ制限を克服できること が示された.VG クラスタはパイプライン処理 により,重畳処理時間をサブイメージレンダリ ング時間に隠蔽し,アニメーション時のフレー ムレートを高くできるので,本研究のようなア ニメーション生成が必須のアプリケーション には特に有効である.今後はより複雑な流れデ ータや,非定常流などの計算と可視化に VG ク ラスタシステムを応用して行きたい.

#### 謝辞

本研究は科学技術振興事業団計算科学技術 活用型特定研究開発推進事業(13-D4)の成果 である.

#### 参考文献

- Cabral, B., Leedom, L.: Imaging vector field using line integral convolution, *Computer Graphics (Proc. SIGGRAPH 93)*, August 1993, pp.263-270.
- [2] Stalling, D., Zockler, M., Hege, M.: Parallel line integral convolution, *Parallel Computing*, vol.23, no.7, 1997, pp.975-989.
- [3] Mao, X., Kikukawa, M., Fujita, N., Imamiya, A.: Line integral convolution for 3D surfaces, Visualization in Scientific Computing '97, France, 1997, pp.57-69, Proc. Eurographics Workshop in Boulogne-sur-Mer, Springer-Verlag.
- [4] Muraki, S., Ogata, M., Ma, K-L., Koshizuka, K., Kajihara, K., Liu, X., Nagano, Y., Shimokawa, K.: Next-generation visual supercomputing using PC clusters with volume graphics hardware devices, CD-ROM Proc. IEEE SC2001, November 2001.
- [5] 鈴木靖子,藤代一成,竹島由里子:LIC テク スチャマッピングを用いた 3 次元流れ場の 対話的可視化 3,第 60 回情報処理学会全国 大会,拓殖大学八王子キャンパス,March 2000, 3ZA-06.
- [6] Zockler, M., Stalling, D., Hege, M.: Interactive visualization of 3D-vector fields using illuminated stream lines, *Proc. IEEE Visualization '96*, San Francisco, October 1996, pp.107-114.
- [7] Suzuki, Y., Fujishiro, I., Chen, L., and Nakamura, H.: Hardware-accelerated selective volume rendering of 3D LIC textures, To appear *Proc. IEEE Visualization 2002*, Boston, October - November 2002.
- [8] Chen, L., Fujishiro, I., Suzuki, Y.: Comprehensible volume LIC rendering based on 3D significance map, *Proc. SPIE Conference* on Visualization and Data Analysis 2002, San Jose, January 2002, pp.142-153.