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On Surface Model Based on a Fibre Bundle of
1-Parameter Group of Hamiltonian Lie algebra

Li Fang Xingj, Jinhui CHAO

Abstract: In this paper, the surface model based on 1l-parameter groups of linear Lie algebra is
extended using 1-parameter groups of Hamilton Lie algebra and high order linear ODE. The complete
invariant set of the model under action of Euclidean motion is obtained. Algorithms are also shown on
shape synthesis using the proposed model and extraction of invariants from 3D objects. The surface
represented by this model is uniquely determined by a finite number of the complete invariants. These
invariants can be used in recognition- synthesis encoding of 3D images, image retrieving and copyright
protection also. Moreover, the surface can be calculated by elementary functions then shape synthesis is
free of numerically integral errors.
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1 Introduction

In [4][1], a fibre bundle model for free surface is
presented, furthurmore, a surface model based on 1-
parameter groups of linear Lie algebra is proposed.
Main features of this model include that it possesses
a complete set of invariants with respect to Eu-
clidean motion. Thus, the surface represented by
this model is uniquely determined by a finite num-
ber (e.g.6) of the complete invariants. These invari-
ants can be used in recognition-synthesis encoding
of 3D images, image retrieving and copyright pro-
tection also. Moreover, the surface can be calcu-
lated by elementary functions then shape synthesis
is free of numerically integral errors.

In this paper, this surface model is extended us-
ing fibres as 1-parameter groups of Hamilton Lie
algebra and high order linear ODE. The complete
invariant set of the model under action of Euclidean
motion is obtained. Algorithms are also shown on
shape synthesis using the proposed model and ex-
traction of invariants from 3D objects.

2 Fibre-bundle model of 1-paramete

groups of linear Lie algebra

First we briefly review the fibre bundle surface model

shown in [4], which used the fibre curve in the fi-
bre bundle model as 1-paramter groups of linear Lie
algebra.

Let the base curve be b = {b(v),v € R}, the
fibre curve a 1-parameter Lie group g, = {g,(u) =
e*b(v),u € R}. The surface is defined as

F = {x(u,v) = "*b(v) u,veR}

The points b(v) on the base curve b are initianl
points for the integral flow of 1-parameter groups
g,- In fact, the base curve needs not to be in a
form of parameterized curve b(v).

Thus, the Lie algebra of this fibre bundle is a
linear Lie algebra.

c- 6—w:=:bu=AeA“bv=Aa:
ou
L: x,=Ax

Shift the origin by {e(v)}, one obtains a fibre
bundle with Affine Lie algebra.

F = {a(u,0) = e*(b(v) — e(v)),u,v € R}
This is in fact a special case of the fibre bundle

F = {x(u,v) = eb(v) + d(v), wu,v € R}.

Its Lie algebra is an Affine Lie algebra as follows.

L: &, =Ae"bw) = Az — d(v)) = Az — Ad(v)

L: &,=Azx+ d6(v), d(v) = —Ad(v).
The information to describe the fibre bundle model
is the base curve and the six invariants of the linear
Lie algebra, i.e. of the matrix A.

A more general model is to use both the base
curves and the fibre curves as 1-parameter groups:

x(u,v) = e Bxy +d

The Lie algebra consists of the following two linear
algebras.
z, = Az, &, = Bz,

In this case, the information to describe the fibre
bundle model is a base point z(0,0) = b(0) and
twelve invariants of matrices A and B.

1-parameter &
e* o

Figure 1: fibre bundle of 1-parameter groups

2.1 Hamilton flow fibres

Consider a spatial curve on a surface M

.’L'l(t)
x(t):=| z(t) | e M CR?
z3(t)
and a state vector as
y(t) == ( igg ) EMTeM

A Hamilton Lie algebra is defined by

z\ (A B T
z ) \C D T
or
y = Hy
H = (é g)eMﬁ(]R):GxGrealmatrices
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where H is call a representation matrix.
Denote the Laplace transform of y(t) :=Y (s).

Y (s) = (Yi(8), ..., Ya(s)) € C°

Yi(s) := Laplace transform of y;(t)
Then the Laplace transform of ¢(t) is
sY (s) —y(0)
From the Hamilton algebra equation

sY (s) —y(0) = HY (s)

Y (s) = (sIg — H)'y(0)

The inverse Laplace transform of each term can be
expressed by linear combination of

et cos(wt +0) and e’ sin(wt+6).

This Hamilton flow obviously defines 1-parameter
groups, which can be used in the fibre bundle model
for free surface. Since they are expressed by ele-
mentary functions, the shape synthesis is free from
numerically integral error.

Now this can be extended to an affine Hamilton
Lie algebra in a 6-dim state space R®

)=(&5)(2)-(3)

(sIs — H)Y (s) = B+ y(0)

H € Mg(R)

(5

Then

Y(s) = (sIs — H) (B +y(0)

3 Invariants of the Hamilton
Lie algebra

One major advantage to using 1-parameter groups
of linear Lie algebra is that the flow therefore the
surface can be uniquely determined by a complete
set of invariants with respect to Euclidean motion.

As in the case of linear Lie algebras, we wish to
determine the complete set of invariants of the orbit
traced out by the representation matrix H in glg(R)
under action of SO3(R). As shown in [6], [8], the

Hamilton Lie algebra also possesses such desirable
properties.

When SO3(R) acts on the Hamiltonian flow M,
M ®T M is subjected to action of SO3(R)®S03(R)

by
R:(

Thus, the representation matrix H is transformed
to

R O

o R ) R € SO5(R).

H? =

RTHR = ( RTAR RTBR )

RTCR RTDR

We can see that this action is an extension of the
adjoint action on the linear Lie algebras. Further-
more, the orbit of H is uniquely determined by four
orbits of A, B,C under adjoint action of SO3(R)
and the relative phases between these orbits.

Theorem 1. [6]/8]
VH — (

the orbit of H insides glg(R) under action of
SO3(R)®S03(R) is uniquely determined by the or-
bits of A, B, C, D under the adjoint action of SO3(R)
in gl3(R). The complete set of invariants for the or-
bit of H is

A B
C D

AaBJCJD € 9[6(R)a

MAL, A2, fa3, 0a, da, Ya
UB1, WB2, KB3, OB, ¢B, YB
Hc1, Moz, pos, Oc, oo, Yo
Up1, Wp2, KD3, Op, ¢p, Yp

Here, denotes the singular decomposition of E =
UTWV, W = diag{up1, pr2, tE3}, with signs of
the singular-values adjusted such that U,V € SO3(R),
wig,% =1,...,3 are such singular values of matrix £
and 0, ¢, Y are Euler’s angles of R® = VUT ¢
SO;3(R).

4 Compactness of the Hamil-
ton flow

It is interesting to produce bounded surface or if
possible closed ones by the above models.

Stability theory provides certain sufficient con-
ditions for with bounded flow, in particular period
flow. i.e. the conditions on Eigenvalue A\(H) =
e’t¥ € C of H. However, e.g. the |[\| = 1 con-
dition simply means that H is a unitary matrix:
H*H = I, in fact since H is a real matrix this
means H is a orthogonal matrix HTH = I.

0390
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Since the flow are 1D submanifold on the level
set of the Hamiltonian. One can use condition for
the level set to be compact to ensure the compact-
ness of flow.

Theorem 2. [6][8] If the representation matric H
A B
VI —
#=(c )

B=BT Cc=CT AT =-4A

7

then the hamiltonian H is a quadratic form defined
by symmetric matriz H'

1/ -C -A

2 A B )

When H' is positive or negative definite, the Hamil-
ton flows therefore the level sets of H are compact.

H =

5 Extension to high order lin-
ear differential equations

The above results can be extended to using fibres as
1-parameter groups defined by an differential equa-
tion

n
> APt +b=0
1=0
here z(? denotes the i-th derivative.

i1
29 = s X(s)— Zsi_r_la:(T)(O)
r=0

n n—1i—1

=0 i=

(£ (g5

This is a again rational function, i.e. the integral
can be expressed by elementary functions.

When A,, is invertible, one can use a simper
notation. Consider a new state variable in R3"

m(n_l)

Y= € R3".

2

x
Assume it is defined by an affine Lie algebra in R®"

yV =Ay+8 Ae M, (R (1)

:1:(”) Hiq Hy, :L'(n_l) b1
z® Hn Hpy, x bn

Then the 1-parameter group defined by
n o
> A +b=0
i=0

when A, = I or invertible, can be expressed as
yM) = Ay + B,

—An1 —Ap —Ao
1 0 0
A= 0 1 0
0 10
Then
(sI3, — A)Y (s) = B+ y(0)
Y(s) = (sIsn —A) (B + y(0))

6 Fibres as flows of time-invariant
diffeo-intral equations

Now we consider to fibres as flows defined by time-
invariant diffeo- intral equations such as

ZAdtzm+ZA (/) z+b=0

Then

<Z Aisi> X (s) — i i s

=0 r=

r—lw(r) (0)

ZAsj X(s)+b=0

o)

In fact, all integral parts can be reduced to dif-
ferentials. so the equation is almost the same as
pure differential equations. Difference between dif-
ferentials and integrals is that the differential equa-
tions needs or reserves initial values informations.

i=—m i=0 r=0

g 4o0
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7 Invariants 9 Simulation

The invariants of 1-parameter grous defined by Fig.2-7 shown several shapes generated using the
Hamilton Lie algebra fibres. The representation
matrix is obtained from the complete set of invari-
ants. For simplicity, only S! is used as the base

y = Ay (2)

can also be obtained as follows.

. . . curve.
Action of VR € SO3(R) induced an action R®"
on the state space ]R3n . X= sin(u) t+1-2 t,y= cos (u) t+ts2,z=- 1/2 cos (u) t2-sin (u) t- 1/2 t243
VR € SO3(R),y — Ry, R :=diag(R,...,R) 0
Thus the representation matrix is transformed to h
VR € SO5(R),H — H' = RHR” N ,’g,,,’iw \
Iy 'fl,@'/ll//}‘ i
nce “%WZ%%“
AR
H = (Hy),H' = (RH;R") . W
10 """"”” ’; I/
The complete set of invariants of the flow is the
singular values and Euler’s angles.
/\kHiij = 17“'7370Hij7¢Hij7¢Hij ="

7.0.1 Linear differential equations

Figure 2: Shape 1

The flow defined by linear differential equations with

det A, # 0 can be regarded as a special case of

above discussion. N e e 0 R e ) ) 102 e
When A, is non-invertible, the flow defined by

n—1
Anz™ + Z Az (t) =0 .
i=0 20
can be treated as follows. VR € SO(3) w0 ﬂiiiii“:‘mum
"\\\\‘n‘o""ﬁ,
it
|
“1p..(n) —1p..(0) " N
RA,RT'Rz™ + > RA;R™'Rz(t) =0 it
i=0
n—1 y : 20
RA.R'2™ 4+ RAR29(t) =0, 2= R"x x

=0

Figure 3: Shape 2

i.e. the equation is under conjugate action of A; —
RA;R~', whose invariants can be obtained as
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