FEFEN SR
IPSJ SIG Technical Report

WS 2008—CG—130

200872719

(15

T =A—a VOEBIZBITAHER—RAOER~yF T

Pablo Garcia Trigo' Henry Johan! 4#5%2 ' BEH RK2T
HERET Nanyang Technological University*

FET = A3 OYBIEEL BT DD OOy F L T FERRETDH. ANShieg7
L LRI EIL, BEEOMRAEBRORMETE N, 7L —AROEERE VYT LI T5. vyT
ZOHRBITIE, FABICIARENREETHIETE. BREEDHEL, ERO~yT L VEROBEESF =
= EIFENBT N~ TSR, T = A=V a AR TR B-O B (LETRDILIChHD. BTV —
AETORYF Lo I iERERBTAIET, v v F U/ RBER R LS, BOTL—AIRDIEERRT O T
VI DBERELTIENTES, ERLLT, EMREOGEITORDOEELERE TN TED.

Classification-based region matching for 2D animation coloring

Takashi Imagire’ Tomoyuki Nishita®
Nanyang Technological University*

Pablo Garcia Trigo” Henry Johan?
The University of Tokyo!

We propose a classification-based method for assisting the coloring process of 2D (hand-drawn) animated
cartoons. It segments input frames extracting the shape and topological features of each region, and then matches
them between frames, allowing the user to fix coloring mistakes interactively. Its main contribution is that the
matching algorithm classifies the matched regions into groups called “chains” and uses them for seeing how the
regions' features vary along the animation. Thanks to that, the matching accuracy is improved and the matching

mistakes are reduced, thus reducing the total effort needed until having a correctly colored cartoon.

1. Introduction

Traditional 2D animated cartoons are created by
drawing and coloring each frame manually. Compared
to other ways of making animations, it is a very
flexible means, but it is also a very time-consuming
process.

The traditional 2D animation pipeline consists of the
following steps [1]:

1. The main artists draw the concept storyboard.
2. The senior artists draw the key frames (lines only).
3. Secondary artists draw the inbetweenings
(the frames between the key frames).
4. Other artists color all the drawn frames.
5. Background, music and dialogs are added.

Usually steps 3 and 4 are the most time-consuming,
even when using commercial software like Retas or
Animo, (approximately to 60% of the time of the
whole process [2]) and previous research has
concentrated on automating them. For automating the
coloring step the usual approach has been the
following:

Input: All the key frames and inbetweenings drawn after
steps 2 and 3 of the animation pipeline. All of them
consisting of lines only.

Computer-assisted coloring process:

—

Segment each input frame into its closed regions.

2. Analyze each region in each frame and extract its
shape and topological features.

3. Matching: For all frames, identify what regions in
one frame correspond to what regions in the other
frames using the features found in the previous step
and paint them with the same color.

4, Check if there are regions wrongly colored and

correct them manually.

This paper introduces a classification-based
interactive method for assisting the coloring process.
Each time a region is matched to another, they are
classified as belonging to the same group of regions.
We call these groups “chains” of regions. During the
matching, we use not only the features of the region
currently being matched but also the features of the
previous regions in the chain. Having the chains, we
know how regions' features vary during the animation
and that helps us reduce the number of wrongly
matched regions in the matching step (third step of the
computer-assisted coloring process). Consequently,
more regions are automatically correctly colored and
we reduce the workload.

2. Related work

Previous methods have concentrated in automating
completely the coloring process with no user
intervention at all. Methods like [3] specialize in the
colorization of old grayscale cartoons. The levels of
gray serve as a hint for the colorization, but nowadays
animation pipeline produces frames in black and white
only. Thus, this solution is not applicable.

Having only lines and the possible lack of
coherence between frames can make the matching
very difficult. For addressing that, methods like [2] {4]
and [5] increase the matching accuracy by using
master frames as a reference, building a hierarchy of
regions or inserting skeletons.

While the above approaches can color successfully
certain kinds of animations, they may achieve bad
results in others. That is specially true in [4] [5] and
[6] if the topology of the regions suffers many
changes. This leaves the artist with the task of
correcting many wrongly colored regions manually in
the end. This is due to the fact that coloring mistakes
in one frame usually propagate to the rest of the
frames. Even more, those mistakes prevent other
regions from being correctly colored, thus creating
more mistakes.

This paper proposes a different approach. Instead of
aiming for the complete automation of the coloring
process, it recognizes that matching mistakes are very
difficult to avoid in all cases and introduces user
interactivity for fixing matching mistakes as soon as
they appear. On top of this, it builds chains of regions
along the animation. This helps to know how regions
change and increases the accuracy of the matching.

We work directly with raster images (bitmaps) as in
[7] and [8). Taking the bitmaps and vectorizing them
is done in [9] and [10], but we decided that it was not
necessary for our method. Also, we do not apply any
line thinning algorithm as in [2]. Line thickness can be
a distinctive characteristic in some animation styles
and thinning them could affect the dominant points or
even the neighborhood relations.

3. Proposed method

3.1. General overview

Our coloring algorithm goes as follows:

Scan the hand-drawn frames.

Apply filters to reduce noise and holes.

Segment each input frame into its closed regions.

For each region, extract its shape and topological
features (Section 3.2).

5. Interactive matching (Section 3.5).

During the interactive matching, group the regions
into chains to improve the matching accuracy
(Sections 3.3 and 3.4).

Hw

3.2. Region features

For each region we extract the following features:

1. Shape features:
a. Area.
b. Dominant Points.
2. Topological features:
a. Position.
b. Neighbor regions.

1.2) The area is the number of pixels that make up
that region. The background is usually the region with
the biggest area, although not necessarily.

1.b) Dominant Points are points in a boundary that
have a high curvature. Additionally, they may have
other features. There is not a single definition and they
are also called Character Points. In [11] the k-cosine is
used for finding them. We use a simple method that
has proved good enough for our samples: To classify
whether a pixel p that is in the border of a region is a
dominant point or not, we count inside a small square
centered at p the amount of pixels of the region that
fall in the square. If they are 75% or more of the area
of the square, that pixel is considered to have a high
curvature and is classified as Dominant Point (see
Figure 1). The same applies if they are 25% or less.
This can be tuned for each specific animation.

Figure 1: Example of a Dominant Point. The arrow points at
the tip of a stroke. The tip is a Dominant Point. It is calculated
with a square of 5x5 pixels. 6 out of 24 pixels are in black (the
stroke drawn by the artist) and 18 are in white (the region to
be colored).

2.a) The position of a given region r is reported as
its centroid, where the centroid is the arithmetic mean
of all pixels of » (see Figure 2). Centroids may not
necessarily fall in the middle of a region, or not even
mside.

Figure 2: Centroid of a region r. For example, if v is the hair
region, its centroid is at the tip of the arrow.

2.b) For each region we register its neighbor
regions. They can be found expanding the borders of
the regions outwards up to a certain distance. This can
be tuned according to the thickness of the lines.

3.3. The matching algorithm

We can think of the matching process as a process
of making chains of regions. It starts with a given
region ri, let us call it source region, and tries to find
its corresponding region 2 in the next frame (see
Figure 3). If found, »/ and r2 are linked, r2 becomes
the new source region and the process is repeated.
When it cannot find its corresponding region in the
next frame the chain ends.

Thus, we call “to match a given region »” the
process of finding all the regions that correspond to r
in the following frames, and the result is a chain of
regions, started by (see Figure 4).

R,
ey

Figure 3: vl is the hair region in the first frame at the left.
We want to find its corresponding region r2 in the second
frame (at the right). For finding it, we will compare rl to all
regions in the second frame.

Figure 4: The chain of regions corresponding to the hair.
They go from the first frame (the leftimost picture) to the last
frame (the rightmost).

We have implemented a forward matching
algorithm. We start in the first frame and we try to
match all its regions. When done, we look at the next
frame, and do the same with all the regions that are
still unmatched. We continue until we reach the last
frame. Inside each frame, we start matching from the
biggest region to the smallest. Empirically, we found
this order to give good results.

3.4. The comparison function

How do we find the correspondence of one region in
the following frames? This is, how do we know that
region] in the frame fis the region r2 in the frame (f
+1)? We use a comparison function comp. It accepts
two regions as input and returns a score indicating
how probable is that those two regions correspond to
each other. A score is always a number between 0 and
1, 0 in the case of total dissimilarity and 1 when the
features are identical.

For a given region r/ in a frame (see Figure 3), we

run comp against »/ and all the regions in the next
frame that have not been matched yet. Then, we pick
up the region with the highest score as rl's
correspondence. Sometimes we cannot find a
correspondence because all the regions in the next
frame have already been matched.

comp is made of four sub functions that compare
each of the features in Section 3.2 and return a score.

Then, the score of each sub function is multiplied by
a weight w that increases or reduces the importance of
that feature. Finally, all the weighted scores are
summed to make up the final score that comp will
return.

comp(rl, r2)=
comp,,(rl, r2)kw, +

area

compposman(rl’ r2)xw +

position
COMP pominantPoints (rl) r2) * W DominantPoints +
compneighbor:(r1 ,r2) *W o ighbors -

COMp... compares the area of two regions
subtracting their areas and coOmMPpoiion cOmpares the
position calculating the distance between their
centroids. For comparing the Dominant Points of two
regions 7/ and 72, COMPpeminantoins Calculates the
average of all the Dominant Points of each region and
then calculates their difference. Similarly, for
comparing the neighbors, cOmpaeigmos calculates the
average of their centroids and returns their difference.
The string encoding used in [8] is more accurate,
although ours is faster.

COMP area(7 1. 12V =11 o= 72 sreal >
COMP posinon(1] 72) = distance(r1 comroia, M2 oonircna) »

COMP pominantPoints | Aver age (1] gupominanpoins) —

Average(r2

A/IDomr'numPamr:)[’
comp,,,_,,g;,,,o”:[Average (all neighbors of 71 omreia) —
Average(all neighbors of r2,,,...)| -

Regarding the weights, they are recalculated
according to the regions in the chain to reflect the
variation of the features along it: for each region in the
chain, we compare it with its immediate predecessor.
We compare the four features separately and store the
minimum and maximum scores of each feature in the
chain. By doing so, we know how much does a feature
vary. Features that vary a lot are not reliable and we
assign them a low weight. Conversely, features that do
not change almost are given a high weight.
Empirically, we found that the following values
worked well for our examples: A weight of 4 if the
feature varied less than 10%, a weight of 3 if it varied
less than 30% and a weight of 2 if it varied less than
50%. A weight of 1 otherwise.

Taking into account the previous regions in the
chain enhances the accuracy, but it is not possible to
make comp work correctly for all cases and eventually
it will not return the highest score for the
corresponding region, becoming a wrong match.

We can always fine-tune comp's weight calculations
to the particular animation, but in this paper, we have
opted to make the matching process interactive and
ask the user to supervise the matchings as they are
done. Although this means more work for the user, it

- means that matching mistakes are corrected as early
as they appear and, in the end, it is less work than
fixing all the mistakes of all the frames after an
automatic matching with mistakes.

3.5. Interactive matching

The user interface consists of a set of panels that
display the frames to be matched. We can have as
many as we want, and, if the user has enough
monitors, he/she should be able to see all the frames
of the animation at once. (Although that could be
impractical if the animation is foo long).

Usually, we will use a smaller working set of
frames, e.g. the first five frames, and do the matching
in these five frames only. Once all regions in the
working set have been matched, it proceeds to the
next five ones, and so on until the last frame. As long
as matches are found, chains grow along. The smallest
working set would be two frames: A frame and its
following frame. Our example animation has five
frames, so we can see them all at once while
performing the matching (see Figure 5).

Figure 5: The user interface showing five frames.

Initially, the user has only to click the “Interactive
matching” button on top of the panels (see Figure 6)
or, more conveniently, just press the space bar in the
keyboard. At each press, the system executes one step
of the algorithm described in Section 3.3: it picks up
the first non-matched region of the working set,
matches it and shows the result on screen. The
matched regions appear colored with the same color.
A random color is used for distinguishing each chain.
Figures 7, 8 and 9 show the first two steps of the
matching process.

For fixing matching mistakes the toolbox (the upper
left dialog in the user interface, Figure 6) allows us to
fix a chain, indicate that a chain ends and indicate that
a chain starts.

Thr—dat Frame 00 v St |

L FI-ANLCENE
SFI-ULCORNIEES

PP R

Figure 6: Close-up of the user interface

“ Fix the chain” asks the user to click in two
regions and links them. It is the most used function.
Note that it is possible to link regions that are in non-
contiguous frames. This is specially useful for cases
where a region becomes non-visible during some
frames but later reappears.

When this function is used in regions »/ and r2, the
part of the chain that started at »/ (let us call it “tail”)
is deleted (all those regions become non-matched), r/
and 2 are linked and r2 is matched. Thus, the tail
starting at r/ is effectively recalculated.

“Chain ends at a region »” removes the tail from r.
Useful for when a region becomes hidden completely
in the rest of the animation. Only needs one click in
the regionr.

“Chain starts at a region »” launches the matching
process at » as a new chain. Any tail starting at » or
any link from another chain to r is deleted first. Only
needs one click in region r.

4. Results and Discussion

We implemented our system in Java. We ran the
tests on an Intel Core2 Quad CPU Q6700 @ 2.66
GHz, with 2 GB of RAM. The current
implementation is single-threaded and does all its
calculations on CPU. Segmenting and extracting the
region features of one frame takes around 300
milliseconds. After the segmentation and the
extraction of features, all the interaction is in real-
time. The animation consists of five frames, each of
507x446 pixels. Each frame has respectively: 15, 16,
17, 18 and 18 regions. The outputs are in Figures 7, 8,
9, 10 and 11. We counted the number of mouse clicks
on the panels (for indicating a region) and on the
toolbox (choosing an option). The results are
summarized in Table 1.

“Without chains” means that the weights were not
recalculated according to the regions in the chains.
They were set from the beginning to 1, meaning that
each feature had the same weight. “With chains”
means doing the comparison as in Section 3.4.

78‘ —

Table 1: Comparison of the number of clicks and wrongly
colored regions using the different algorithms.

Algorithm Number Of Wrongly Colored
Clicks Regions
Interactive without 38 clicks 0 regions
chains
Interactive with 34 clicks 0 regions
chains
Non-interactive 0 clicks 43 regions
without chains
Non-interactive 0 clicks 40 regions
i with chains

The interactive algorithms had the user click in the
right regions for fixing them, and thus achieved a
correct matching. The Non-interactive ones required
zero effort from the user, but had matching mistakes.

The final step until obtaining the completely colored
animation would be to color the first frame and the
first region of those chains that do not start at the first
frame. Color will automatically propagate to all the
matched regions. The five frames used as a test
contain some difficult parts: the pony tail, the ear and
the collar. That is because they change their shape,
position and/or disappear.

As seen in Table 1, our non-interactive algorithm
colored incorrectly 40 regions. Fixing that would
require more than the 34 clicks of the interactive case.
Both in the interactive and non-interactive cases the
use of chains improved the overall accuracy.

It can happen that a correct matching without chains
becomes incorrect when using them. This shows that
chains are not perfect and also need fine-tuning for the
animation in question. But their use, on the whole,
seems beneficiary and is fast in its current
implementation.

Our method shows how, for difficult cases, an
approach that takes into account the previously
matched frames and involves the user can be more
efficient that a strict frame-by-frame non-interactive
approach.

5. Conclusions and Future Work

As seen in the results, fixing the coloring mistakes
as soon as they appear has allowed us to stop their
propagation and the generation of other mistakes,
while keeping the user intervention low.

Also, classifying the regions into chains and seeing
how regions change along them has allowed us to
increase the matching accuracy, thus reducing the
total number of mistakes and reducing the total effort
needed until having a correctly colored cartoon.

As for future work, we want to further improve the
comparison function and take even more advantage of
the chains to improve the accuracy.

One interesting case to include is to consider that
there is occlusion in a region when the user links two
regions in non-consecutive frames.

Another possible direction for improving the
matching accuracy is to look for regions that break up
into several ones or regions that merge into a single
one, and treat them apart, since these are sources of
matching mistakes.

References

[1] Catmuli, E. The problems of computer-assisted
animation. In Proceedings of the 5th Annual
Conference on Computer Graphics and interactive
Techniques, SIGGRAPH '78: 348-353, 1978.

[2] J. Qiu, H. Seah, F. Tian, Z. Wu, and Q. Chen.
Feature- and region-based auto painting for 2D
animation. Visuval Computer, 21:928-944, 2005.

[3] Sykora, D., Burianek, J., and Zara, J. Unsupervised
colorization of black-and-white cartoons. In
Proceedings of the 3rd international Symposium on
Non-Photorealistic Animation and Rendering, NPAR
'04: 121-127, 2004.

[4] Qiu, J., Soon Seah, H., Tian, F., Chen, Q., and Wu,
Z. Enhanced auto coloring with hierarchical region
matching. Image, Colour and Illumination in
Animation. Computer animation & virtual worlds.
16, 3-4: 463-473, 2005.

[5] Qiu, J., Seah, H. S, and Tian, F. Auto coloring with
character registration. In Proceedings of the 2006
international Conference on Game Research and
Development. ACM International Conference
Proceeding Series, vol. 223: 25-32, 2006.

[6] Jie Qiu, Hock Soon Seah, Feng Tian, Quan Chen,
Zhongke Wu, and Konstantin Melikhov, “Auto
Coloring with Enhanced Character Registration,”
International ~ Journal of Computer Games
Technology, vol. 2008: Article ID: 135398, 2008.

[7] Fekete, J., Bizouarn, E., Cournarie, E., Galas, T., and
Taillefer, F. TicTacToon: a paperless system for
professional 2D animation. In Proceedings of the
22nd Annual Conference on Computer Graphics and
interactive Techniques, SIGGRAPH '95: 79-90,
1995.

[81 J. Madeira, A. Stork, and M. Gross. An approach to
computer-supported cartooning. Visual Computer,
12:1-17, 1996.

[9] C. Chang and S. Lee. Automatic cel painting in
computer-assisted cartoon production using similarity
recognition. The Journal of Visualization and
Computer Animation, 8(3):165-185, 1997.

[10] H. Seah and F. Tian. Computer-assisted coloring by
matching line drawings. Visual Computer, 16(5):
289-304, 2000.

[11] Jie Qiu; Hock Soon Seah; Feng Tian; Quan Chen;
Melikhov, K., "Computer-assisted auto coloring by
region matching,” Computer Graphics and
Applications. Proceedings. 11th Pacific Conference:
175-184, 2003.

Figure 11: The frames after being matched automatically without user guidance. Errors in the first frames are repeated in the
coming frames and prevent correct matches, thus generating more mistakes.

