La—SvALU¥T7z—2 41—4
(1992, 3 2)

SYNTHETIC MEDIA ARCHITECTURE
AS
AN OPEN PLATFORM
FOR
THE NEXT-GENERATION INFORMATION PROCESSING

Yuzuru Tanaka
Electrical Engineering Department, Hokkaido University
N-13, W-8, Sapporo, 060 JAPAN

Computers as meta-media should provide us with an overall integrated environment for our intellectual
activities. The scope of our activities changes with respect to time. Therefore we must define such an
overall environment as an open system that allows addition of new tools at any time. To achieve this goal,
we need a unified framework for the modeling, the presentation, the synthesis, the sharing, the circulation
/ publication, and the management of multimedia documents, system-provided functions, and application
programs. In 1989, we proposed the IntelligentPad system as a hypermedia system with a unified
framework for the modeling, the presentation, the synthesis, and the management of multimedia
documents, system-provided functions, and application programs. It represents everything as a pad or a
sheet of paper. Pads are all persistent. Different pads are associated with different functions. The pasting
of pads on another pad defines a new pad that has both an arbitrary layout of fields and a new function
composed of the constituent pads. Here in this paper, we will show some extensions for the provision of a
shared pad space, the coordination of interactions, and the integrated management of pads, and propose
the IntelligentPad architecture as an overall integrated open platform for the next-generation
information processing systems.

KERFERLEDO TSI v b 74— LLTD
SR FA VI ATFAT T —FTFIFx
He ik
JeipE R F T ERERIFER

AZAFATELTODA Y a— 7 ke OMNEE % BRI KIET 2RE LRI 5, 42 oESHD
WHBEE I E L QLT 20T, TRZELTHLVEANEECNAOR L F -T2V A F 4
ELTKBEBEIER L 2T IR0, TO2HIE, TLF A7 4 TXEE L R 7 LR,

FREEWER 7RS0T RTEHLT, EF) ¥ 7, TVv¥rF— 2 ar, A/ &%, iE,

EHOTRTE2EL THE—OLID B AR RE L IREOHMA DL ETH 5, IntelligentPadid.

EF) T, TVvEYTF—Tar, . BEHICHET AR —REALT L s oA N—AF 4T VAT
LELTINIEILTVHASNE, COVATFAETRTOLDE /Ny K, 2F ) —Hoks L THHE
The Ny FITRTAFHTH S, BLIHEHED Ny FRELIMWEELFO, /Ny Pzt FElE3
SEWED, VAT POTFH A L EBEOEKET)I LN TE L, TOHREETIE., LEERDIE
e, A7) S TR T I vy, HEEROEEDBIETEIC v TR, IntelligentPad % K HALIE #
WMEOBENEIEKE T Iy P74+ — L& LTRET 5,



1. MIND TOOLS AND MEDIA
1.1. Mind Tools

Computers today are extending their definition
from what computes expressions to what augments
our intellect. The augmentation of human intellect
might have two possible directions, i.e., 1) its

automation and 2) the provision of useful‘tools. Our .

primary concerns in the automation are (1) how to
declaratively describe the problem without losing
consistency with what to solve, and (2) how to
logically translate the given specification to its
executable form. OQur primary concerns in mind
tool systems however are (1) how to intuitively
capture the functions and the usage of each tool,
and (2) how to construct a new tool from already
existing ones. Some psychologists believe that a
shape of a cup affords us how to handle it. This
effect is referred to as ‘affordance’ [1]. The formats
of documents and the shapes of deskwork tools also
afford us how to manipulate and manage them.

The use of affordance implies the use of appropriate
metaphors in man-machine interfaces. Before
1980, computers adopted a typewriter metaphor for
their man-machine interfaces. Then in the 1980s,
the metaphor of published documents prevailed
among DTP systems. Then came the metaphor of
tools to implement various OA tools on computers.
Now computers come to incorporate multimedia
facilities through the metaphors of audiovisual
devices. Some researchers are developing systems
with interface agents where a metaphorical
secretary or agent lives in a computer and serves
his master. Such a system may have more than one
agents to form their society. It may also have urban
facilities such as schools, libraries, department
stores, and transportation facilities to form a
metaphorical city. In this city, residents are either
mechanical agents or other users connected to this
system through computer networks.

Here in this paper, we are only concerned with the
metaphors of documents, tools and audiovisual
devices. Metaphors of these kinds are referred to by
media metaphors.

1.2 Media Metaphors

Informations, when we receive, process, and send
them, cannot exist without their media. Media
have added various functions to information.
Among them are the functions to visualize, to
record, to archive, to transport, to duplicate, and to
broadcast information. Media on computers have
added more functions to information such as
editing, programming information, associating
information with each other, and interacting with
information.

Media objects are classified into two catlegories: (1)
static media objects, and (2) dynamic media objects.
Text documents are static media objects, while
documents with supporting tools behind them are

-dynamic media-objects. The IntelligentPad System

developed in Hokkaido University represents all
the media objects as dynamic media objects, and
assurhes each of them to have a rectangular planer
appearance [2]. It calls such an object a pad.

The adoption of media metaphors started in early
80’s with the DTP. Around the mid 80’s, AV
storage media such as CD-ROM, LD, and LD-ROM
were interfaced to computers, and video boards
enabled display windows to show video clips with
sounds. Complex documents were further extended
to have embedded video clips. Then people began to

“seek a way to treat different types of components in

a uniform way. This encouraged the object oriented
system design, which allowed us to embed
programs in complex documents. Such documents
became dynamic media objects.

The object oriented programming allows two
different styles of programming. The refinement-
based programming defines classes and their
property inheritance hierarchy, while the synthetic
programming defines a set of object instances as
primitive objects. In the latter, programmers can
combine several primitives to define a new
composite object. This programming style is also
called the synthetic programming. Around 1986,
the object-oriented modeling of media systems
encouraged our research group to apply the
synthetic programming style to the design of
dynamic media systems. This led to our proposal of
a synthetic media architecture, and resulted in the
development of The IntelligentPad System.

2. SYNTHETIC MEDIA
2.1 Media Environment

Computers as meta-media provide varieties of
information media and tools, which constitute our
environment for intellectual activities. Such an
environment should be an overall integrated one.
Different look-and-feels for different media would
require different treatment of different media and
hence frequent conversions among them, which
seriously disturbs our thinking. Therefore they
should have the same look-and-feel. Since the scope
of our activities changes with respect to time, we
must define such an overall environment as an
open system that allows us to add new types of
information and tools at any time in the future.
Such an environment requires the following four
types of integration:

(1) Homogeneity Integration of documents
and tools through their homogeneous
representation.



(2) Integrity Logical integration of
media objects by keeping the consistency of
mutually related information.

(3) Compoundability Visual integration of
multimedia objects by arranging them to define
a single complex document.

(4) Composability Integration of various
functions through the flexible combination of
media objects to compose a new media object
with a new function.

Todays hypermedia systems and integrated office
tool systems are however closed systems. They
provide no means for their users either to
assimilate new tools developed elsewhere into their
integrated environments or to compose new tools
from existing ones. HyperCard, for example, has
encouraged the development of lots of stackwares.
Its users, however, cannot combine two different
stackwares to compose a new one. Though NeXT’s
Interface Builder allows us to compose new tools, it
distinguishes toolkit objects from windows. It
represents some media objects as windows and the
others as toolkit objects. It lacks the homogeneity
of the representation.

One promising solution to this problem might be an
object-oriented open architecture proposed by
Tsichritzis [3]. He proposed this for software
development systems. When applied to multimedia
platform systems, however, it means a new
architectural paradigm based on the following four
principles:

(1) generic toolkit

Generic definition of primitive dynamic
media objects.

(2) synthetic programming

Synthetic programming for the composition
of new dynamic media objects from
primitive ones. )

(3) open platform

Standardization of platforms to make every
primitive media object executable on as
many machines as possible.

(4) integrated management

The integrated management of all kinds of
media objects.

We call such systems satisfying these principles
synthetic media systems. The first three principles
would bring a new portable representation form for
both documents and application programs. Naffah
called this form the reactive information [4]. As he
pointed out, it allows us to maintain information
longer in soft form, than in hardcopy or paper. This
facilitates the distribution of various multimedia
documents and application programs, stimulates

their production and usage as dynamic media
objects, and opens a new media business market.
Wide-area computer networks will offer good
infrastructures for such markets.

2.2 Media Base

The increasing number of primitive and composite
media objects will make it difficult for us to select
appropriate objects to compose what we want. Its
solution requires a database for the integrated
management of all kinds of media objects. We call
such databases media bases. Media bases have to
manage a large amount of different object types,
while the conventional databases as well as ADT
and object-oriented databases can only deal with a
large amount of objects that can be classified into a
small number of different types. Implementation of
a media base requires the development of new
management and retrieval methods.

In media bases, the modeling of each object consists
of three parts, i.e., its model, view and controller.
Its model defines its state and behavior. Its view
defines its appearance, while its controller specifies
its reaction against user manipulation.
Conventional databases store for each object only
its state, while abstract-data-type databases and
object-oriented databases store for each object both
its state and behavior. Media bases store each
object not only with its state and behavior but alse
with its appearance and reactions.

3. The IntelligentPad ARCHITECTURE
3.1 Design Philosophy

The IntelligentPad system is a media-synthesizing
toolkit system based on the object orientation
paradigm. Figure 3.1 shows a display snapshot of
the system: It represents everything as a pad or a
sheet of paper. Pads are all persistent. Different
pads are associated with different functions such as
word processing, image editing, line drawing,
tabulation, graph drawing etc. Pasting of pads on
another pad defines a new pad that has both an
arbitrary layout of fields and a new function
composed of the constituent pads. IntelligentPad
initially provides a set of primitive pads. Its users
can define new pads by pasting existing pads
together.

IntelligentPad provides the following pad
operations: (1) open/close of a pad, (2) property
change of a pad, (3) registration and naming of a
pad, (4) copying/deleting of a pad, (5) moving of a
pad, (6) save/load of a pad, (7) paste/peel of a pad,
(8) tree representation of a composition structure,
and (9) printing of a pad. Each closed pad has an
iconic representation. Each icon may have an
arbitrary size and an arbitrary picture. It may be
transparent. A click on an icon opens it. Each pad
has a property sheet on which we can specify its



properties. Among them are its size, the shape of its
border, and its shading and pattern. We can paste a
pad on another pad, and peel a subpad off a pad.
These operations are also applicable to closed pads.
A peeled subpad keeps its state before the
separation, but breaks the functional composition.
Once a closed pad Pg is pasted on Pip, the
dependency between them is kept alive even after
we open Pg. We may open Pg at any location on the
screen.

3.2 Basic Architecture

Each pad is implemented as an MVC (Model, View,
and Controller) triple. Each pad has an update-
propagation path from M to V as well as message-
sending paths from C to V and V to M. A state
change of M automatically updates V (Figure 3.2).

Model

message- sending

Controller View
message-

sending

update propagation

Figure 3.2 The internal structure of each pad.

Each pad has an observable part of its state. This
part is represented as a list of slots. Each slot may
be either a value or an attached procedure. The
first slot of each pad is called the primary slot.

When a pad Pg or its icon is pasted on another pad
P1, IntelligentPad constructs two paths between
their views as shown in Figure 3.3; an update-
. propagation path from P; to Pg, and a message
sending path from Py to Pj. This establishes the

Py

view pad

® 1 update @ | gimme[<slot__name>]

| set[<slot__name>] <value>

Py (only for /O devices)

Figure 3.3 Slandard message interface between pads.

connection between two pads, and defines a
dependency from Pp to Py. The pad Pgisa subpad
of P1, while P is the master pad of P. No pad may
have more than one master pad. If P; has more
than one observable slot, we have to select one of
them to associate it with Pg. This selection can be
specified on a connection sheet pad associated with
the connection.

Each subpad can send a set message ‘set
[<slot__name>] <value>'to its master pad. If the
specified slot is a data slot, its value is updated
with the sent value. Otherwise, the master pad
executes the attached procedure. A master pad,
when its state is changed, sends all of its subpads
an update message without any parameter. Each
subpad, when receiving an update message, sends
back a gimme message ‘gimme [<slot__name>7
to its master pad. If the specified slot is a data slot,
this message reads out the slot value. Otherwise,
the message makes the master pad execute the
attached procedure. The returned value of the
gimme message is set to the primary slot of the
sender. Each procedural slot may have two

S R o

Figure 3.1 A display snapshol of the IntelligentPad system.
—98—



different attached procedures for the set and
gimme messages. IntelligentPad allows us to
disable some of these messages, which can be
specified on the connection sheet pad. The two
messages set s v and gimme s sent to a pad P are
forwarded to its master pad if P does not have the
slot s.

Besides the three standard messages, any pad can
send some standard messages for geometrical
operations to its master as well as to its slaves.
Among them are move, copy, delete, hide, show,
open, close, resize, and paste messages.

3.3 Shared State and Shared Workbench

IntelligentPad allows us to make a shared copy of
any pad. A shared copy P’ of a primitive pad P
shares its model component with P, but has a
dedicated view component and a dedicated
controller component. Shared copies of a composite
pad is defined to share the state of their base pads.
IntelligentPad allows us to electronically mail a
shared copy of an arbitrary pad to other users at
different sites. Its receiver can share the state of
this dynamic media object with its sender.
IntelligentPad allows us to associate each shared
copy with an arbitrary number as its priority level
for the conflict resolution among concurrent user
events.

While shared copies allow any state change
operation at either site to cause the same change at
the other site, they cannot make one site simulate
paste operations performed at another site. This
requires the event sharing, which a field pad can
perform. We may put any pads on a field pad to
define a shared workbench. A shared copy of this
composite pad has a nonshared copy of each pad on
a shared copy of the field pad. The primary slot of a
field pad stores the last operation performed in the
area defined by this pad. A field pad can detect any
user-event request over itself and to convert this
event request to the primary slot value of itself.
The user events here includes mouse dragging,
mouse clicking, and keyboard typing. A shared
copy of a field pad receives an update propagation
from the original, converts the new primary slot
value to the original event request, and applies this
event to the target pad on this copy. The field pad
and the shared-copy mechanism provide
fundamental facilities to build CSCW (Computer
Supported Cooperative Work) systems.

In the IntelligentPad, each mouse event is detected
by the controller of the top pad at the mouse
location. Every user event over a field pad,
however, needs to be sent to this field pad. This
requirement implies that each pad, when put over
a field pad, has to replace its controller with a
special controller used only over a field pad. This
controller called a field controller, when it detects a

user-event request, sends its information to the
view of the topmost field pad under this pad. The
event information consists of the event type and
the event location. The event location is given as
the (x, y) coordinate relative to the field pad. The
reason for the division of the display object for a
pad into its view and its controller lies in this
requirement to change its controller.

‘When its state is updated, the field pad traces up
the subpad links to find the topmost pad at the
given event location. This pad is the same pad that
sent the event information. The field pad then
sends the view of the target pad the same message
as its original controller would directly send if it
were not replaced. The same replay mechanism
works in each shared copy of the same field pad,
which realizes a shared workbench.

34 STAGE PAD AND SCRIPTS

In IntelligentPad systems, we can perform our jobs
through synthesizing and manipulating various
pads. Each pad when operated reacts to perform a
subjob. In this sense, each pad may be compared to
an actor who plays a role following the director’s
order. Its user is compared to the director. Some
applications such as CAI and computer games need
to program the sequence of operations on pads.
Since everything is represented as a pad in
IntelligentPad, this sequence of operations should
also be represented as another pad. We call this pad
a stage pad since it provides various actor pads
with a stage on which they perform a play. The
director of this play is hidden behind the stage pad
as its script program.

Our script programs differ from the HyperCard
script programs in the following respects. They do
not directly send messages to actor pads to
manipulate them. Instead, they send actor pads
user events such as mouse clicks, mouse drags, and
key strikes. They do not directly send messages to
any actor pad to read or write any observable slot
values. Instead, they read and write only the
primary slot value of each actor pad. In other
words, our script programs operate the actor pads
in the same way as we operate them.

In an actual play, its script does not refer to any
actor. It refers to his or her role. Any replacement
of actors requires no rewriting of the script. The
same is true to stage pad scripts. Each pad may
have more than one operation point with different
reactions. Hence, seript programs refer to operation
points instead of actor pads. Operation points are
referred to through their role names. Each stage
pad has a casting list, which is a table that
associates operation points with their roles in its
script program. The performance on a stage pad



allows interruptions by its user. Scripts are
described as event-driven programs.

A stage pad with some actor pads on it can be
pasted on top of another stage pad. This allows us
to define a play within a play.

3.5 Pad Base

We need efficient mechanisms both for the
management of pads and for the retrieval of
specified pads. IntelligentPad provides three kinds
of access methods: (1) a visual catalog of pads for
browsing, (2) hypermedia networks for navigation,
and (3) form bases and pad bases for quantified
retrieval of pads. Any pads can be managed by
these three search methods. This means that we
can even store and retrieve CSCW environments
composed with a field pad, CAI environments, or
computer games, both composed with a stage pad,
as well as documents, charts, tables, and ordinary
deskwork tools.

Form bases cannot meet our needs to manage all
types of pads in an integrated way. IntelligentPad
provides a special folder pad called a pad base to
meet such needs. A pad base is a database in which
stored records are all pads. IntelligentPad may
define any number of mutually exclusive pad
bases. Pad retrieval from each pad base requires
some method to quantify the pads to find.
IntelligentPad has adopted the Query-By-Example
approach for the quantification of the pads to
retrieve.

Each pad has its nickname, registration number,
composition structure, and the observable values of
its constituent subpads. Each of these may appear
in retrieval conditions. The registration number of
a pad specifies its type. We will define the
signature of a pad as follows. It is a tree with a pair
of a registration number and a value at each node.
The root node’s pair is the registration number and
the observable of the base pad. Each son of its root
has a subtree representing the signature of a
composite pad that is directly pasted on the base
pad. The pads to retrieve can be quantified by
partially specifying their signatures. Such a
specification partially expresses a signature tree,
leaving some of its nodes, subtrees, and/or the
observable values of some nodes unspecified.

If we specify a computation pad pasted with a
digital-display pad, a pad base will retrieve every
composite pad with a digital-display pad pasted on
a base computation pad. The retrieval result
includes various hand calculators with different
sizes and layouts. If we further specify the digital-
display pad value to be 5.0 in the above query, the
retrieval result excludes such a pad with its display
value different from 5.0. For an insertion of a pad

into a pad base, we only need to place the icon of
this pad over the pad base icon.

The current version of IntelligentPad has a pad
base pad that works as an interface to GemStone
object-oriented DBMS. A pad base pad accepts a
partially specified signature and returns search
results (Figure 3.4). IntelligentPad also provides

M

Figure 3.4 A pad base pad has retrieved a pad.

the signature-extraction pad. When a composite
pad is put on this pad, it extracts the signature of
this composite pad. If you paste this pad on a pad
base pad, you may just put a computation pad with
a digital-display pad as its subpad on the
signature-extraction pad to specify the same query
as above.

We finished with the first implementation of the
pad base pad in 1990. Our experience with
GemStone however has proved that its indexing
technology can not sufficiently speed up the context
search. The same problem lies in most OODBMSs
available today. There are two reasons. They are
based on the refinement-based programming
paradigm, while the pad world is based on
synthetic programming paradigm. In the former
paradigm, complex object structures are defined in
classes and their hierarchy. The indexing is applied
to a set of objects in the same class. In the latter,
however, complex object structures are defined by
combinations of object instances. Each pad may
have different structure from others. The
IntelligentPad project developed a new indexing
method to speed up the context search. Its details
will be soon published elsewhere.

4, CONCLUSION

The IntelligentPad System as a synthetic media
system is an open platform that provides an overall
integrated environment for human activities. An
appropriate mapping of any specific application to
a single pad or a set of pads will assimilate this
application into the environment of pads. Any
external object that is controled by the underlying
system also can be assimilated into this integrated
environment by introducing a pad that works as its
proxy in this environment. The IntelligentPad
System is open to any application programs. They
can be easily assimilated into an integrated
environment. Once they are represented as pads,
they can be easily combined with other functions




by pasting their pads. A pad base provides an
integrated management of all kinds of pads.

Two special pads play important roles in this
environment. A field pad and a shared copy
operation provides shared workbenches for a group
of users distributed at different sites. They can
share their workbench in real time. Each operation
at any site is shared by every site sharing the same
workbench. A stage pad on the other hand can
automate an arbitrary portion of human operations
in this environment of pads. These two pads are
also pads, and hence they can be arbitrarily
combined with themselves as well as with other
pads.

We are also conducting two new projects; one for
allowing pads to operate concurrently, and the
other for making the system more portable. The
second project is a joint project with three major
Japanese computer companies. It develops The
IntelligentPad System in C++ using The X
Window environment.

We are also developing applications of
IntelligentPad. Figure 4.1 shows its application to
a CAI system for classical mechanics. In this
system, students can creatively play with various

tools and parts to find out physical lows by
themselves.

REFERENCES

[11d. d. Gibson, The Ecological Approach to Visual
Perception, Houghton Mifflin Comp. Boston,
1979.

[2]1 Y. Tanaka and T. Imataki, “IntelligentPad: A
Hypermedia System allowing Functional
Composition of Active Media Objects through
Direct Manipulations”, Proc. of the IFIP 11th
World Computer Congress, San Francisco, Aug.
1989, pp. 541-5486.

[31D. Tsichritzis, “Object-Oriented Development
for Open Systems,” Proc. IFIP Congress ‘89, San
Francisco, Aug. 1989, pp. 1033-1040.

[4] N. Naffah, “The Future Office Automation,”
Proc. IFIP Congress ‘89, San Francisco, Aug.
1989, pp.745-750.

[51Y. Tanaka, “A Tool Kit System for the
Synthesis and the Management of Active Media
Objects”, Proc. of the Ist International
Conference on Deductive and Qbject-Oriented
Databases, Kyoto, Dec. 1989.

Figure 4.1 An application of IntelligentPad to CAl for classical mechanics.



