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Abstract

In this paper a distributed congestion
control policy, called PF-C, with nodal buffers
management strategy based on traffic priorities
is proposed and analyzed. The priority of a
packet is depended upon the number of hops it
has traveled and the number of hops it has to
travel to reach its destination. Then, a packet
that arrived at a given node is rejected if the
number of allocated buffers exceeds a limit
value corresponding to its priority.

This policy is analyzed in the context of
symmetrical networks. Numerical applications to
Loop networks clearly demonstrate the good
behavior of this policy to achieve the maximum
network throughput. As the results, PF-C scheme
shows more effective than another similar
policies which have been proposed.

1. INTRODUCTION

In a Store-and-Forward (S/F) computer net-
work, if users' demands (i.e.,offered traffic)
are allowed to exceed the system capacity
without control, unpleasant congestion effects
will occur, and its effective throughput is
degraded as shown in Fig.l (curve 4). Numerous
flow control procedures have been proposed in
order to prevent network congestion as well as
to avoid network throughput degradation(5). In

this paper, we considered our flow control
policy with a finite nodal buffers management
based on the priorities of packets. Briefly, at
first we assign different priorities to all
packets which arrived at a node according to
both the number of hops they have traveled, say
i, and the number of hops from this node to

reach their destinatioms, The priority

say j.
assignment is based on our main purpose in
order to avoid the throughput degradation and
also to maximize the throughput, as well.
Intuitively, we assign increasing priority to
any packet when i becomes larger and together
with j becomes smaller. Next we divide all pac-—
kets into classes in accordance with the rank
of their prioiities, by defining a packet of
priority r as a class-r packet. Recall that the
larger r is, the higher priority is indicated.
Finally, we assign the limited number of buf-

fers, say Lt, as a limit value to each class,
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say r, such that LO<:L1<§'-"<jﬁn' Then the con-.
cept of our control policy is that a class-r
packet is accepted by a node if and only if the
number of occupied buffers in this node is less
than Lr’ otherwise it is rejected. Rejected
packets are dropped from the networks and
considered as lost. Due to our considerationm,
we call our control policy as "Past-and-Future-
hops-Count (PF-C)" flow control.

A number of similar policies has been pro-

(1),(2),(3)

posed and some analyzed . Geissler et

al.(l) made a simulation studies of assigning
increasing priority to a packet according to
the number of hops it has traveled only. Lam

(2) 3)

and Reiser , and Kamoun made a simplified

analysis by dividing packets only into two

classes, call "Input" and "Transit" packets.
Packets that traveled over one or more hops are
considered as transit packets and packets that
are candidates to enter the communication net-
work are considered as new packets. Their idea
is to favor transit packets over input packets.

A similar policy in case of infinite nodal
buffers is also proposed by Tezuka and Sanada

et al.(A).

Their main purpose is to minimize
system delay. However, the analysis of blocking
probability suffered by packets in a finite
storage system is more difficult than one in an
infinite storge system.

vIn this paper we present and analyze our

PF-C scheme for a family of symmetrical net-



works. A node model and analytic conditions are
the same as one introduced by Kamoun(3)’<6). A
queueing model of a node is developed whereby
network throughput is evaluated in terms of
offered traffic, the number of buffers in a
node and the limit value Lr' It is clear and
easy to show that our analytic results of PF-C
scheme obtained in section 3 cover both schemes
. proposed by Giesler et al. and Kamoun.

In section 4, we present a decision protocol
for determining the priorities of packets based
PF-C in accordance with the

on scheme,

difference between i and j. The numerical

applications to Loop networks show that a group
of optimal limit value improves the maximum
throughput obtained in a no control environment

and succeeds in maintaining a very good

throughput behavior wunder heavy  traffic

conditions. As the results of Loop network with
the PF-C

uniform traffic assumption, scheme

shows more effective than another policies.

2. PF-C FLOW CONTROL POLICY

PF-C scheme' is a mechanism that make a

decision to accept or reject a packet upon its
arrival at a node,
of

in. compliance with the
this
1) which

number occupied buffers in node.

Therefore, we have to decide that,
packet should be accepted or rejected, and 2)
in what condition, in order to maximize network
throughput.

2.1 Packet Priorities and Classification

Upon arrival of a packet at a given node, let
i be the number of hops it has traveled,
- j be the number of hops in the path from this
node to its destination node,
then we definefPf(i,j) as a priority function
of this packet, where i and j are two positive
integer variables (i>0 and j>>0).
be the positive integer that
of

Now, . let rij

denotes the ranking packet priorities

corresponds to the value of Pf(i,j). Then we

formulate the priority function in terms of T,

]

as follow,

(1)

Pf(i’j) = ri_‘j

And let us assume that there are at most m+l

2

‘networks.

different priorities rankings in the system.

Then rij = 0,...,m whereby 0 denotes the lowest
priority and m denotes the highést priority.

Finally, we define the packet of .priority

r..

1]

mtl classes of packets in the entire system.

as the class—rij packet. Hence, there are

2.2 Buffers Management Strategy
Now, let B be the total number of S/F
buffers available at a given node. Then define
L”
ofIl buffers) corresponds to class-r
such that, L0<:Lf<2""<:im and Lm

We need to assume that B>m+l in order to

as a "limit value" (i.e., a limited number

11 packet,
B .

define m+l different limit values correspond to
each class of paqkets. Then the constraint of
PF-C scheme is that, a packet that arrived at a
given node and is of class—ri. packet will be
accepted by this node if and only if the number
of occupied buffers, immediately prior to its

arrival, is less than Lr , otherwise it is

rejected. Rejected packetslgre dropped from the
Therefore, PF-C algorithm for any
packet is defined as follow.
PF-C Algorithm
Upon arrival of a packet belongs to class—rij
at a given node, let n be the number of
occupied buffers immediately prior to its
arrival.

Then, the decision rule is as follow.

(1) IFn=238 reject this: packet.
(2) IF n.<:LO accept this packet.
(3) IF Lk—IS;n<<Lk accept this packet

only if rij;;k,

where k=1,..,m.

3. ANALYSIS OF THE PF-C SCHEME IN A SYMMETRICAL
COMPUTER NETWORK. ENVIRONMENT

3.1 A Symmetrical Network System

A symmetrical network is one such that

1

all nodes are equivalent with respect
to the topology of the network,

2) all channels are of equal capacity, say
C (b/s),

3) all external offered traffic rates to
each node are equal.

The above properties imply that all nodes
identical and also identical

are perform



functions. All links Dbetween mnodes are

full-duplex lines with capacity C in each
if R is the number of

direction. Therefore,

1inks attached to a node, then there are R
incoming and R outgoing channels at any given
node. Let N be the number of nodes, then there
are NxR channels in the network. As examples,
networks fall into this

Loop and Torus

category ® .
Let Y, (packets/sec.) be the average
offered external traffic rate from source node

a to destination node b, then

Voo =T

We assume that a node does not generate traffic

to itself, i.e.,\G‘aa = 0 for all a.

Let /7 be the total offered external traffic

Va.,‘b network nodes and a # b.

rate, then

r =%Kab = na-0Y

where N(N-1) is the number of

source—~destination node pairs, in each
direction, in the network.

All nodes and channels are assumed to be
perfectly reliable. It is then obvious that
with this particular topology structure, the
routing decision is assumed to be a shortest
path routing policy in order to achieve the

®)

optimal flow assignment The selection of

the particular shortest paths, in case that

more than one exists, must result in perfectly

balanced flow.
(S

Let
.,
rate of

be the average offered traffic

class—rij packets to channel s,

immediately prior to the acceptance or
rejection by a node. Then, due to the network
symmetry all 7\(: 's are equal,i.e.,

ij

(s) '
= s=1,....,NXR,
ﬂﬂj ﬂT”
Moreover, all nodes contain the same number

of S/F buffers B and use the same PF-C
algorithm.
As a result, the probabilities of blocking

suffered by c:lass—ri:j packets are equal at all

Buffer-pool
of size B

switching/dropping
decision

Fig.2 A S/F node model.

nodes. And because of the possibility of the
loss of packets, the offered external traffic
rate"ﬁis no longer equal to network throughput.

3.2 Blocking Probabilities

The model of S/F node is shown in Fig.2.
Let s=l,....,R be the index of R outgoing

channels. A given channel can only serve
packets routed to that channel. We assume that
one buffer size is equal to the maximum packet
length. Then, let n be the total number of
packets stored at a given node and let n, be
the number of packets waiting in the output
queue of channel s, we get

n =

R
2 n B 2
Moreover, let O(n be the average rate of
packets that can access into any outgoing
channel of a given node, which tllepends on n.
PF-C

Then, due to the algorithm, at the

immediately posterior to acceptance or

rejection we find

m
*, =r}:k A, for 1, Kol (3)
i

where k=0,1,...,m and let L_1=0.

In order to pursue the analysis we make the
following classical local assumptions as is
introduced by Kleinrock(s). R
(L) O(n is a Poisson arrival for all n=s= n_.
(2) Distribution of packet lengths is negative

exponential and average packet length is

denoted by 1/M (bit).
(3) The independence assumption of Kleinrock
is assumed valid for all nodes.
As a result, a node is equivalent to R
single M/M/1 queueing systems sharing a waiting

room of size B under the PF-C scheme. Finally,



the entire
birth-death process which O(n is a birth rate

system is equivalent to a
and MC is a death rate for each outgoing
channel. Then the state of the system can be
vector denoted as

. simply  described by

(nl,..,ns,..,nR).
Now, let An and (SS are two Kronecker

deltas with respect to n and n respectively,

such that
A - 1 if 0n<B
0 "
0 if n=B (4)
1 if 0<n8413
| 0 if ns=0 (5)

By using these two Kronecker deltas, we can
.write the state-transition-rate diagram of a
node with respect to state (nl,..,ns,..,nR) as
shown in Fig.3.

Let P(nl,..,ns,..,n.R) be a state
probability in steady state. According to the
equilibrium distribution of traffic flow(s),
and from the state-transition-rate diagram of
Fig.3, we can write the "global" balance
equation that describes the behavior of the
system in the steady state for all feasible

states such that n=
5=

R
{;65/4‘0} + RAnO(nJP(nl""ns""nR)
R
= O<n—1 [gssp(nl""ns—l”"ng)]

R
+An ﬂC[;P(nl, coon L, ’“R)] (6)

ns<B as below.

To solve the above global balance equation
for a general solution, we apply the technique
of local

Chandy ® . It is

introduced by
that

balance equation

then obvious from

equation (6), we are able to obtain the

-following two local balance equationms.

{g&sﬂc} P(ajseesn ,.esmp)
R
= O(n_l[;ésr(nl,..,ns—l,..,nR)] (6a)

n].—l,..,ns,...nR

Fig.3 State-transition-rate diagram.

RAHO(D. P(ﬂlg- . ’nS“ . :nR)
= An}ic[gP(nl,..,ns+1,..,nR)] (6b)

First, we derive the solution of both
equation (6a) and (6b). Finally, it is exactly
certified that the solution obtained from (6a)
and (6b) is also satisfy the global balance
equation (6). That is, after some algebra, the
probability of state (nl,..,ns,..,nR) in steady

state is as follow,

P(nl,..,ns,..,nR) = K{me_l}/(/'lc)n )

where K=P(0,...,0) is the probability of an
empty system and is a constant. Then by the
substitution of (Xn for all n=ZnS<B into (7),
we obtain the final solution based on PF-C

scheme as follow,
K@:‘ if 0SgL

k=1 L n .
P(ap,..omgs..any) = K{II;L(PEH) Jif L <ngLy

0 otherwise (8)

where k=1,...,m and pt ={Zm7\r}//uc for
[T

t=0,1,..,m.

Pr(n) be the

there are n packets waiting for

Moreover, let probability
denotes that
service in a given node in the steady state, .
then

Pr(n) =Z P(nl,..ns,..,nR). )
(=



As a result, from (8) and (9) we obtain

n+R—1
Pr(n) = At P(nys..omn..5np)  (10)

and finally,
’C+H ”

g1/ o

R- k1 L
ST e

if 0<n<L,

Pr (n)=

0 otherwise (11)

The constant K can be computed by using the

Pr(n)=1.
=0

Using (l1) and after some algebra, we get

SR e (1 TN 15 Gel) o

Now, let us define PB

normalization condition such that

A as the probability
of blocking suffered by the <:1ass—1:j packets
which the same at all nodes. Then we are able

to derive PB
ij

obviously that,

PBrii = Pr (B>H>Lr“) (13)

Moreover, because of Lm=B, then the probability
of blocking suffered by class-m packets is as
follow,

PB = Pr(n=B). (14)

Finally, using (11),(13) and (l4) and after

some algebra, we obtain

- STeRNS ()
%) (“*"") £

3.3 Network Throughput

{TT (15)

r" is now referred to as the offered load.
Let us define Ps as the probability that in
steady state, a packet transmitted over the

reachs its destination node

And let [%

network

successfully. denotes network

L1 <oy

throughput (s for successful traffic). Then
clearly that
= E’/ r. (16)

Now, let us define fk as the fraction (or
probability) of node-pairs at distance k hops.
If the number of node pairs at distance k hops,
as derived from the shortest path routing

policy, is denoted by a then obviously that

f = ak/N(N—l).

K 17

(k)

Next, we define Ps as the probability
that in steady state, a packet transmitted over
a node pair of distances k hops reachs its
destination node successfully. Because of the
uniform traffic assumption of our symmetrical

network, we also get

I?/F=z;ps(k>fk

k21

Ps = (18)
However, in order to obtain the throughput r.v:

corresponds to a given load l—' under the PF-C
scheme, we have to express Ps(k)

And in order to

in terms of
blocking probability PB .
: we need to ex|press '][r in terms of
offered load /-'

determination of priority function Pf(i,j), as

derive PB

i}
This can be done after the
we will show concretely in the next section.

4. NUMERICAL APPLICATION

4.1 Priorities Decision and Network Throughput

We consider that it is more effective to
give a higher priority to a packet when it has
traveled over a large number of hops (i is
large) and has very few hops to reach its
destination (j is small), in comparison with
another packets. Therefore, we have to find an
appropriate rule for formulating Pf(i,j) in
terms of i and j, in order to improve the
maximum network throughput.

In this section we present a priorities
decision rule for PF-C scheme based on the
difference of i and j, say i-j.

Let Hmax be the longest path length in

hops, as derived from the shortest path



deterministic routing policy. Then the priority

function of a class—ri__.I packets is define as

follow.

Pf(i,j) =r.., =H

11 % +i-3 (19)

In this decision rule, we assign increasing

priorities to any class-r,, packet as large as

ij
i-j. If the distance of any source-destination
and k=1""’Hmax;
then we rewrite equation (19) in terms of k and

node pair is denoted by k,

i as follow,

Pf(l,J) = rij = Hm.ax -k + 2i (20)
where i=l,...,k and it+j=k.
Moreover, because of rij=0,...,m; then
m=2H and there are at most 1+2H different
max max

¢lasses of packets in this system.
‘We are now able to derive the probability
that a packet that traveled over a node pair of
will destination

This was denoted by Ps(k),

distance k reach its

successfully. then

by the network symmetry, we have

k
- E(l - PBHmax_k_'_Zi)“ (21)

(k)

Hence, by replacing Ps in equation (18) we

obtain

s =I5/ /"=ﬂ§x[]j(1 - PR,

kt21) fk} (22)

According to the uniform traffic assumption

and the behavior of the decision rule, we can

'
formulate the equation of 7\[_ in terms of ‘f and

and H

PB_  with respect to the value of r,
i ij max

as shown in (23).

L Z/zﬁ Tf(l NS 1)

when‘ rij> Hmax

(/2)_x
7\1:-‘:4 [i TT(I—PB -2y Hﬁ‘ when »rij= B

H

[ﬁi/l? X

1+ 1-PB when 2r H

[ XZ, -‘;‘,-( t:”—Zy)}]T < 1j< max
L (23)
where [rij/Z] is a Gauss notation, denotes the
greatest than rij/Z'

integer not greater

Furthermore, for r =0 and r_ .=l we always get
ij

7\0 = and 7\ -if
Finally, solv1ng the system of equations
compose of (15) and (23) we obtain PB
given load ‘—-. !
obtain network throughput [s.

for a

Replaceing PBrA in (22) we

ij

However, due to the complexity of equation
(15) and (23), it is hard to obtain the exact
computation. Because each equation forms a
nonlinear function of several variables and of

@=1.

approximation

degree n Whereby, we use the

computation introduced by
Powell(m). This we do for Loop networks.

Now, let us call the policies proposed by
Giesler et al., and by Kamoun as P—C‘ and N-C
policy respectively. Here, we can show that the
analytic results of PF-C scheme can apply to
both policies as follow.

Consequently, the priority function of P-C

is that

Pf(l,j) = rij =i for all i=0,...,HmaX
and of N-C is that
0 when i=0 ("new")
Pf(i:j) =r,, =

1]
1 when i2l ("transit")

Similarly, as we do for PF-C scheme, the
results for both policies are as follow:

J
In case of P-C scheme;

Ps = f’/l" 2[1’]’(1 - PB, )l'f] (24)
Ag = -DT /R
A = {]j(l - 7))} [{N-1-R@-1)}/R]T o (28)

In case of N-C scheme;

e =F/l= - PBO)[;(l - pB )" fk] (26)
Ao = @-DF /R

N =(1-PB) [.(;;(l-PBl)k_l{{ N-l-R'(k-l)}/R}]‘gn.

Note that, we derived the above equations



by consideration of systems which all packets
that reach their destinations are also need to
store in the nodal buffers before delivered to
their sink Host (i.e., for reassembly and
resequence).

4.2 Numerical Results

We consider a Loop networks with N nodes.
According to the shortest path deterministic
routing policy, the maximum path length Hma is

X
determined as follow:

(N-1)/2 if N is an odd number
H -
max
N/2 if N is an even number
More precisely, we define mnormalized
(3)

throughput S and load G as follow
_tlg . _w
5 =4cNR 3 G =gcNR

where h is the network average shortest path
length when the network is assumed to be

no-loss system (i.e.,infinite storage
assumption). For Loop networks, h=(N+1)/4 if N
is odd and h=N2/4(N—1) if N is even number.

The numerical results of PF-C, P-C and N-C
Fig.4,5,6

comparison with no control environment. The

are shown in respectively, in
number of nodes N=5, the buffers size B=6 for
each node and MC=10(packets/sec.)-

h=1.5,

Hence, we . have ZHmaX+l=5 classes of packets

In this system Hma%=2’ and R=2.
correspond to our PF-C "scheme, in the whole
system. However, there are only 3 classes of
packets on P-C scheme and 2 classes of packets
on N-C scheme. Therefore, five limit values are
assigned in PF-C scheme. Similarly, three and
two limit values are assigned in P-C and N-C
respectively.

Note that in a finite storage envirohﬁent,
G is mno longer the- channel utilization.
Furthermore the maximum normélized throughput S
is smaller than or equal to one.

The result of PF-C scheme in Fig.4 shows a
very good behavior with all parameters (a set
of limit values). The'throughputvincfeaées when

offered G increases, reashs a maximum value and

o=1:L1=3,Ly=4,Ly=5,L=6

S

Y;:f'z'bl'z'LZ"'L3'5'L4'5

w2
i

(= )

Lo-l,L‘IZ,L2‘3.L3=5,L‘-6

THROUGHPUT
o

Lo-;,hl-z,L2-3,L3-4.L4=6

no control

OFFERED LOAD G

Fig.4 Throughput vs. offered load for 5-node
Loop network based on PF-C scheme.
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Fig.5 Throughput vs. offered load for 5-node
Loop network based on P-C scheme.
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Fig.6 Thrbughput‘vs. offered load for 5-node
Loop network based on N-C scheme.

never decreases even if G becomes large.
But the results of P-C and N-C in Fig.5 and
Fig.6 show that with an unsuitable limit value,

S decreses toward an asymptotic value when G



becomes greater.

However, all of them improve the network
throughput. The maximum throughput curves of
each policy are shown in Fig.7. And in Fig.8,
we write the Ps curves which correspond to the
maximum throughput curves in Fig.7. As the
results, it is obviously to say that our PF-C
scheme with packet priorities based on the
difference of i and j (mentioned in section
4.1) shows a very good result than another two

schemes.

5. CONCLUSION

In this paper we present a new approach of

congestion control, namely, PF-C policy. We

propose the ideas and describe the control
protocol, then we analyze in the context of
symmetrical networks. The priorities.decision
presented in this paper is one example based on
PF-C policy. The numerical results of this
example clearly demonstrate a good behavior in
comparison with another two policies.

Further studies on packet priorities
decision based on PF-C scheme are underway in

order to achieve an optimal policy.
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