TNFAF 47 EIEE S ENE 37-10
(1988 5 20)

iR E H B B C

HARB AR ISR
ERXTB.ABLEF—2R—-—2¥ AT B3NS ¥ 2L 3% Prologick A
L. hz28&DF— 7« x/xTAklOiﬁiﬁfamaétzé 2 3 . Prologic
;Obﬁyf7>aytﬁﬁtbtbkﬁtkmnmB%m,%mH.Mth5&?&%
P AT E. Kz, Y2V ay W@i*ﬁm&#?ﬁ%@bamﬁttf\ﬁ%tﬁ
MHEETHEATSE, Ch ewlduﬁtﬁﬁ?bl Cr3vFIr2oaryd EF—-—¥R-—-2
Y2ATFLBRLETTELZEN L NIVYF 2 avihWT 5., _mts BHoOWERICHEE
L2o2WTOHDF v ko 77#$L;hﬁﬁirttﬁﬁt\&EO%L&L&erDw?%
mELBRETE2FEXE525. ALY, iﬁmr—i« AYAFLALL L HE
?—5&—1yx‘ALﬂLT B DOPrologk HVWTrS vy ¥ 2vavy2iedl. Th#
¥ITETTES.,

PARALLEL EXECUTION OF PROLOG TRANSACTIONS

Makoto TAKIZAWA and Katsumi MIYAJIMA

Department of Information and Systems Engineering
Tokyo Denki University
Ishizaka, Hatoyama-cho, Saitama 350-03, Japan
Tel. 0492-96-2911 ext.246
Fax. 0492-96-0501

Information systems are composed of multlple heterogeneous database systems inter-
connected by communication networks. In our system, database systems are viewed to
be fact base systems (FBSs), which provide sets of Prolog ground unit clauses, and
retrieval and update operations on them. Transactions composed of multiple update
operations on facts are written in Prolog. In the Prolog system, atoms in a goal
are selected from left to right. This means read/write operations on facts are
sequentially executed. In this paper, we present how to execute the transaction in
parallel by multiple FBSs. In the sequence of atoms in the Prolog transaction, we
define two types of meaningful sequences, i.e. conflict and flow ones. We present
how to decompose transactions into subtransactions, each of which is locally ex-
ecuted by one FBS, so as to preserve the meaningful sequences in the transaction.
One problem in concurrent execution is that communication deadlock may occur. We
show that any parallel execution of the subtransactions is free of deadlock on
send-receive relations.

1. INTRODUCTION

Information systems are composed of
database systems interconnected by com-
munication networks, which users can
manipulate independently of the
heterogeneity and distribution. Prolog
feioc.kowdl hgye advantages to conventional
database languages like SQLt#El, j, e,
data structures and procedures are
defined recursively and uniformly. In
our systemtrmers.ceanl eyery database system
is viewed to be a fact base system (FBS)
which provides a set of faets, f.e.
ground unit clauses, and operations on
them. The heterogeneous database systems
are manipulated in Prolog as if they
were FBSs. How to provide Prolog views
on.the relational database systemstcoonl
are discussed in [ULLM etc.]. Also, Prolog
views on the network database systemsicon
are discussed in [TAKS87a].

In our system, users write transactions
which manipulate facts in multiple FBSs
in Prolog. Transactionst® ape proce-
dures composed of multiple update opera-
tions on facts, and are units of atomiec
executions. In the Prolog systems, atoms
in a goal are selected from left to
right, i.e. the atoms are sequentially
executed. In the atom sequence of the
Prolog transaction, two types of mean-
ingful sequences, i.e. conflict and flow
ones are defined in [TAKSSb].
presents how to decompose the transac-
tion T into subtransactions, each of
which references facts in one FBS, so as
to preserve the meaningful sequences in
T, and which are concurrently executed
by the FBSs. Recently, Prolog programs
have been tried to be executed in
Para]lel[CLAR.sHﬂP.UEDn etc.] ln addition to
fnput-output relationf®s.s#3 gmong atoms,
read-write and write-write relations
named conflict ones are introduced in
this paper. Update problems of a single
database system by Prolog have been dis-
cussed by [NAIS]. In this paper, update
problems of multiple database systems
are discussed. One problem in the con-
current executlion of subtransactions by
multiple FBSs is how to resolve com-
munication deadlocks. We assume that
each FBS is a sequential machine. We
define two kinds of deadlocks, i.e. ones
occur in forwarding deductions and the
others in backtracking. In this paper,

This paper-

we show a decomposition method which
never implies forward deadlocks on. send-
receive synchronization, and control
method which detects deadlocks and
breaks them in backtracking.

In chapter 2, Prolog transactions are
presented. In chapter 3, we define what
is a meaningful sequence of atoms in the
transaction. In chapter 4, we discuss
how to decompose Prolog transactions
into subtransactions. In chapter 5, com-
munication deadlock problems are dis-
cussed.

2. PROLOG TRANSACTIONS

A fact base (FB) is a Prolog view of the

conventional database system. The FBs
for various database systems are
presented in [TAK87a,88a). Suppose that

every database system provides its FB,
t.e. it can be viewed as a collection of
ground unit clauses. Here, we make the
following assumptions. '

{Assumptions] 1) Every two FBs have no
common predicate symbols.

2) Let My be a model of the FB in the
FBS,. Every M, has the same domain D and
the same constant mapping. That is, the
same constant symbol in different FBs
denotes the same individual in D.
3) Every fact has a unique fact
tifier (fid).[J

iden-

to write transactions in
Prolog, we introduce new predicate sym-
bols, Begin, Commit, Abort, and Write.
Their procedural meanings are as fol-
lows.

In order

[Procedural Meanings] 1) When Begin is
selected, the transaction starts.

2) When Commit is selected, the transac-
tion completes. After that, we cannot
backtrack to resolutions from the selec-
tion of Begin to this Commit. Facts
written by the transaction are made per-
manent, i.e. updated facts can be seen
by other transactions and survive
various failures of the FBS.

3) When Abort ‘is selected, the resolu-
tion fails, and the resolutions from it
to the last Begin are backtracked, i.e.
the update effects by the transaction
are erased from the FB.

4) When Write(P,K,X,,...,X,), where P is a

predicate symbol in the FB, and K and X,

are terms (k=1,,,.,m), is selected,

4-1) if K is instantiated by @p and X,
by a, (k=1,,...,m), the faect P(@p,...) is

replaced with P(@p,a,,...,a,),
4-2) if every X, is instantiated by. a,
(k=1,...,m) and K is not, P(@p,a,,...,

a,) with new fid @ is appended to the
FB and K is Instantiated by ep,

4-3) if K is instantiated by @p and
every X, is not (k=1,...,m), P(€@p,...)
is deleted from the FB.

5) When a fact atom P(E,,...,E,) is

selected, a fact unifiable with it is
read from the FB, and the uninstantiated
variables are instantiated. []

Variables which take fids as values are
said to be primary. Write is different
from the retract and assert of Prologiow:
in a point that effects of Write are
removed from the FB by backtracking.

Suppose there are three fact base sys-
tems (FBSs), i.e. FBS,, FBS,;, and FBS;.
Each includes account information on in-
dividuals. Atoms ACl1l, AC2, AC3 are in
FBS,, FBS,, and FBS;, respectively. ACt
(A,B,C) means that a person B has money
C and its fid is A (i=1,2,3). An example
of Prolog transaction whieh transfers
funds of individuals is written as (1).

" ?- Begin, AC1(Al,N,Cl), AC3(A3,N,C3),
Write(AC1,A1,N,C1/2+C3/3), AC2(A2,N,
C2), Write(AC2,A2,N,C1/2+C2+C3/3),
Write(AC3,A3,N,C3/3), Commit. ...(1)

[Definition] A simple transaction T ts
an ordered goal clause in a form 9-
Begin, A,,...,A,, Commit, where each A, Is
either a fact, Write, or evaluatable
atom (for k=1,...,m). T is written as
(AA,<), where AA={A,,...,A,} and A <A, iff
j<k.O

The procedural meaning of the simple
transaction is a sequential execution of
write and read operations denoted by
Write and fact atoms. It neither in-
cludes nondeterminacy nor nestingtossl,

3. CONFLICT AND FLOW RELATIONS

[Definition]
different atoms A and B,

For a variable X and two
A< B on X (A

and B share X) iff they include X.[]

Here, if A and B are in different FBSs
and Ao B on X, © is said to be an in-
tersite sharing relation.

[Definition] For two different atoms A

and B in T = (AA,<), A - B (A and B

confliet) iff (1) A ¢ B, (2) Ao B on a

primary variable K, and (3) one of the

followings holds:

1) A = p(K,T,,...,T,) and B = Write(p,K,
Ul,-.- ’Un) Y

2) A = Write(p,K,T,,...,T.) and B = q(K,
Ups...»U,), or

3) A = Write(p,K,T,,...,T.) and B = Write
(p,K,U;,...,U .0

That is, A and B confliet iff at least
one of them is Write and they share some
primary variable. For example, AC1(Al,
N,Cl1)—> Write(AC1,Al,...) in (1). When A—
B in T, selection sequence of A and B
cannot be exchanged. If exchanged, the
result is different from T. The conflict
relation represents read-write and
write-write relationto,

Next, we define a flow relation which
represents an output-input relation
among the atoms. An atom A in T is said
to be a first atom of a variable X iff A
includes X and there is no atom B such
that B includes X and B < A.

[Definition]) For every atoms A and B in

T =(AA,<), A= B(A flows into B) iff 1)
A <B, 2) AcB on a variable X, 3) A+
Write, and 4) A is the first atom of X.
O

A => B denotes an information flow from
an A's facet into a B's fact. For ex-
ample, AC1(A1,N,Cl) => Write(AC2,A2,N,. ..
C1/2...) on C1 holds in (1). This means
that a value of Cl1 read from the ACl is
written to the AC2. Like the conflict
relation, if A= B in T, the selection
sequence of A and B cannot be exchanged.
For two atoms in different FBSs, if A =
B, then it is said to be an intersite
flow, otherwise an intrasite one. For
example, an intersite ACI1(A1,N,Cl) =>
intrasite AC1(A1,N,Cl1) => Write(AC1,Al,
N,C1/2+C3/3) hold in (1).

In (1), AC1(A1l,N,Cl) => Write(ACl,Al,N,

C1/2+C3/3) and AC1(Al1,N,Cl) < AC2(A2,N,
c2) hold. Here, even if AC1(Al,N,Cl) and
AC2(A2,N,C2) are exchanged, it is clear
that the results are the same.

fDefinition) Let A and B be non-Write
atoms, and C be Write in T = (AA,<). An
implicit flow relation ==> on AA is one
such that B ==>C on a variable X if 1)
Ao B on X, 2) neither C = A nor C =B,
and 3) A=C on X.[]

For example, AC2(A2,N,C2) ==> Write(ACl,
Al1,N,C1/2+C3/3) holds in (1).

[Definition] A meaningful ordering rela-
tion << C AA? is defined as follows; for
every A and B in AA, AKB iff 1) A-B, A
=B, or A ==>B, or 2) A« C and C«B.[]

[Definition] T, =(AA,,<,) and T; = (AA;,<;)
are said to be equivalent iff AA, = AA,
and <«; = <<z.[]

[Proposition] If two simple transactions
T, and T, are equivalent, they produce
the same result for the same input.
[Proof] It is sufficient to prove that
1) A=>C and 2) B=>C are equivalent
when A <> B and A< C on X, and C is
Write. Since neither C<« B nor C <« A,
an instantiation of X which satisfies A
and B is flown to C.

In the Prolog system, every variable is
instantiated only oncels#fl, This means
that a single assignment propertyCrckel
holds in the resolution. Hence, it is
easy to find the meaningful sequences.

4. DECOMPOSITION OF PROLOG TRANSACTION

In our approach to executing the trans-
action, it is concurrently executed by
multiple FBSs. In this approach, first,
transactions are decomposed into sub-
transactions, each of which references
facts in one FBS. Then, these subtran-
sactions are concurrently executed by
FBSs by communicating with each other.

4.1 Transaction Graph

[Definition] For a transaction T = (AA,
<), a transaction (T) graph G is one ob-
tained by the following procedure:

1) generate a node A for every atom A,

2) for every A—-B in T, generate a con-
fliet edge—»from the node A to B,
3) for every A=>B or A==>B, {f it
intrasite one, generate an
flow edge A #x> B, else an
flow edge A +»> B, and
4) for every A< B
sharing edge A = B
the same FBS,

is an
intrasite
intersite

in T, generate a
if A and B are in
otherwise A == B.[]

A T graph for (1) is shown in Fig.1l.
Since the T graph G shows the meaningful
ordering << of atoms in the transaction T
= (AA,<), G is written as (AA,<«).

ACl(Al,N,Cl)=====ﬁ======ACZ(A2,N,C2)
]
; E +++++&++++++$ E
; + o+ [*
++++++++ﬁ++++++1 1
S A
1
Write(ACl, Al, " Write(AC2,A2,

N, C1/2+C3/3) "'

N,C2+C1/2+C3/3)
L 1 :
b
¥

+||

H 4
AC3(A3, N, C3)
L
» ¥

Write(AC3,A3,N,C3/3)

—>: conflict edge
st>: intrasite flow edge
++>: intersite flow edge

— : intersite sharing edge

Fig.l1 Transaction Graph

ACI(AI,N,Cl)+++++++++++)A02(A2,N’02)
] + :
+ e o
R e R R
+ +
+ +
¥ {
+Write(ACt, Al, Write(AC2,A2,

-

t N, C1/2+C3/3) N
i !
¥

+ +

+ +

F++++++++++>AC3 (A3, N, C3)

| i

Write(AC3,A3,N,C3/3)

;
[
+
v

KWW RN

e Tt

,C2+C1/2+C3/3)

Fig.2 Transaction Graph

First problem is how to find a best
transaction equivalent to T. Since it is
difficult to find the best one from the
complexity viewpoint, we make the fol-
lowing assumption. S

[Assumption] 'If AcB on X and A < B in T

= (AA,<), then A=>B on X.[]

A transaction graph as shown in Fig.2 is
obtained.

4.2 Decomposition of Transaction Graph

In order to pass the instantiation of
variables, communication among subtran-
sactions is required. Here, new predi-
cate symbols Send and Receive are intro-
duced for communication. They have the
following procedural meanings.

[Communication Atoms] 1) When Send(X,M)
is selected, a variable M is instan-
tiated by X..

2) When Receive(M,X) is selected, the
resolution blocks until M is instan-
tiated. When instantiated, X is instan-
tiated by M.[]

Here, M is a communication variable.
Even if multiple Receives include the
same communication variable M, they can
be resolved when one Send atom including
M is resolved. This is easily realized
by the reliable broadcast networktrem.c,

A T graph G = (AA,«) of T = (AA,<) is
decomposed into subgraphs S,,...,S, by the
following procedure.

[Decomposition Procedure] 1) For each A
++> B on a variable X, mark X in A as
X* and X in B as X" and remove A+>B,

2) let each connected subgraph S, =
(AA,,<) be a subgraph.]

For example, Fig.3 shows subgraphs §S,,
S;, and S, decomposed from G in Fig.2.

AC1(A1,N*,C1%) AC2(A2,N_,C2)

| il

Write(AC1,Al, Write(AC2,A2,
N,C1/2+C3-/3) N,C2+C1-/2+C3-/3)
a) S, ‘ b) §;
c) Sy AC3(A3,N.,C3")

| i

Write(AC3,A3,N,C3/3)
Fig.3 Decomposed Subgraphs
Now, communication atoms are introduced

to the subgraphs. For each subgraph S, =
(AA,,<%), the subtransaction graph G, =

(BB, ,<<<,) is constructed by the following
procedure.

[Subtransaction Graph)

1) AA, C BB, and <, C <<

2) For each variable X* in S,, Send(X,CX)
in BB, and A <<, Send(X,CX).

3) For every X- in S,, Receive(CX,X) in
BB, and Receive(CX,X) <«<.A.

4) If A << B and B «<C, then A <xC.[

For example, Fi§.4 shows the Hasse
diagrams of subtransaction graphs for
Fig.3, where each edge — shows .

AC1(Al1,N,Cl1) AC2(A2,N,C2)

{ 1

Send (N,CN) Receive(CN,N)

Send(C1,CC1) Receive(CC1,Cl)

Write(AC1,Al, Write(AC2,A2,

N,C1/2+C3/3) N,C2+C1/2+C3/3)
Receive(CC3,C3) Receive(CC3,C3)
a) G b) G,
e) Gy AC3(A3,N,C3)~--->Send(C3,CC3)
Receive(CN,N)
Write(AC3,A3,N,C3/3)

Fig.4 Subtransaction Graphs.

5. COMMUNICATION DEADLOCKS

From a subtransaction graph G, =(BB,,<<),
let us consider how to obtain a subtran-
saction T, = (BB,,<) so as to preserve
the meaningful relations <<<.

5.1 Forward Deadlock

Now, let us construct subtransactions T,
= (BB,,<) from G, = (AA,,<<<), whiech
preserves <<, l.e. if A << B, then A ¢
B. For example, from G,, G,, and G; in
Fig.3, the following subtransactions are
obtained. It is clear that each T,
preserves the meaningful relation <<
(k=1,2,3).

T, ?- Begin, AC1(A1,N,Cl), Receive(CC3,
C3), Send(Cl,CCl), Send(N,CN), Write
(AC1,A1,N,C1/2+C3/3), Commit. ...(2)

T, ?- Begin, Receive(CN,N), Receive
(cc3,c3), AC2(A2,N,C2), Receijve(CCl,

Cl), Write(AC2,A2,N,C2+C1/2+C3/3),
Send(C2,CC2), Commit. eee(3)
T; ?- Begin, Receive(CN,N), AC3(A3,N,
c3), Write(AC3,A3,N,C3/3), Send(C3,
CC3), Commit. ees(4)

The resolution of (2) is executed at
FBS,, (3) at FBS,, and (4) at FBS;. When
FBSs are forwarding resolutions of them
by selecting atoms from left to right, a
deadlock occurs, l.e. T, waits for CC3
from Ty, and T, for N from T,. This type
of communication deadlock occurred in
the forward resolutions is said to be a
forward deadlock. In our approach, the
forward deadlock is avoided by ordering
communication atoms in subtransactions.

[Ordering Send and Receivel For G, =(BB,,
«<) of T = (AA,<), if A «<Send, Receive
«< B, and A < B, then Send «<Receive.[]

Subtransactions (5)~ (7) are constructed
from (2)~ (4) by ordering Send and
Receive.

T, _?— Begin, AC1(Al,N,Cl), Send(Cl,
cC1l), Send(N,CN), Receive(CC3,C3),
Write(AC1,A1,N,C1/2+C3/3), Commit.

..o (5)

T, ?- Begin, Receive(CN,N), AC2(A2,N,
C2), Receive(CC1,Cl), Receive(CC3,
c3), Write(AC2,A2,N,C2+C1/2+C3/3),
Send(C2,CC2), Commit. ees(6)

Ty ?- Begin, Receive(CN,N), AC3(A3,N,
Cc3), Write([AC3,A3,N;C3/3]), Send(C3,
CC3), Commit. oo (T)

[Proposition] Any executions of subtran-
sactions decomposed by our procedure are
deadlock-free on the forwarding resolu-
tion.)

[Proof] This is proved in [TAK88bll

5.2 Sequencing Subtransaetlons_

Although the method presented in 5.1
avoids the forward deadlock, it may
reduce'the chance of getting better
sequences of atoms, because A << Send. <<
Receive <« B implies A << B. The reverse
order of A and B may imply better per-
formance. Among multiple equivalent
sequences, one sequence is selected so
as to minimize the waiting time by
Receive and the access cost to the un-
derlying database systems. In order to
achieve the objectives, the following

"5) If A <«< Send and A << Receive,

‘done by (2) and (3).

heuristies totally orders atoms for a
subtransaction graph G, = (BB,,<).

[Ordering Unordered Send and Receive]

1) If A<«B, then A ¢B.

2)If A << Send, Receive «<B, and A« B,
then Send < Receive.

3) If A< Send, A <« B, and B is not a
communication atom, then Send <,B.

4) If A <« B, Receive <« B, and A is not
a communication atom, then A ¢{ Receive.
then

Send < Receive.

6) If A <« Send,, A < Send,,
Send,, then Send, <, Send,, and
7) It A << Receive,, A << Receive,,
Receive, < Receive,, then
Receive,. :
8) If A < B, A« C, B and C are
neither ordered nor communication
atoms, and cost(B) < cost(C), then B ¢
C.

and Send, <

and

Cost function cost(X) for an atom X
gives an expected number of tuples
accessed to find a unifiable tuple with
X. This is computed based on the
statisticstHevw.Takeeal on the underlying
database. The selection of Receive(M,X)
blocks the resolution of the transaction
until M is instantiated, i.e. M is
received. Hence, it is better to delay
the selection of Receive and instead
select an atom A such that there is no
meaningful ordering among Receive and A.
Also, it is better to promote the selec-
tion of Send(X,M) as possible, because
it may cause bloecked subtransactions
which wait for M to execute. This is
For example, atoms
Send(C3,CC3) are moved after AC3 in (7)
as shown in (10).

T, ?- Begin, AC1(Al,N,Cl), Send(Cl,
cCl), Send(N,CN), Receive(CC3,C3),
Write(AC1,A1,N,C1/2+C3/3), Commit.

...(8)

T, ?- Begin, Receive(CN,N), AC2(A2,N,
c2), Send(C2,CC2), Receive(CCl,Cl),
Receive(CC3,C3), Write(AC2,A2,N,C2+
C1/2+C3/3), Commit. a0 (9)

Ty ?- Begin, Receive(CN,N), AC3(A3,N,
Cc3), Send(C3,CC3), Write(AC3,A3,N,
C3/3), Commit. .o (10)

Last problem is how to select an atom A
among ones which includes marked vari-
able X as shown in 4.1. In our heuris-

tites, an atom A whose cost(A) is the
minimum is selected as a sender of X and
the others as the receivers.

5.3 Backward Deadlocks

Suppose that the resolution of Write in
(5) fails and the resolution of AC3
fails in (7). Both transactions back-
track to Receives,
from T, and T, waits for CN from T,. That
is, deadlock occurs. This type of dead-
lock is a backward deadlock. Although
we avoid the forward deadlock by order-
ing communication atoms, the backward
one is solved by detecting and breaking
it according to the following mechanism.

[Backward Deadlock Resolution] Let a
current atom in T, be one whieh is
selected in the deduction at present.

1) On backtraecking to Send(X,C), a mes-
sage FAIL(C) is broadecast to all sub-
transactions and the resolution fails.
2) On backtracking to Receive(C,X), a
message WAIT(C) is broadcast and waits
for the arrival of a message at C.

3) On receipt of a message FAIL(C), if

an atom Receive(C,X) is included, the
‘messages in C are all cleared. For the

current atom A, if Receive(C,X) ¢ A, we
directly backtrack to the Receive. If
_______ they are
resolved according to (1) and (2).
4) On receipt of WAIT(C), a wait-for
graph whose nodes are subtransactions
and directed edges from A to B indicate
that A waits for message from B.[]

At 4), if the wait-for graph contains a
directed cycle, a backward deadlock oe-
curs. When the deadlock is detected, one
edge is selected and it is broken. Let
us discuss how to select one edge and
break it. Let A and B be atoms in T,.
Suppose that the resolution of B fails.
The backtrack cost Beost(B,A) of B to A
is defined to be the number of atoms
from A to B in T,. Let A be a Send atom
such that there is no Send such that A
<« Send <, B. Here, let becost(B) be
Bcost(B,A). At 2), WAIT(C) with
becost(Receive(C,X)) is broadcast. On
receipt of WAITs, the subtransaction T,
whose backtrack cost bcost(B) is the
minimum is selected. In T,, we backtrack
from B = Receive(C,X) to the Send ac-

and T, waits for CC3

cording to 1)~ 4). By using the reliable
broadcast service ('#em.c1 egch FBS can
decide by {itself that a backtracking
deadlock occurs and which subtransaction
is backtracked.

5.4 Correctness

Now, we show the correctness of our
decomposition of the transaction.

[Definition] Let T, be a subtransaction

- (BBy, <) of T = (AA,<) (for k=1,...,n). A

global log L of Ty,...,T, is a partially
ordered set (BB,<«) ‘'such that 1) BB = BB,

‘U ... UBB, and 2) for every A and B in

Ty, if A -<,B, then A« B in L,
Send(X,M) in T, and Receive(M,Y)
Send (X,M) <« Receive(M,Y). [

and for
in T,,

[Definition] A global log L of T,,...,T,
is said to be serializable to T iff all
meaningful ordering relations in T are
held in L. (J

The: serializability gives the criteria
of correctness of parallel executions of
subtransactions, since T is assumed to
be correct.

[Proposition] Any global log of decom-
posed subtransactions are serializable.

[Proof] Let T be a simple transaction,
Tyyeee, T, be decomposed subtransactions
of T, and L a global log (BB,<) of T.
According to the decomposition proce-
dure, the conflict and intrasite flow
relations in T are held in subtransac-
tions. For an intersite flow relation A

=>B, -subtransaction T, has A = Send(X,M)

Since

_______ in L, A =
Send(X,M) « Receive(M,Y) => B. Hence, A «
B'in L.)

Hence, our decomposition is correct.
That is, the result of L is the same as
the serial execution of T.

6. CONCLUDING REMARKS

In this paper, we discussed how to
decompose Prolog transactions to sub-
transactions in order to concurrently
execute the subtransactions. First, we
defined two types of meaningful
sequences, confliet and flow ones. The

conflict relations represent read-write
and write-write confliet relations in
the conventional concurrency
controltem.csrl, The flow relations repre-
sent the input-output relations among
the atoms. In the resolution in Prolog,
a variable is instantiated only once.
This means a single assignment property
of data flow languages [*ke, By this
property, it is easy to find the con-
flict and flow relations. We define two
kinds of deadlocks, i1.e. forward and
backward ones. W showed the method to
decompose the transactions into
deadlock-free subtransactions on send-
receive relation for the forward dead-
lock. For the backward deadlock, a con-
trol mechanism which detects the dead-
lock and break it by selecting a sub-
transaction to be further backtracked.

REFERENCES

[ACKE] Ackerman, W.B. and Dennis, J.B.,
"VAL - Value-Oriented Algorithmie Lan-
guage," LCS/TR-218, MIT, 1979.

[BERN] Bernstein, P.A. and Goodman, N.,
"Concurrency Control in Distributed
Database Systems," ACM Computing Sur-
veys, Vol.13, No.2, 1981.

[CLAR] Clark, K.L. and Gregory, S.,
"PARLOG: Parallel Programming 1in
Logic," Research Report DOC 84/4, Im-
perial College of Science and Technol-
ogy, London, .1984.

[cLOC] Clocksin, W.F. and Mellish, C.S.,
"Programming in Prolog," Springer-
Verlag, 1984.

[coDD] Codd, E.F., "A Relational Model
of Data for Large Shared Data Banks, "
CACM, Vol.13, No.8, 1970.

[CODA] Codasyl, "Report of the CODASYL
Data Definition Language Committee,"
Journal of Development, 1973.

[DATE] Date, C.J., " Introduction to
Database Systems," Addison-Wesley,
1983.

[GRAY]} Gray, J., "The Notions of Consis-
tency and Predicate Locks in a
Database System," CACM, Vol.19, No.ll1,
1976.

{HEVN] Hevner,A. and Yao,S.B., "Query
Processing on a Distributed
Databases," Proc. of the 3rd Berkeley
Workshop, 1978, pp.91-107.

[KOWA] Kowalski, R.A., "Logic for
Problem Solving," Elsevier North Hol-

land, 1979.

[LAND] Landers, T. and Rosenberg, R.L.,
"An Overview of Multibase," North-
Holland, 1982,

[MOSS] Moss, J.E.B., "Nested Transac-
tions," MIT Press, 1985.

[NAIS] Naish, L., Thom, J.A., and
Ramamohanarao, "Concurrent Database Up-
dates in Prolog," Proc. of the Fourth
International Conf. on Logic Program-

“ming, 1987, pp.178-185.

{OLLE] Olle, T., "The CODASYL Approach
to Data Base Management," John Wiley
and Sons, 1978.

[SHAP] Shapiro, E., "Concurrent Prolog:
A progress Report," Foundation of Ar-
tificial Intelligence, Springer-Verlag,
1986.

[TAK87a] Takizawa, M., Ito, H., and
Moriya, K., "Logic Interface System on
the Navigational Database System," Lec-
ture Notes in Computer Science, No.264,
1987, pp.70-80.

[TAK87Tb] Takizawa, M., "Highly Reliable
Broadcast Communication Protocol,"
Proc. of IEEE COMPSAC, Tokyo, 1987,
pPp.731-740.

[TAK87c] Takizawa, M., "Cluster Control
Protocol for Highly Reliable Broad
cast Communication," Proc. of the IFIP
Conf. on Distributed Processing,
Amsterdam, 1987.

[TAK88a] Takizawa,M., Katsumata,M., and
Nagahora,S., "Access Procedure to Mini-
mize Redundant Refutations,"” Proe. of
the logic Programming Conf., ICOT,
1988, pp.187-196.

[TAK88b] Takizawa, M. and Miyajima, K.,
"Concurrent Execution of Prolog Trans-

action," to appear in Lecture Notes in
Computer Science,. Springer-Verlag,
1988.

[UEDA] Ueda, K., "Guarded Horn Clauses,"
Lecture Notes in Computer Science, 221,
springer-Verlag, 1986.

[ULLM] Ullman, D., "Implementation of
Logical Query Language for Databases,"
ACM TODS, Vol.10, No.3, 1985, pp.289-
321.

