TVF AT 4 TEBE L HILE 5224
(1991. 9. 26)

BEEIL N 5 v ¥ 7 v a2 v OREIICET 27 0 Fr v 2 0 Do
FEIR B, SR T
SR A TR T
BRI AR LINTE 3

HHoFL HEEEIIVF 72 vORBEFCIVELET Y Fey ZRECOwTE
Zbo VIV F I L avOT K- HKE LTR, BRI N GENA 2 — SREEY
v Z7ICEEE L. Chick h EFiioREBRET AR ETDO L X7 A TRH WD
NTECTWS, Lirly CADED VI v Frvavid, HEED LS v F 2 va v
BEARY ., ETREEEL 202 0F— 247 Y27 V2FIfld 2. 25 LAC X
TATHR, Y=V OREE v S ICEET 2 HETR, v X BRELS AoTLE S IE
RBDBo TOEDIC, AL TR, ~— VRETEAR S EFTE NARES v 7 IcE
WLy FI2vHF 7y a vk TR T 2ADICE. w7 NOHEE ORIEEE 275
LNEEEL D, MEEEEED P F I arThBE b, FIUFEI L
YOTR=VYRLCT Y ¥ay 2 BEC 288855, ARXTHR, d3MEHEEDE
FRLYVBBRCE R VT y Fuy 7 BFET B T L ERT & & b IC. ChOBRHE
LT, BEHATHAVEIIOL, HuAanwdoxRd,

Two Methods to Resolve Deadlock to
Compensate Nested Transactions

Makoto Takizawa and Akiko Hyoudou

Dept. of Information and Systems Engineering
Tokyo Denki University

Ishizaka, Hatoyama, Hiki, Saitama 350-03, Japan
TEL. 0492-96-2911 ext.2406 FAX. 0492-96-6185
{taki, hyo}@takilab.k.dendai.ac.jp

Abstract Since transactions in new applications like CAD require more objects for
longer time than the conventional ones, there is higher possibility that deadlock
occurs, and also it is important to reduce data stored in the log to abort and
restart transactions. In the conventional database systems, when some deadlock
occurs, one deadlocked transaction T is selected and the whole part is aborted
by restoring the old states in the log. Another way to abort 7 is to execute a
compensate operation op” of each operation op executed in T. Each op~ is a
transaction which restores the old state on which op is applied. By this method,
we can reduce time for aborting and restarting T since only a part of T is aborted,
and can reduce the log size since operations are stored in the log in stead of
storing the state. The compensate operations may cause further deadlock, since
the compensate operations are also transactions and require locks on the objects.
In this paper, we show that there exists unresolvable deadlock which cannot be
resolved by some compensate operations. We show that there is some system
where no unresolvable deadlock occurs. Also, we show two methods for resolving
the unresolvable deadlock, i.e. stack and save-point based ones.

—141—

1. Introduction

Transactions in conventional database systems are flat
sequences of read/write operations on physical page ob-
jects. In order to realize complex applications, transactions
have to be composed of transactions as modules, i.e. nested
[1, 15-17, 21-23]. Since these transactions require more ob-
jects and take longer time than the conventional ones, there
is higher probability that deadlock [11, 18] occurs. In this
paper, we discuss how to resolve deadlock in the inter-
leaved execution of nested transactions. The deadlock is
detected if a wait-for graph [10, 11] includes some
deadlock cycle. One transaction T in the cycle is selected
and is aborted by restoring the old state from the state log
[2, 9]. Since nested transactions hold more objects for
longer time, it is important to reduce cost for aborting the
transactions and storing recovery data in the log. In our
method, only a part of T which is necessary to resolve the
deadlock is aborted instead of aborting the whole part to
reduce cost for aborting and restarting T. Also, operations
are stored in the log in stead of storing the page image to
reduce the log size. In order to abort the operations in T,
the compensate operations [6, 13] are executed. We assume
that every operation op has some compensate operation
op~ such that for every system state s, op”(op(s)) = s.
Since the compensate operations are also transactions, they
require locks of objects. Another deadlock may occur by
the compensate operations. We show that there exists
deadlock which cannot be resolved by some compensate
operations. Also, we present two methods, i.e. stack and
save point based ones to resolve the unresolvable deadlock
when it is detected.

In section 2, we describe a system model. In section 3,
we define the deadlock of nested transactions. In section 4,
the compensate operations are discussed. In section 5, we
discuss the unresolvable deadlock. In section 6, we present
one method to resolve the unresolvable deadlock.

2. System Model
2.1 System Structure
A system M is composed of objects. Each object o is
an abstract data type [14], i.e. a pair of data structure and
two kinds of operations for manipulating, i.e. primitive and
non-primitive operations. Users can manipulate o by using
only the non-primitive operations. The primitive operations
directly manipulate ¢ without using any lock [5] and do
not call another operations. Each non-primitive operation of
o requests a lock on o in a mode mode(op) and can call
primitive operations of o and non-primitive operations.
[Example 2.1] A banking system B is composed of two
objects, Bank and File. The accounts of individuals are
stored in File. Bank is a view of File. Bank provides non-
primitive operations Withdrawal, Deposit, Check, Open,
and Close. File provides non-primitive operations Read and
Write, and primitive ones Fread and Fwrite. Withdrawal(x)
withdrawals money from an account x and calls Read and
Write on File. Deposit(x) calls Read and Write on File to
deposit money in x. Check(x) reads x and calls Read on
File. Open(x) and Close(x) opens and closes x, respective-
ly, which call Write on File. Read and Write are realized
by primitive Fread, and Fread and Fwrite, respectively.
Fread(x) and Fwrite(x) read and write x in File without
" locking x, respectively. For example, Write(x) is realized
by a lock, Fread, and Fwrite on x. In Bank, Withdrawal
and Deposit are compatible, but they are not compatible

with Check, Open, and Close. Check, Open, and Close are
not compatible. In File, Read and Write, and two Write are
not compatible. O
2.2 Transactions

A transaction T is an atomic sequence of operations [5,
8]. Each operation op calls another operations op, ..., OPa,
which is written as <[op, op;, ..., 0D 0p]>. [0p and op]
denote begin and commit of op, respectively. Each op; may
call another operations OPips s OP";’ Here, op,, 0p;; ... are

said to be called by op. Thus, T is structured in an ordered
tree, i.e. nested [17]. The depth-first ordering of nodes in
the tree denotes the execution sequence of operations. op,
precedes op, if op, is executed before op, in T. The im-
mediate successor and predecessor are defined as usual
Ica(op,, op,) denotes a least common ancestor of op, and
op, in T. Here, let op; denote an operation op in 7.
[Example 2.2] A transaction V to transfer money from an
account x to y, i.e. withdrawal the money from x and depo-
sit it to y, is represented as shown in Fig.1. Here, let W, D,
C, r, and w denote Withdrawal, Deposit, Close, Read, and
Write, tespectively. Also, let fr and fw be Fread and
Fwrite, respectively. V denotes the root transaction. The
leaves like fr(x) are primitive operations. <[V, [W(x), [w(x),
fr@o), fwx), wl, W, [DG), [wE), fre). fw®), wl,
D()], V]> denotes the execution sequence of operations in
V. Another transaction U transfers all the money from x to
y, and then closes x. O

1%
W(x) Dl(y)
wix) w(y)
/\
) fwlx)) ()
U
Wix) D'(y) cl(x)
w(x) w(y) w(x)
/ \
frx) fwx) fro) Mo fr

Fig.1 Transaction Trees

On Bank of Fig.1, any interleaved sequence like L, =
<Wi(x), Wux), Dy(), Du(y), Cu(x)> and L, = <Wy(x),
Wy(x), Dy(y), Cylx), Dy(y)> is serializable with respect to
the compatibility relation among the operations of Bank.
From [15-17, 21], <wy(x), wy(x), wy(¥), wp(y), wy(x)> ob-
tained from L, is semantically correct although it is not
serializable from the serializability theories [2, 5].

T has a local state, i.e. the local variables. The total
state of the system M is a pair of the system state and the
collection of the transaction states. The system state is a set
of object states. The transaction state of T is stored in a
transaction stack STy. The local variables of op; are allocat-
ed in STy when op (directly) calls op; and are popped up
when op; commits.

2.3 Synchronization Method

For a nested transaction 7, the following synchroniza-
tion mechanism is used to execute an operation op on an
object o [16]. Here, Lock(op) is a set of objects held by op
or by the operations called by op.

—142—

[Locking scheme] (1) If op is the root, nothing is done
and Lock(op) = ¢.

(2) [op is not the root] If o is already locked, (2-1) if
mode(op) is compatible with every mode of opera-
tion which locks o, op can be applied to o, (2-2) oth-
erwise, op waits until (2-1) holds.

(3) When op, ..., op,, called by op commit, all the locks
in Lock(op) are released if op is the root of T. Other-
wise, no lock in Lock(op) is released, and Lock(op) =
{o} L Lock(op,) L...u Lock(op,). O

The locking scheme is two-phase locked [5]. Here, o is

held and obtained by op iff op locks o and iff o is held by

op or by operations called by op, respectively. [op is a

lock on o and allocates area for storing the local state in

STr. op] releases STy and locks obtained in op if op is the

root of T. If not, op] denotes only the end of op, and

releases the local state from ST
Among two modes m, and m, of o, m, is less exclusive
than m, (my < my) [12] iff for every mode m,, (1) if m, is

compatible with m;, then m, is compatible with m;, and (2)

if m, is compatible with m,, then m, is compatible with rm,.

For example, mode(Withdrawal) ¢ mode(Close). m, and m,

are equivalent iff m; m, and m, < m,. Let U be a least

upper bound (lub) on c. If T uses the same object o by
multiple operations, the lock mode on o has to be convert-
ed [12]. For example, suppose that Bank is locked by Wizh-
drawal and then by Close in Example 2.1. Here, the mode
on Bank has to be converted from mode(Withdrawal) to
mode(Close) when Close is applied. Since T is two- phase
locked, the mode cannot be converted to a less exclusive
mode. Suppose that o is locked in a mode m, by T already,
and op, in T tries to lock o in a mode m,. If my C my, the
mode is converted to m, if m, is compatible with every
mode of the holders of o. If m, < m,, op, uses o without
converting the modes. If neither m;, < m, nor m, C m, the
mode is converted to m; U m, if m, U m, is compatible
with every mode of the holders of o.

3. Deadlock

A state 5 of the system M is represented in a well-
known wait-for (WF) graph[10, 11]. We extend the WF
graph to include the precedence relation among the opera-
tions. First, an operation op, depends on op, (op1 — opy)
iff (1) op, waits on an object held by op, in an incompati-
ble mode, (2) op, precedes op, for some transaction T, or
(3) for some op;, op; — ops —> op,. An extended wait-for
(EWF) graph G is a directed graph whose nodes are opera-
tions, and whose edges denote the dependency relation —.
An operation op is deadlocked iff it is included in a direct-
ed cycle of G, i.e. op — op.

Let Current(T) denote the current operation being exe-

cuted in 7. Let FirstD(T) be a directly deadlocked opera-
tion in T such that there is no directly deadlocked opera-
tion which precedes it. In Fig.2, Current(V) is [w(y), and
FirstD(V) is [W(x).
[Example 3.1] In Fig.1, when [wy(y) requires y, y is al-
ready obtained by [wy(y). Thus, [wy(y) waits for [wi(y).
Also, [Cy(x) waits on x obtained by [W(x) because C and
W on the same object are incompatible. The EWF is
represented in Fig.2. Here, [wy(y) = [wy(y) — [Cy(x) —
[Wu(x) = [wy(y). Thus, V and U are deadlocked. [J

VW)= [WEx)-fr ()W) —w@)—W ()] —[DG)->(w()

[U=[Wx)-(wx)=fr(x)fwx) -wx)] >WE)I-[D()—~

(WO DO 1T

Fig.2 EWF Graph and Deadlock

4. Compensation
4.1 Stack Based (STB) Compensation

A compensate op™ of op is an operation such that for
every system state s, op”(op(s)) = 5. The meaning and pro-
perties of the compensate operations are discussed in [13].
It is noted that compensate operations are also transactions,
i.e. they require locks on objects. In this paper, we assume
that for every op, at least one compensate operation op™ is
defined based on the application semantics. <op,, ..., 0p>"
is <0pm , ..., op,”>. For example, Withdrawal™ is Deposit,
and Deposit™ is Withdrawal in Example 2.1.

Another point to be considered in the compensation is
that each operation op in T has a local state. Suppose that
op calls op, ..., 0p,. Each time when op; is called, the state
is changed from <S;;, L; ;> to <§;, L> where S; is a system
state and L; is a local state of op (j = 1, ..., m). Then, when
op,, commits, op commits and the local state is released
from STy. Finally, op changes the system state from S, to
S» Here, suppose that some failure occurs just after op;
commits, i.e. the state is <S;, L> and op; has to be aborted.
S;. is restored by op;”. Problem is whether op; can be res-
tarted after op; is compensated by op;”. If op; is executed
on <S4, L>, the different result might be obtained from
the first execution of op; However, if op is restarted after
all op,, ..., op; called by op are aborted and the local state
of op is released from STy, the problem mentioned here
does not occur since the local state of op is newly created
when op is called again.

[Example 4.1] Let us consider Move which transfers all
the money in an account x to y and closes x which is
shown as follows. Here, suppose that the operations from
(2) to (5) have to be aborted after (1) to (5) complete. By
the compensate operations of (5) and (2), the update effect
on x and y are removed and (2) is restarted. Although the
states of x and y are restored by the compensate operations,
the local state of ¢ is not restored, i.e. still one obtained by
(4). If (2) is restarted, #’s value obtained at (4) is used to
withdrawal money from x by (2). Here, (2) fails because x
is over- withdrawn. Therefore, in order to restart the opera-
tion aborted, the local state of Transfer is also restored.
After compensating (5) and (2), and releasing the area for
the local state from the stack ST, if Transfer is called
again, (2) and (5) can be restarted because the local states

of ¢ and u are recreated in STyy,,.. [
Move(x, y) account x, y;
{int t,u; (1)t = Read(x); (2) Withdrawal(x, t);
(3) u = Ready); (D t=1t+u; (5 Deposiry, 1),
(6) Close(x);}

In order to restart the operations, both the old system
and local states must be restored as explained in Example
4.1. Suppose that op, is Current(T) and op, is FirstD(T). If
operations from op, t0 op, in T are aborted, the deadlock
can be resolved. Also, we assume that the local state of
each op is created in ST, when op is called. Let opy be
Ica(op,, op,). Let opy, be an operation which calls op,. The
local state of opy is stored in STr. Therefore, if all the

—143—

operations in op, are aborted by the compensate operations,
op, can be restarted from ST7.

[Example 4.2] In Example 3.1, the operations from [W(x)
to [r(y) are deadlocked [Fig.3]. Since lca(W(x), r(y)) is the
root V, V has to be aborted. One method is to abort all the
operations from [V to [r(y) by <([r(y)", [DG)", W),
w)J”, fwx)™, ((wx))™, (r)]), frn)”, ([r&)y”, (W),
({V)">. Here, for op, ([op)~ releases the locks obtained in
op. (op])” does nothing. Here, W™, D™, w™, fw”, and fr~
are D, W, w, fr, and null, respectively. It corresponds to the
conventional abortion of V. On the other hand, T can be
aborted by another <[V, W(x), [D(y), [r(y)>" = <([r(y)),
(D))", W(x)", ((V)™>. Thus, the latter includes higher
level operations than the former ones. [J

1%
Wx) D)
rx) w) ry)
friy e
Fig.3 Transaction Tree

In Example 4.2, <[V, W(x), [D(®), [r(y)> is called a
greatest committed sequence (GCS) of V from [V to the
current [r(y), where it does not include operations called by
operations committed. A GCS of T from op, to op, is
defined to be an operation sequence obtained by the fol-
lowing GCS procedure. Here, for a sequence L = <a, ...,
a,>, let L; denote the ith element ;. For a sequence I = <ij,
v >, <L, I> denotes <ay, ..., Qp, iy -, >
[GCS Procedure GCS(T, opy, 0p;)] (1) Let L be a subse-

quence of T from op, to op,. Let M be ¢. Let m be
the number of the elements in L.
@) Fori=m,m-1, .., 1,
if L; = op], then { j = i; do j = j -1 while L; is not
[op and j > O
if j > 0 /* [op is found */, then M = <<op>,
M>;i=j}
else /* not found */ M = <<L>, M>;
else M = <L;, M>;
(3) M is the greatest committed sequence. [J
The GCS includes only begin/commit operations and com-
mitted operations. Let GCS(T) denote GCS(T,
lca(FirstD(T), Curreny(T)), Current(T)). On the other hand,
a subsequence from Ica(FirstD(T), Current(T)) to
Current(T) is named a transaction sequence (TRS) of T,
TRS(T). For example, <[V, W(x), [D(), [r(y)> is GCS(V)
and TRS(V) is <[V, [W(x), [wx), fr(x), fw(x), w)], Wx)],
[D(y), [r(¥)> in Fig.1.
4.2 Save Point Based (SPB) Compensation

In a save point of T, the local state of T, ie. STr is
saved in the transaction log Ly by an operation Save.
[Example 4.3] For V in Example 3.1, suppose that opera-
tions from [w(x) to [r(y) are directly deadlocked, and V
takes a save point s after r(y) in W(x) as shown in Fig.4.
Unless s is taken in V, the GCS from [V to [r(y), i.e. <[V,
W(x), [D(y), [r(y)> is compensated and then V is restarted.
However, since s is taken just before [W(x), after compen-
sating the GCS <w(x), W(x)], [D(®), [r(y)> from [w(x) to
[r(y), the local state of V is restored from L, saved by s,
and the operations are restarted from w(x). O

W(x) D)
PN
rx) s wk) r(y)
frx) Sw(x)
Fig.4 Save Point

Suppose that T is deadlocked, op, = Current(T), and
op, = FirstD(T). Let sp be a save point preceding and
nearest to op, in T. The procedure to abort and restart T is
shown as follows.

[Save Point Based (SPB) Compensation] (1) A GCS G
from sp to op, is obtained by GCS(T, sp, opy).

(2) The compensate of G obtained by (1) is executed.

(3) The local state is restored from Ly obtained at sp.

(4) T is restarted from sp. O

Unless any save point is taken before op,, all the opera-

tions on T have to be aborted, i.e. totally aborted.

5. Unresolvable Deadlock

5.1 Definition

[Example 5.1] Suppose that T; = <[T;, [a, b, [c, d, [e>
where a deadlock cycle exists from [c to [e, is selected to
be aborted. </c, d, [e> in T, is aborted by <(fe)”, d°,
([c)"> where d~ calls a sequence <d, dy, d5, ..>. ([e)”
means that T, stops requesting the object of e. Then, the
system is in a state s, T, = <[T}, [a, [b, .., b], [c, [d, ..., d},
[d", di, dy, [d:> and the GCS <[T,, [a, b, [c, d, [e, ([e),
[d™, di, dy, [dy>. Also, <[T,, [k, I, m, [m™, m,, [m> where
m™ calls <my, m,, ..>. Suppose that {m, requests a lock on
x held by [a, and [d; requests a lock on y held by [k. In
order to resolve the deadlock, one operation, say [a, is
selected to be aborted. First, <[d”, d,, d,, [d>" is executed.
One problem is that another deadlock may occur while it is
being aborted. Here, suppose that the abortion is success-
ful. In order to abort d, & has to be exccuted again. How-
ever, d = <[d", d;, d,, dy, ...> implies the same deadlock
as shown in Fig.5. Even if T, is tried to be partially abort-
ed, the deadlock cannot be resolved in the same way. Such
deadlock is unresolvable. O]

<[T\, [a, b, [c, d, [e, ([e)], [d", &, dp [ds>
N x
]
v y I
<[Ty [k, §, m, [m", my, [m>

Fig.5 Unresolvable Deadlock

Unresolvable deadlock is deadlock which may not be
resolved by the compensate of the GCS. Now, we define
formally what is the unresolvable deadlock. The following
notations are defined for 7. Let I(T) be a compensate
operation appeared lastly in T, and L(T) be a set of opera-
tions which precede K(T) in T. T is said to unsafely depend
on a transaction U iff there is some operation op in L(U)
such that Current(T) depends on (=) op.

[Definition][19] T is said to be unresolvable deadlocked in
a state §fff T unsafely depends on T. [J
5.2 Safe System

In Example 4.2, W(x)~ (= D(x)) uses the same Bank in

the mode equivalent to W(x), and File is used by Read and

—144—

Write called by W(x)". Since Bank and File are held by

W(x), W(x)~ can use them without waiting. Like this, even

if the compensate is executed, no unresolvable deadlock

occurs. For each operation op in T, op™ is said to be safe if
op” and every operation called by op™ can use the objects

without waiting on them to abort 7.

Based on the conversion concept [12], a modified
conversion C which has the following compatibility rela-
tion is introduced.

[Compatibility of C2] (1) z is compatible with C if z is
compatible with x, and y is compatible with z.

(2) €7 is compatible with z if y is compatible with z.

(3) C; is compatible with C, if x is compatible with v,
and y and w are compatible with each other. [1

Here, (2) and (3) are the same as Uy [12]. Let op be an
operation of T, and x and y be modes of op and op~,
respectively. Suppose that after op in T locks o in Cc2,
another transaction U locks o in z according to (1). When
op” would like to lock o, op™ can use o since y is compati-
ble with both x and z. Here, it is noted that op precedes
op” in T. If every operation op obeys this conversion rule,
op~ can use o without causing further deadlock.

[Conversion rule] (1) If y < x, op locks o in x and then
op” can use o in x.

(2) ¥ x cy, opholds o in C2, and op™ converts the mode
to y.

(3) If neither x < y nor y < x, op holds o in C; and
then op™ converts the mode to xUy. O

Suppose that op, called by op™ tries to hold an object
o0, in a mode m, and o, is already held in myinT. If m,
T, 0p, can use o; in m, without waiting. For example, sup-
pose that Read tries to use record locked in a Write mode
by the same transaction. In this case, Read can use record.
Unless m, < m,, since op, has to require more exclusive
lock than m, op, may wait. This may cause further
deadlock.

[Safe condition] For every operation op, called by op~,
there exists op, called by op such that mode(op,) <
mode(op,). O

If-(1) op™ satisfies the conversion rule and (2) every opera-

tion called by op™ satisfies the safe condition, op~ is said

to be safe. A system is safe if every compensate operation
is safe. In Example 4.2, D™ and W™ are safe.

[Theorem 5.1] If the system is safe, no unresolvable

deadlock occurs.

[Proof] According to the definition, every operation called

by op™ can always use the object since they are already

locked by op. Therefore, no deadlock occurs while the

compensate operations are executed. Il

5.3 Logging

op™ is executed to abort op after op commits in T,
Hence, when op commits, the operations called by op can
be removed from the transaction log L;. L; can be realized
as a stack. In the STB compensation, each op on o is
logged by the following procedure.

[Stack Based (STB) Logging] (1) If op is non-primitive,
before op is executed on o, </op, {0}> is pushed
down into L;.

(2) If op is primitive, before op is executed, <flop]], {}>
is pushed down into L.

(3) After op commits, i.e. op] is executed, operations are
popped up from Ly until [op. Here, each time when
<op’, O’> is popped up, O = O U O’ where O is ini-
tially ¢. <op, O> is pushed down into L;. [

Here, O denotes a set of objects obtained by op. The EWF
graph G is constructed from the transaction logs. Suppose
that a current operation op; of T; waits on an object o,. If
there is op, of T, such that <op,, O,> is in the stack and o,
is in Oy, op; — op, in G. Suppose that T is aborted from
op, to the current op,. The abortion is done as follows.

[Stack Based (STB) Compensation] (1) <op, O> is

popped up from L.

(2) op™ is executed. The objects in O are released. Furth-
ermore, all the objects obtained by op™ are released
when op commits. The local state is popped up from
STr.

(3) If op is opy, T is restarted from op,, else go to (1). O

Next, let us consider save points. Each operation op is
logged and then T is partially aborted from op, to the
current op; by the following methods.

[Save Point Based (SPB) Logging] (1) and (2) are the

same as the stack based logging method.

(3) When Save is executed, the local state of T is pushed
into L.

(4) After op commits, the operations are searched from the
top of Ly. If Save is found before [op is found, op] is
pushed down into L;. If [op is found, the operations’
are popped up from L; until [op. <op, O> is pushed
down into L; where O is a set of objects held in op,
which can be obtained by the same way as the STB
logging. O

[Save Point Based (SPB) Compensation] (1), (2), (3) are
the same as the stack based one.

(4) When Save is popped up before op,, it is ignored. If
Save is popped up after op,, the local state of T is re-
placed by one saved in L;. Then, T is restarted from
the operation immediately preceded by the Save. [J

6. Unsafe System

In an unsafe system, the compensate operations of T
may require new locks which have not been obtained yet
in T. The compensate of the TRS requires no other locks
than ones obtained already since the TRS includes only
primitive operations and no locks obtained in T are
released. This is a point to resolve the unresolvable
deadlock.

After deadlock is detected, one directly deadlocked
transaction T is selected. Then, it is checked whether the
deadlock is unresolvable or not. If not, T is aborted by the
compensate of the GCS. If the deadlock is unresolvable, 7
is aborted by the compensate of the TRS. Here, every
operation is saved in Lp First, op, = Ica(FirstD(T),
Current(T)) for the STB system or op, = save point nearest
to FirstD(T) for the SPB system is found in L;. The fol-
lowing is executed for unresolvable deadlock.
[Unresolvable Deadlock Compensation (URC)] For each

op in Ly (in the backward direction), if op # op,,
then execute op™ and remove op from Ly, otherwise
terminate. [1
By the URC, all the operations called by op, are aborted
and the local state of op, is released in the STB system. On
the other hand, the local state of 7 is restored from L; for
the SPB system. Then, T is restarted from op,.
[Example 6.1] Let us consider an EWF graph of an STB
system as shown in Fig.6. 7, and T, are unresolvably
deadlocked since [f cailed by a~ waits for s and [x called
by v™ waits for b. Suppose that the unresolvable deadlock
is detected and T, is selected to be aborted. By using the

—145—

URC, since Ica(b, f) is k, T is aborted from [k to [f by ex-
ecuting the compensate of TRS(T)), i.e. <[k, [a, [b, ¢, D],
al, [a", [d, e, [f>". Since no lock operations are executed
in the sequence, no further deadlock occurs. [J

[T\ > [i=j—i]->[k—] a—-)[bic—)b]——)a]—-)[a“ —-)[d—)e—)@

[Tz-—b[st—(n—m]—a[u—)[v—>w——)v]->[v‘ —[x

Fig.6 Unresolvable Deadlock

7. Concluding Remarks

In this paper, we have discussed how to resolve
deadlock in the interleaved execution of nested transac-
tions. In our method, a transaction is partially aborted,
although whole transaction is aborted in the conventional
database system. The compensate operations are used to
abort the operations. The log size can be reduced since the
state like page image is not stored in the log. Since each
operation can be considered to be a transaction, the execu-
tion of the compensate operations requires the locks on the
objects. This means that another deadlock may occur when
the compensate operations are executed. We have proved
that no unresolvable deadlock occurs in safe systems. We
have shown methods based on the stack and the save point
to resolve deadlock by executing the compensate opera-
tions.

References

{11 Beeri, C., Bernstein, P. A., and Goodman, N., "A
Model for Concurrency in Nested Transaction Sys-
tems,” JACM, Vol.36, No.2, 1989, pp.230-269.

[2] Bemnstein, P. A., Hadzilacos, V., and Goodman, N.,
"Concurrency Control and Recovery in Database
Systems,” Addison Wesley, 1987.

[3] Chandy, K. M., Misra, J., and Haas, L. M., "Distribut-
ed Deadlock Detection,” ACM TODS, Vol.1, No.2,
1983, pp.144-156.

[4] Chandy, K. M. and Lamport, L., "Distributed
Snapshots: Determining Global States of Distributed
Systems," ACM Trans. on Programming Language
and Systems, Vol.3, No.1, 1985, pp.63-75.

[5] Eswaren, K. P., Gray, J., Lorie, R. A,, and Traiger, 1.
L., "The Notion of Consistency and Predicate Locks
in Database Systems," CACM, Vol.19, No.11, 1976,
pp-624-637.

[6] Garcia-Molina, H. and Salem, K., "Sagas," Proc. of
the ACM SIGMOD, 1987, pp.249-259.

[71 Garza, J. F. and Kim, W., "Transaction Management
in an Object-Oriented Database System," Proc. of the
ACM SIGMOD, 1988, pp.37-45.

[8] Gray, J., "The Transaction Concept: Virtues and Limi-
tations," Proc. of VLDB, 1981.

[9] Haerder, T. and Reuter, A,
Transaction-Oriented Database Recovery,"”
Computing Surveys, Vol.5, No.4, 1983.

[10] Holt, R. C., "Some Deadlock Properties on Computer
Systems,” ACM Computing Surveys, Vol.14, No.3,
1972, pp.179-196.

[11] Knapp, E., "Deadlock Detection in Distributed Data-
bases,” ACM Computing Surveys, Vol.19, No.4,
1987, pp.303-328.

[12] Korth, H. F., "Locking Primitives in a Database Sys-
tem," JACM, Vol.30, No.1, 1983, pp.55-79.

"Principles of
ACM

{13] Korth, H. F., Levy,E., and Silberschalz, A., "A Formal
Approach to Recovery by Compensating transac-
tions," Proc. of VLDB, 1990, pp.95-106.

[14] Liskov, B. and Zilles, S. N., "Specification Techniques
for Data Abstractions, " IEEE Trans. on SE, Vol.1,
1975, pp.294-306.

[15] Lynch, N. and Merritt, M., "Introduction to the
Theory of Nested Transactions,” MIT/LCS/TR 367,
1986.

[16] Moss, J. E., "Nested Transactions: An Approach to
Reliable Distributed Computing," The MIT Press
Series in Information Systems, 1985.

{17] Moss, J, E., Griffeth, N. D., and Graham, M. H.,
"Abstraction in Concurrency Control and Recovery
Management(revised),” TR COINS 86-20, Univ. of
Massachusetts, 1986.

[18] Singhal, M., "Deadlock Detection in Distributed Data-
base Systems," IEEE Computer, No.11, 1989, pp.37-
48.

[19] Takizawa, M. and Deen, S. M, "Synchronization
Problems of Compensate Operations in the Object-
Model," Proc. of International Conf. on Cooperating
Knowledge Based Systems, Keele, England, 1990.

[20] Traiger, I. L., "Trends in System Aspects of Database
Management,” Proc. of the 2nd International Conf.
on Database (ICOD-2), 1983, pp.1-21.

[21] Weihl, W. E., "Local Atomicity Properties: Modular
Concurrency Control for Abstract Data Types," ACM
Trans. on Programming Language and Systems,
Vol.11, No.2, 1989, pp.249-283.

[22] Weikum, G., "Theoretical Foundation of Multi-level
Concurrency Control," Proc. of the PODS, 1986,
pp.31-42.

[23] Weikum, G., "Principles and Realization Strategies of
Multilevel Transaction Management,” ACM TODS,
Vol. 16, No. 1, 1991, pp.132-180.

—146—

