wNF AT 4 TEE &S EALES6—13
(1992. 7. 10)

FHEE X=X & LD T v S 60Ty FFELCONT

HH # B %
NTT ¥ 7 b+ ¥ = 7HFEH

HoFEL

T ue R [HE. X CEERORE /R BNCT R I v YT Ak
TEFNy FFECOWTHN B, JET 07 T LDOFNy FORMX Ok EE GBI
DIREHEE LU, 7 vt 2OFEERERORBEECH B L ELbND, SHT v T
LAOFAFEIEAC, (1) REHDOFR L & 3 7 vt AR « WERHE - BEOEEE
B () KBRKHIC X2 T V=2 #4 v b o b L—2BEREE (3) 54 bhia kR
RUFICHTT 5 R/ANEBIVEKRER 15D, DT v I LHF Ay DT a + 2 4 75 ddbx-
p RBAFE Lco BWEDIEIREIED D 254, (1) OMEEX v F LRI 28R 3B Lot
BETH Do /. (2)(3) DMBEX D, V' = R OHEBIRICEET 357 OIRERES T
%60

A Distributed Program Debugger Besed on a Replay Technique

Yoshifumi Manabe Shigemi Aoyagi
NTT Software Laboratories
3-9-11 Midori-cho, Musashino-shi, Tokyo 180 Japan

ABSTRACT

This paper describes a debugger for distributed programs which may dynamically fork
child processes and open and close communication channels between processes. Debug-
ging distributed programs is more difficult than debugging sequential programs, since
its behavior might be nondeterministic and behavior relation among processes is diffi-
cult to understand. We develop a prototype debugger ddbx-p. Ddbx-p has (1) replay
mechanism for process fork, channel creation, and asynchronous communication, (2)
breakpoint and selective trace commands using global predicate conditions, and (3)
halting mechanism at the first state satisfying the condition. By facility (1), users can
test the same execution repeatedly. By facility (2)(3), users can detect errors concerned
with the process behavior relation.

1 Introduction

Distributed programs are much more difficult to debug than
sequential programs, because there might be a bug related to
multiple processes. If every bug were only related to a single
process, then conventional sequential program debuggers could be
used to debug distributed programs.

Thus, one of the main problems in debugging distributed pro-
grams is how to detect bugs related to multiple processes[14][16].
One of the most basic and useful tools is a mechanisim for detecting
predicate satisfaction related to multiple processes. For example,
let us consider that process p;(i = 1,2) has a variable z;, and that
z; = 1 means p; has the right to access some common data. In
this case, satisfying z; = 1 and zz = 1 at the same time is a bug.
In order to detect this bug, it is convenient if there is a mechanism
to detect the satisfaction of the predicate “zy = 1ﬂ$2k =1". We
call a predicate related to multiple processes a global predicate.
This paper considers how to detect global predicate satisfaction in
distributed programs.

Two kinds of global predicates were introduced in {10]. One
is Disjunctive Predicate (DP), which consists of simple predicates
joined by disjunctive operators “J”, where a simple predicate is
a predicate whose true/false state can be detected by a single
process. The other is Conjunctive Predicate (CP) consisting of
simple predicates and conjunctive operators “(V". In this paper,
both these predicates are considered.

There are three major requirements for detecting global pred-
icate satisfaction. One is that the probe effect is small. Since
distributed programs are asynchronous, if the timing is different,
they might behave differently. Thus, if some additional execution
for satisfaction detection is done during execution, the behavior
might change. Thus, the additional execution for debugging must
be as small as possible.

Second, distributed debuggers should let a user see the state
just after a given predicate is satisfied. Since the given predicate
defines a bug condition, execution after the predicate is satisfied
might be meaningless for the user. In addition, the extra execution
might hide the real cause of the bug from the user. For example,
if the extra execution is exiting from some subroutine, then local
variables whose values indicate the real reason of the bug might
be completely hidden by the exiting. Thus, debuggers must
show the user the exact state when the predicate is satisfied.
Consider the case in Fig. 1(a) that the given global predicate Pis
“zy = 1{)£4 = 1” (1 and z, are the variables of processes p and
pa, respectively). I the predicate is satisfied, p; and p4 should halt
at the exact state in which the condition is satisfied. However, this
predicate has no condition concerning the other processes. Where
should we halt the other processes? The cause for the predicate
becoming true might not only be in p; or ps, but in the other

processes, since these processes are working together. The message

from ps might causc P to be true. Thus, ps should stop at the
state when it has sent a message to p;, which is the last event for
pe to make P to be true. The same situation might occur for the
other processes. Therefore, all processes should halt at the state
in which cach process has executed the minimum requirements for

making P true.

Process

- =
connect/accept

——
process fork
—

message

e event

O state

time

(b)
Fig. 1 Examples of distributed program behavior.

Lastly, they should be able to test the same execution repeatedly.
Cyclic debugging is one of the most common way of debugging[8).
First, the user sets some breakpoints and executes the program
once. If the execution is stopped by a breakpoint, it means that
a bug has been found. In order to see the cause of the bug, the
user looks at the status and sets other breakpoints and executes

the program again. If the program is halted, the user try to see

the cause of the new condition by repeating the above procedure.
For cyclic debugging, the behavior must be the same in every
execution. However, the execution behavior in response to a fixed
input may be indeterminate, with the results depending on a
particular resolution of race conditions existing among processes.
For example, there might be another behavior in Fig. 1(b) for
the same distributed program, because of a connect request delay.
This behavior has no bug, since “z; = 1[4 = 1” does not hold.
A similar situation might occur due to a message transmission
delay (for example, the message from py arrives earlier than that
from pg). Thus, in one execution a bug is found, but in the next
execution when user tries to find its cause, the behavior might
be different ‘and the bug might occur at another point (or not
occur at all). This makes debugging very difficult. Thus, for cyclic
debugging, repeatedly testing the same execution is necessary.

Current research about detecting global predicate satisfaction
falls into three categories: detection during exccution, after
execution, and during replay.

Detection during execution tests the process state during
execution[5](10]{15]. This needs no replay mechanism and does
not have to execute the whole programs once in advance. Miller
and Choi[15] have presented an algorithm to detect a global
predicate called a linked predicate. Linked predicate has the form
“SPy — SPy — ...SP,”, where SP; is a simple predicate. The
arrow “—” is Lamport’s “happens before” relation[11]. Thus,
“SPy — SP; — ...SP,” means “SP; is satisfied, and after
that SP, is satisfied and, ..., and after that SP, is satisfied”.
This predicate is relatively easy to detect, since the predicate can
be piggybacked onto messages between processes. However, the
probe effect is not small since it tries to detect satisfaction during
execution. And the exact state when the predicate is satisfied
cannot be obtained, since this algorithm lets the process with SP;
do an extra execution for a given condition “SPy — SPy”.

Haban and Weigel{10] proposed an algorithm to halt the pro-
cesses for a non-replay debugger. Their algorithm considers Dis-
Jjunctive and Conjunctive Predicates, not restricted to the Linked
Predicates. However, it is also impossible for their algorithm to
halt the processes just when the predicate is satisfied. In addition,
the probe effect problem exists.

Cooper and Marzullo[5] considered halting at “Currently P”,
Their

algorithm blocks some processes, thus the probe effect is large.

which means halting at the state when P is satisfied.

In addition, for some predicate P, the algorithm cannot halt at
the state when the condition is satisfied. Consider the following
example where the predicate P is “z; = z,”. Now, process p;
is at some state and z; = 1 holds. Process p2 is at some state
and z3 = 2 holds. When the debugger lets p1 execute one step,
it might happen that z; # 1 holds forever and z, = 1 holds after
some steps in py. When it lets p; execute one step, it might happen

that z3 # 2 holds forever and z; = 2 holds after some steps in p;.

Thus, it is impossible to halt at a state whefe currently P is true.
For a Disjunctive Predicate P, it is impossible to halt at the first
state where P is true[13].

Detection after execution first gathers traces of event sequences
for each process independently and tests the execution
afterwards{3][6][9]. The log storing algorithm during execution
is simple and any complicated analysis can be done afterwards.
However, it is necessary to specify before execution which values
should be recorded. Thus, the log tends to be big and the probe
effect problem exists. In addition, if some information (which was
not specified before) proves to be necessary to detect the cause
of the bug, the successive execution to get the information might
have a different behavior and no error might occur.

Detection during replay is as follows. During the first execu-
tion, the minimum information necessary to replay is corrected
and after that, the execution is replayed using the stored informa-
tion. The global predicate satisfaction is detected by the sccond
execution[13]. If a distributed program contains neither nonde-
terministic statements such as asynchronous interrupts nor time
dependent statements such as reading a clock, its execution can
be replayed according to a small log kept during execution; thus,
the probe effect can be small. The replay technique discussed in
[1]{12][17] is based on the above premise. They only consider the
replay technique, and detecting global condition is not considered.

Detecting global predicates based on this replay method is
considered in [13]. It can halt the processes at the first state
for a given Conjunctive Predicate condition. However, the
algorithm has a restriction that no dynamic process fork and no
dynamic communication channel creation is allowed in distributed
programs. Dynamic process fork and channel open/close is
commonly used in client-server type distributed programs. In this
paper, an algorithm to detect global predicate satisfaction is shown
for dynamically process fork and open/close connection distributed
programs.

Section 2 presents the model of the distributed system and de-
bugger. Section 3 shows a replay method for dynamic distributed
programs. Section 4 gives a minimum execution algorithm to de-
tect a given Conjunctive Predicate. Section 5 presents an imple-

mentation. Section 6 discusses further study.

2 Model Definition

2.1 Distributed System Model

This paper assumes that values exchanged between processes
depend only on the initial values in each process and the order
in which processes communicate. That is, processes are assumed
to be deterministic. Stated somewhat differently, there are no
nondeterministic statements, such as asynchronous interrupts, and
there are no time dependent statemenis, such as reading a clock

or getting a time out.

The distributed system execution model, based on message-passing
communication, is the same as that proposed by Lamport[11]. The
system consists of processes and channcls. Channels are assumed
to have infinite buffers, to be error-free, and to be FIFO. The delay
experienced by a message in a channel is arbitrary but finite.

Forking a child process, connecting a channel, accepting a
connect request, closing a channel, sending a message, and
receiving a message are considered to be special events and are
called a fork event, connect event, accept event, close event,
send event, and receive cvent, respectively. The other events are
called internal events. The initial state of each process is also
considered to be an internal event. For a child process (that is, a
process that did not exist at the beginning), the initial state is
considered to be the state before creation. We can then define the
“happened before” relation[11] for dynamic systems, denoted by
“<”, as follows (In [11}, — is used rather than <). The relation
without conditions (3), (4) below is the original “happened before”

relation.

Definition 1 The relation “<” on the set of events of a system is
the minimum relation satisfying the following five conditions: (1)
If a and b are events in the same process, and a comes before b,
then a < b. (2) If a is the sending of a message by one process
and b is the receipt of the same message by another process, then
a < b (3)Ifais a connect event and b is the corresponding
accept event, a < b and b < a. () Ifaisa fork event for a
parent process and b is the corresponding child eveni (that is, a
child process initialization event), a < b. (§) Ifa < and b < ¢,
then a < c.

For two evenisa and b, a<bifa<bora=hb.

In some distributed systems, processes ¢ommunicate via shared
memory[12]. Such systems can be simulated by a message-passing
system{13]. This paper refers only to a message-passing system,
but the results are also applicable to systems which communicate
through shared memory.

Next, for the proof of the later lemmas, Chandy-Lamport’s
“meaningful global state”[2] of the distributed system is formally
defined using the “happened before” relation{In {2}, a global state
is defined by a set of event sequences. Our definition is equivalent

to that one). Let N be the number of processes.

Definition 2 Let E; be the set of events in process i. An N-tuple
of events of processes s = (e1,€2,.--,en) (e € E;) is said 1o be a
global state if and only if for all e} € Ei: e} > e; implies e £ e
for any j1 S5 < N).

Let U be the set of all the global stales.

Global state s = (e, €a, ..., en) is intuitively considered as a set
of concurrently occurring events for some timing occurrence, and
we consider it as the state when each process i has just finished the
execution of e;. The “happened before” relation for global states

is defined as follows.

I process i pmcessz I processN

[
messages halt/execute,
between test the state
] processes[
LD,

g. r"
B

g.g
¥4
v}

user

Fig. 2 Distributed Program Debugger.

Definition 3 For two global states s = (e1,ca,...,en) ond s’ =
(€, €by- s,

s< & if and only if e; < e} for every i(1 <i < N), and

s< s if and only if s < &' and ej < €] for some j(1<j < N).

For a predicate P, let G(P) be {s € U|P(s) = true}. The “first”
global state in G(P) can be defined as follows.

Definition 4 For a predicate P,
Inf(P) = {s|ls € G(P)
U such that s’ < s}.

and s ¢ G(P) forany &' €

2.2 Debugger Model

This section gives a general model for a replay-based debugger.
A replay-based debugger D consists of one main debugger D and
local debuggers LD; corresponding to the processes (Fig. 2). Every
LD, is connected to GD by a communication channel. LD; halts
process i, lets it execute cvents, and tests its status. GD sends
commands to LD;, receives its replies, and displays the results to
the user. D executes the programs iteratively. The first execution
is called the monitoring phase and the others are called replay
phases.

After the monitoring phase, debugger commands such as “stop
if P” are given to GD by the user.

In the replay phase, LD; controls process ¢ with the following
operations which are offered by sequential program debuggers: (1)
see the type of the event to be executed next, (2) store a received
message in a buffer, (3) execute the next event, (4) examine the

current state.

3 Replay Method for Dynamic Distributed Pro-
grams
This section presents a replay method for distributed programs

which dynamically fork child processes and open/close connections

between processes.

C system call routines

e int fork() : create child process

e int socket() : create a socket

e int bind() : bind a name to a socket
e int listen() : listen for a connection
e int accept() : accept a connection request
e int connect() : initiate a connection

e int close() : close a socket

Message transmission Routines

» int snd(sockno, message) : send a message to a channel

o int rcv(mode, sockno, message) : receive a message from

a channel

e int rcva(mode, message) receive a message from any

channel

e int rcvs(mode, sockno.set, message) : reccive a message

from any channel in a channel set
Fig. 3 Communication/process fork routines.
Consider the communication and process fork primitives in

Fig. 3.

passing communication. The first group are C system call routines

These primitives are considered common for message

to create connection between processes, close connections, and
fork child processes. The second group are message passing
communication routines: snd sends a message via a socket
specified by sockno. rcv receives a message from a channel.
mode is blocking or non-blocking. If the mode is non-blocking
If the mode

is blocking, the routine is blocked until a message arrives in the

and no message is available, it returns an error.

channel. rcva receives a message from any one of the currently
connected channels. The mode is the same as that in which rev.
rcvs receives a message from any one of the channels in the set
defined by sockno_set.

In this algorithm, there is one restriction that every channel must
be a one-to-one connection. When a child process fork occurs, one
socket is connected to two sockets (parent’s and child’s sockets)
and it can receive messages from two sockets. This case is not
considered for simplicity (Note that if additional information is
stored in the log, such communication can also be replayed). When
a process fork occurs, each socket must be closed by the child
process or parent process just after the fork system call.

In the monitoring mode, when these routines are called, the
event log is stored as follows. The log is stored for each process
as a file named ‘historyX’ (X is the process id). The first line

shows whether the process is created by the user or by another

process. If the line begins with parent, it shows it is a child
process and the number is the parent process number. If not, the
line is the program name and its arguments. For the other lines,
if it begins with a number, it is connect (connect follows), accept
(accept follows), or receive (number only). The first number is
the process’s socket number. In the cases of accept or connect,
the first number is its local socket address and the others are the
remote hostname and its socket address. These values can be
obtained by calling getsockname() and getpeername() after it is
connected or accepted. In the case of rec",eive, the number shows
the received socket number. If the value is -1, it means that no
message is received by the receive command.

The line beginning with fork shows that a child process fork
is donc and the child process number is logged. The example in
Fig. 4 is the log of the execution in Fig. 1(a). Note that another
execution in Fig. 1{(b) might also occur for the same program.
However, the execution is known to be the one in Fig. 1(a) from
the log. Note that socket, 1isten, close, and snd need not to

be stored in the log, since they are not nondeterministic.

client_a arg_for_a

3 connect 4001 host2 3001

parent 20001

4 connect 4002 host3 5001
4
3
history10001(p1) history20002(p4)
client_b arg_for_b
3 connect 4010 host2 3002
history10002(p2)

parent 20001

history20003(p5)

server_x arg _for_x

4 accept 3001 hosti 4001
fork 20002

4 accept 3002 hosti 4010
fork 20003

history20001(p3) history30001(p6)
Fig. 4 History of the behavior in Fig. 1(a).

server y arg _for.y

4 accept 5001 hosti 4002

After the monitor mode, the exccution is replayed according to
the event log. When the processes are created, the process number
is different from the original execution. Thus, each process has a
replay process number rpid and channel connection request and
its reply is handled using rpid.

Every connect relation is known because for each connection, the
socket address can be obtained from the history. For the example
in Fig. 4, process 20001 first accepts the connection request from
host1 with socket address 4001 (which is the connection request
from process 10001). During the replay, the connection request

with socket address 4010 might arrive earlier than that with socket

address 4001. However, it is known from the log that the request
with socket address 4001 must be accepted first. Thus, if the
connection with socket address 4010 is accepted first, it tries
another accept until it accepts the connection request with socket
address 4001. The connection between 4010 is used when it replays
the next accept (with socket address 4010) and this accept call
becomes a dummy execution.

For each receive event, the sender socket number is known from
the log. Thus, the receive event is replayed by a similar procedure
to the one shown above[13]. By using the log, the execution in

Fig. 1(a) is replayed by the log in Fig. 4.

4 Global Predicate Satisfaction Detection Algo-

rithm

This section proposes an algorithm which stops the processes at
Inf(P) when Pis acp.

For each process, we introduce “active” and “passive” states. If
the process is being executed, it is called active. A passive process
becomes active only when another active process makes it active.
System halting means that all processes are passive.

Suppose processes without a simple predicate have a special
predicate which is always true. Initially, processes whose simple
predicate is false are active and the other processes are passive.
There are three cases for a process to activate another process.

The first case is channel connection. Suppose an active process
p tries to connect a socket to another process’s socket. Let the
peer process number be p’. p’ might not have executed ‘accept’
because p' is passive or the execution of p’ is delayed. In that case,
p sends a control message to p' (p’ can be got from the history) to
ask p to execute ‘accept’. Then p’ becomes active and continues
execution until the predicate becomes true after executing ‘accept’.
A similar case occurs when p tries to accept and p’ has not executed
‘connect’.

The second case is a process fork. The previous case supposed
that process p’ exists. There is a case that p' does not exist since p’
is a child process of a process p, and p” has not executed fork p'.
In that case, when LD,/ Teceives the control message sent to p/, it
sends another control message “fork p’” to p”. The parent process
number p” can be obtained from the history for process p’. When
LD, receives the control message ‘fork p”, if p” does not exist,
the same procedure is executed for p” in advance. If p” already
exists or is forked by the previous procedure, p” becomes active
and executes fork p’. Process p” remains active and continues
execution until the predicate becomes true after forking p'.

The last case is message transmission. Suppose an active process
p tries to receive a message M via a socket 5. The message M may
not have arrived. If M has not arrived, p sends a control message
to the peer of s to ask it to send M. Then s’s peer becomes active

and executes the program to send M. In this case, the peer process

always exists because the connection is already established before
trying to receive a message. However, the sender process is not
known in advance, since a process fork might occur and whether
the sender is the parent process or child process is not stored in the
history (Note that the sender process number can also be stored in
the history, but considering the probe effect, the armount of stored
information should be as small as possible). Thus, the receiver
process p just sends a control message via s. The current peer
process p’ or one of its descendants is M’s sender. Thus, p’ becomes
active and continues execution until it sends M or it forks a child
and closes socket s. In the former case, p’ becomes passive when
its simple predicate becomes true after the sending. In the latter
case, p’ becomes passive until its simple predicate becomes true
after the fork. The child process becomes active and continues
execution until its simple predicate becomes true after the sending
{or it forks another child process). Note that in order to activate
a process correctly, it is necessary to assume that after forking
a child process, every socket is closed by at least one of parent
process or child process, and sockets are closed immediately after
the fork statement.

In other words, a process is active when its predicate is false, or
when it must connect/accept a socket, send a message, or fork a
child process.

In a control message, it is necessary to specify which message
p' must send. Thus the control message contains an identifying
message number, which is the sequence number of the messages
going through the channel. LD; counts the messages sent to or
received from every channel. Note that it is unnecessary to send
the message number attached to the message.

We should be able to detect when every process is passive and
will not become active. This is one variation of the distributed ter-
mination detection problem proposed by Dijkstra and Scholtem(7],
and many algorithms have been proposed for different assumptions
regarding the system. The part that detects the termination is
called a termination detector. Status changes are reported to the
termination detector when they occur. To simplify termination
detection, we assume that control messages go through the ter-
mination detector. The termination detector can be implemented
either in a distributed fashion (in LD;) or in a centralized fashion
(in GD). The distributed algorithm shown in [4] can be used for
this termination detector. The halt algorithm is outlined in Fig. 5.

Now we show that the algorithm can halt the processes at
Inf(P).

Lemma 1 [13] If P is a cp, |Inf(P)] < 1.

Theorem 1 The algorithn can halt the processes at Inf(P) for a

given CPP.

(Proof) Let inf = (21,12, ...,1a) be the global state in Inf(P).
To show that the system halts at inf, the following properties must

be demonstrated.

—100—

program HaltAtBreakpoint /* Program for 1Dy, */
function TermTest;
if s[5] > msfi] for all ¢ € sset and SP = true and cpid = {}
/* I SP does not exist for this process, SP = true */
then return (passive) else return (active) end,;
function TryFEzec; /* let e be the next event */
if e is create socket i then begin
Execute ¢; sset := sset| J{i}; return (Null) end
if e is connect or accept for socket i then begin
if ms[i] = 0 then Send ‘Connect Psock(pid,i)’ to Peer(pid, i);
Execute ¢; return (Null) end /* make a connection
between process Peer(pid,i)’s socket Psock(pid,). */
if ¢ is fork then begin /* let pid be the child process number */
Execute ¢; Send ‘Forked, sset, s, 7, ms * to LDpid ;
For all ‘close(i)’ statement after fork sset := sset — {i} ;
cpid == cpid — {pid}; return (Null) end
if ¢ is receive from i and there is no program message {rom i
in the local quene then
begin Send control message “ri] +1” to 3 return(i) end
else /* the other events */ begin Execute ¢; return (Nll) end
end;
begin /* MAIN */
for i := 0 to NumberO fSockets do begin
s[i} := 0; /* The number of messages sent to i */
7[i] := 0; /* The number of messages received from i */
ms[i] := 0 /* i requested to send up to msi] */ end;
cpid := {}; /* process number which requested to fork */

sset == {}; /* current socket set */

ezit := ThisProcess Ezists FromThe Beginning;
while (ezit) do begin
When ‘Connect i is arrived: begin
msi] = 1; sset := sset|J{:}; Send ‘Fork I’ 10 LDparent(1)
end ;
When ‘Fork pid’ is arrived: begin
Send ‘Fork I’ 10 LDparent(s); cpid = cpid| J{pid}
end ;
When ‘Forked rsset, rs, rr, rms’ message is arrived:
begin ezit := true; sset := sset{ Jrsset;
sfi] := rafi]; v{i] == refi}; msfi] := rmali] for all i € rsset;
For all ‘close(i)’ statements just after fork sset = sset — {1}
end

end ;

cstat := TermTest; Send cstat to TerminationDetector;

if cstat =active then waitp := TryEzec;

When execution of event ¢ is finished: begin
if e = send or connect or accept to i then 8[i] = s[i] 4+ 1;
if € = receive or connect or accept to i then rfi) == r[i] + 1;
cstat = TermTest;
if cstat =active then waitp := TryEzec
else Send cstat to TerminationDetector;
end ;

When program message m is arrived from i: begin

Insert m to local queue;
if waitp = i then waitp = TryEzec
end;
When control message “k” is arrived from 1 : begin
ms[i] := k; bstat := cstat; cstat := TermTest;
if bstal =passive and cstat =active then begin
Send cstat to TerminationDetector; waitp ;= TryEzec end
end ;
When ‘Connect ¢’ is arrived: begin
ms[i] = 1; sset := sset| J{i}; bstat := cstat; cstat := TermTest;
if bstat =passive and cstat =active then begin
Send cstat to TerminationDetector; waitp ;= TryEzec end
end ;
When ‘Fork pid’ is arrived: begin
cpid = cpid U{pid.}; bstat i= cslal; cstat := TermTest;
if bstat =passive and cstal =active then begin
Send cstat to TerminationDetector; waitp := TryEzec end
end ;
When Termination is detected: Halt;

end.

Fig. 5. Halting algorithm for a Conjunctive Predicate.

® The processes do not terminate at any s € U such that s < inf.
® Process i does not execute beyond ¢;.

Assume that the system halts at some s € U. Every SP; is true
at 5. Thus s is contained in G(P). If s < inf, the definition of
Inf(P) is contradicted. The former proposition is therefore true.

Next we show the latter proposition. Process i executes the next

event if and only if one of the following conditions is satisfied.
e i has an SP; and SP; = false.

® i received a control message requesting a child process fork and

has not yet forked the process.
e i received a control message requesting connect/accept.

e i received a control message requesting a message and has not

yet sent the message.

Suppose that the system halts at s such that some process i
executes beyond ¢;. Let s’ be a global state during the replay such
that s’ = (s1,82,...,58) < inf, and for some process i which
executes beyond ¢; in s, 5; = t; in &'. Let Sins be the set of
processes which satisfy s; = ;. No process in Sin s executes the
next event by the first of above conditions, because s; = ;. Thus,
they do not execute the next events unless some process j & Siny
sends a control message to a process k € Sing, before it executes
t;, to ask for a child process fork, connect, accept, or message
sending whose corresponding event & has not executed at tr. Let
the corresponding events at k and j be e and e;, respectively.
Thus, e; >t and ¢ < e; <1; holds, which contradicts inf € U.

—101—

Therefore, no process executes beyond ;.]

Note that as shown in [13], it is impossible to halt at Inf(P) if
P is a DP. It is also impossible for other predicates which cannot
be converted to a cp(for example, predicate z; = 2, where z; is

a variable in p;).

5 Prototype Implementation

We developed a prototype distributed debugger ddbx-p on SUN-
4. In order to use ddbx-p, a user must write programs with
the routines shown in Fig. 3 and special routine ddbx.init and
ddbx_term. ddbx_init must be called at the top of the programs
to initiate logging. ddbx_term must be called at the end of the
programs to close log files.

The ddbx-p commands related to global predicate are:
» stop if [global predicate] :set a breakpoint

o trace [process. expression] if [global predicate]

:set a trace condition

e switch [commandno], [predicateno]l : change primary

[global predicate]::= [conjunctive predicatel |
[conjunctive predicate] or [global predicatel]
[conjunctive predicate] ::= [simple predicate] |

[simple predicate] and [conjunctive predicate]

Since it is impossible to halt at Inf(P) for a DP, ddbx-p can halt
at Inf(P) for only one cp. This cP is called a primary predicate.
Users can specify one ¢P as the primary among the breakpoint
conditions. Switch command changes the primary. For the other
predicates, ddbx-p reports satisfaction after Inf(P) and halts.

Another command trace also uses a global condition. It prints
out the value of some expression whenever the condition is satisfied
and continues execution. It is unnecessary to stop at Inf(P) to
print out an expression value, if the values of the variables in the
expression are saved during replay. Thus, trace can print out the
expression value at Inf(P) even if P is a DP. The algorithm is
similar to that in [13].

6 Conclusion

We presented a global predicate satisfaction detection algorithm
for distributed programs which dynamically fork child process
and open/close connections. We developed a prototype debugger,
ddbx-p, and based on experience using it in our group, we will
refine it with other commands which would be more useful for
debugging distributed programs.

Acknowledgments The authors would like to thank Dr. Rikio
Onai for his encouragement and suggestions. They also thank Dr.
Makoto Imase and Dr. Naohisa Takahashi for discussions about

early versions of this work.

BEHR

[1] Carver, R. H., and Tai, K. Reproducible Testing of Concurrent
Programs Based on Shared Variable, Proc. 6th Int. Conf. on
Distributed Computing Systems(May 1986), pp. 428-433.

{2] Chandy, K. M., and Lamport, L. Distributed Snapshots: Delermin-
ing Global States of Distributed Systems,ACM Trans. on Computer
Systems, 3, 1(Feb. 1985), pp. 63-75 .

{3] Choi, J.-D., Miller, B.P., and Netzer, R. Techniques for Debugging
Parallel Programs with Flowback Analysis, Technical Report 786,
Univ. of Wisconsin-Madison, Compuler Science Department (Aug.
1988).

[4] Cohen, S., and Lehmann, D. Dynamic Systems and Their Dis-
tributed Termination, Proc. of 2nd ACM Symp. on Distributed
Computing (1982), pp. 29-33.

{5] Cooper, R. and Marzullo, K.: Consistent Detection of Global Pred-
icates, Proc. of Workshop on Parallel and Distributed Debugging
(May 1991), pp.167-174.

[6] Denning, A. and SChOXIberg, E. The task recycling technique for
detecting access anomalies on-the-fly, Technical Report RC 15385
(68548), IBM T.J. Watson Research Center (Jan. 1990).

[7] Dijkstra, E.W., and Scholten, C.S. Termination Detection for
Diffusing Computations, Inform. Process. Lett. 11, 1(1980), pp.1-4.

[8] Fairley, R. E. Software Engineering Concepts, McGraw-Hill.

[9] Garcia-Molina, H., Germano, F. Jr., and Kohler, W.1I. Debugging
a Distributed Computing System [EEE Trans. on Softwere Eng. ,
vol.SE-10, no.29(March 1984), pp.210-219 .

{10] Haban, D. and Weigel, W. Global Events and Global Breakpoints
in Distributed Systems, 21st Hawaii Intcrnational Confercnce on
System Sciences, (Jan. 1988), pp. 166-175.

[11] Lamport, L. Time, Clocks, and the Ordering of Events in a
Distributed System, Communications of the ACM, 21, T(July 1978),
pp. 558-565.

(12] LeBlanc, T. J., and Mellor-Crummey, J. M. Debugging Parallel
Programs with Instant Replay, IEEE Trans. on Comput., C-36,
4(April 1987), pp. 471-480.

[13) Manabe, Y. and Imase, M. Global Conditions in Debugging
Distributed Programs, J. of Parallel and Distributed Computing,
15, (1992) pp. 62-69.

[14] McDowell, C.E. and Helmbold, D.P. Debugging Concurrent Pro-
grams, ACM Computing Surveys, Vol.21, No.4, (Dec. 1989) pp.593—
622.

[15] Miller, B. P., and Choi, J.-D. Breakpoints and Halting in Dis-
tributed Programs, 8th Int. Conf. on Distributed Computing Sys-
tems (June 1988), pp. 316-323.

[16] Pancake, C.M. and Utter, S. A Bibliography of Parallel Debuggers,
1990 Edition, ACM SIGPLAN Notices, Vol.26, No.1 (Jan. 1991)
pp.21-37. ’

[17] Takahashi, N. Partial Replay of Parallel Programs Based on Shared
Objects, [EICE Technical Report COMP89-98 (Dec. 1989) (In

Japanese).

—102—

