RNMF AT 4 TEEESBUE 58—14
(1992 11. 20)

BEEMEZHEAET 0 baLICE T ERSEE

R BEA IR
Eg e pE S e S

=T Y 2T ¥ 27 LEODNBEEH v 27 AT, BEROFIEIC, F+2 b, S, D% SRR
DF—ZREET 5700, BIEEEEHEY -~ CRRBEE AL, CODOHEL LT, 79 FarF—
2 B4 (PDU) kL 54 BEROH - DOHLIACIILICET S C & 235 5. ARCTR. HEEISH
VAT LRHRT IRy F 4 7435, PDU #8448, BEFCES K F—olHRETEET 2 1%E
BY—EXeBEL, CODDOT v F an kR8T 5. FEEFESHT PDU 2 E%T 24— ¥ 2Cl,
BEED PDU BEEOHRE., FRCHLHEUCLE SMEHED 5, AR TH. CORERET 52D IC,
HOBEYBAT 5, ik, BEBHcEFI 2 PDUOKFICH Y., ISHZv 54 7 4 13, HoRFIE LT
PDU %#BEFIFCEET 2,

Run Synchronization
in the Priority-Based Broadcast Protocol

Akihito Nakamura Makoto Takizawa

Department of Computers and Systems Engineering
Tokyo Denki University
Ishizaka, Hatoyama, Hiki-gun, Saitama 350-03
E-mail {naka, taki}@takilab.k.dendai.ac.jp

In distributed applications like groupware systems, it is required to provide reliable broadcast
service, by which application entities send various kinds of data, e.g. text, voice, and video, to
multiple destinations reliably and efficiently. In such kinds of applications, some protocol data
units (PDUs) have to be delivered to the destinations earlier than another PDUs. One approach
to providing such communication service is to give a priority to each PDU and to deliver the
PDUs to the destinations in the priority-based order. In this paper, we discuss distributed
broadcast protocols which provide priority-based receipt ordering of PDUs for entities by using a
single channel system like Ethernet. In the priority-based ordering service, there is. a starvation
problem, i.e. lower-priority PDUs can be left waiting indefinitely in the receipt queue since higher-
priority PDUs jump over the lower-priority PDUs. In this paper, we present a method by which
even lower-priority PDUs are delivered to the application in some pre-defined time by partitioning
the receipt sequence of PDUs into runs, where each run is priority-based ordered.

—107—

1 Introduction

In distributed applications like groupware sys-
tems [5], group communication among multiple
entities is required in addition to one-to-one com-
maunication provided by OSI [9] and TCP/IP [4].
Reliable broadcast communication systems have
been discussed in [1, 2, 6, 7, 10, 11, 15, 16, 18, 19,
21, 23, 24, 25, 26]. In these papers, it has been
discussed how to provide atomicity of delivering
PDUs and receipt ordering of them.

In the distributed applications, various kinds
of data are broadcast to multiple sites. For ex-
ample, control messages have to be delivered to
the destinations earlier than another data. One
approach to delivering more time-critical PDUs
to the destinations earlier than less time-critical
ones is to give priority to each PDU. There are
two kinds of priority-based transmission schemes
i.e. controlled access [12, 22] and contention-
based [12, 14] protocols. In this paper, we discuss
contention-based priority concepts among multi-
ple entities in a group named a cluster. In the
broadcast communication, it is important to con-
sider in which order each entity in the cluster re-
ceives PDUs with priorities. In [20], two priority-
based broadcast services are defined, i.e. priority-
based total ordering (PriTQ) and priority-based
semi-total ordering services. In the PriTO, ev-
ery entity receives all the PDUs not only in the

same order but also the priority-based order. In

the other service, PDUs received are ordered ac-
cording to the priorities, where PDUs with the
same priority may be ordered differently by dif-
ferent entities. One problem is starvation, i.e.
lower-priority PDUs can be left waiting indefi-
nitely in the receipt queue since higher-priority
PDTUs jump over lower-priority ones. In this pa-
per, we present a PriTO protocol by which even
lower-priority PDUs are delivered to the applica-
tion entities in some pre-defined time by parti-
tioning the receipt sequence of PDUs into runs,
each of which is priority-based ordered. Each en-
tity receives the same sequence of the runs.

In section 2, we define the basic concepts. In
section 3, we discuss the priority-based ordering
of PDUs. In section 4, we present a protocol
which provides a PriTO service by using single
channel network like the Ethernet. In section 5,
we discuss how to resolve the starvation problem.

2 Basic Concepts
2.1 Cluster

A communication system is modeled to be com-
posed of three layers, i.e. application, system, and
network layers. Entities in the system layer pro-
vide some service for entities in the application
layer by adding some value to the service provided
by the network layer. A cluster C [23, 24] is de-
fined to be a set of service access points (SAPs)
S1,.,5, (n 2 2). Each §; is supported by a
system entity E;, and each application entity A;
takes communication service through S; to which
A; is attached (i = 1,...,n). Here, C is said to
be supported by Ei,...,E,, and be composed of
Aj,...,An. The cluster is an extension of the con-
ventional connection concept on two SAPs to n
SAPs. In this paper, we assume that a cluster is
established by multiple entities by using a proto-
col presented in [23, 24].

2.2 Correct receipt among multiple
entities

There are three levels of correct receipt among
multiple entities, i.e. accepted, pre-acknowledged,
and acknowledged [23, 24]. Here, suppose that
a cluster C is supported by n system entities
Ey,....Ey.

(1) When a PDU p arrives at E;, p is accepted
by E;.

(2) When E; knows that every entity in C has
accepted p, p is pre-acknowledged by E;.

(3) When E; knows that every entity in C has
pre-acknowledged p, pis acknowledged by E;.

At (2), although E; knows that every entity in C
has accepted p, some E; still may not know that
another entity has accepted p. For example, E;
has not received the acknowledgment to p from
some Ej, yet. (3) represents the highest correct
level.

Next, we would like to consider logical prop-
erties of cluster services. The service is modeled
as a set of logs. A log L is a sequence of PDUs
< p1 ... Pm), where p; is the top and p., is the
last. Here, top(L) and last(L) denote the top and
the last PDUs in L, respectively. In L, p; precedes
pj (written as p; -1 p;}if 4 < j. Here,let I, bea
log < g1 ... ¢n |. L || L denotes a concatenation of
Land Ly,ie. <P1 ... Pm q1 - Gn |- Here,let L7 (2

—108—

< j) denote a subsequence < p; pit1 ... Pj—1 P; |
of L. Each entity E; has a sending log SL; and
a receipt log RL;. SL; and RL; are sequences
of PDUs sent and received by E;, respectively.
There are the following relations among the re-
ceipt and sending logs.
¢ RL; is order-preserved iff for every entity E;,
P —RL; ¢, ifp —s1; ¢
o RL;is information-preserved iff RL; includes
all the PDUs in SLy,...,SL,.
e RL; and RL; are information-equivalent iff
RL; and RL; include the same PDUs.
o RL; and RL; are order-equivalent iff for ev-
ery pair of PDUs p and ¢ included in both
RL; and RLj, p —»pr; qiff p — gL, ¢.

RL;is preserved iff RL; is order- and information-
preserved. RL; and RL; are equivalent iff RL; and
RL; are both order- and information-equivalent.

[Definition] A one-channel (1C) service is one
where every receipt log is order-preserved and
order-equivalent. O

The 1C service is abstraction of services provided
by the Ethernet MAC [8] and radio networks. Al-
though every entity receives PDUs in the same
order preserving the sending order, each entity
may fail to receive PDUs. In this paper, the 1C
service is used as the underlying network layer.

[Definition] Order-preserved (OP) service is one
where every receipt log is preserved. Total
ordering (TO) service is an OP service where ev-
ery receipt log is order-equivalent with each other.
[m]

The protocols which provide the TO and OP ser-
vices are presented in [18, 19, 23, 24, 25, 26].

3 Priority-Based Cluster Ser-
vice ‘

Each entity gives each PDU bp a unique se-
quence number p.SEQ and a priority p.PRI (>
0). If p is broadcast after a PDU ¢, p.SEQ >
¢.SEQ. If p has higher priority than ¢, p. PRI >
¢.PRI. Let pp, denote that p has priority r, i.e.
p.PRI = r. The priority 0 is only used in the
system. Here, a notation p* is used to explicitly
denote that p is broadcast by E;. p.SRC denotes
the source entity of p.

[Definition] A log L is said to be priority-based

ordered iff for every two PDUs p and ¢ in L, (1)
if p. PRI > q.PRI, then p —, ¢, and (2) if p. PRI
= ¢q.PRI,p.SRC = q.SRC, and ».SEQ < ¢.SEQ,
then p — ¢. O

[Deﬁnition] Two logs L; and L; are priority-
equivalent iff L; and L; are both information-
equivalent and priority-based ordered. O

[Example] Suppose that E; broadcasts PDUs a,
b, and ¢, E, broadcasts p and ¢, and E3 broad-
casts z, y, and z. The sending and receipt logs of
each entity are shown in Figure 1. RL;, RLy, and
RL; are priority-based equivalent because they
include the same PDUs, and are priority-based
ordered. It is noted that z and y are received in
the sending order because they are broadcast by
E3 and have the same priority 1. O

SIy = < ay by ¢ |

Sy = < P2) 91]

SIz = < () Y[y 2y |

RLy = < cg) by ypa) Py apy =) 9 2)
RLy = < c5) ypg) bpa) Py =) 90) 2(y 9y)
RLy = < cj3) Ppa) bpz) Yi2)) =) 20y o) |

Figure 1: Priority-based equivalent

[Definition] Let R be a subsequence of a log L.
R is said to be a run in L (written as R C L) if
R is priority-based ordered. O

[Definition] Let R; and R; be subsequences Llf:
and LI of L, respectively. If iy = j; + 1, Ry is
said to be connected to R;. O

[Example] Let us consider a log L as shown in
Figure 2. R;, Ry, and Rj are runs of L. Ry is not
arun of L because e. PRI(= 1) < f.PRI(=2),i.e.

it is not priority-based ordered. R3 is connected
to Ry. O

L = < ag by epz) dpy ep figg 911y by]

Ri=L=< a) b[;] C[g] 1. CL
Ry = L= <bpycpdpyepy] CL
Ry = LI§ = < fig) 9y by) CL

Ry=LE=<ey frg gy hyy] ZL
Figure 2: Runs

[Definition] A log L is said to be run-partitioned
t0 RyyoyRe i L= (By || ... || Ry). D

[Definition] A run-partition (Ry || ... || Rx) of
L is said to be mazimum in L if (1) k = 1, or (2)

—109—

k > 1, for every pair of connected runs R; and
R;y1, p.PRI > q.PRI where p is the last of R;
and g is the top of Riyq (i =1,..,k—1). O

It is noted that there exists only one maximum
run-partition for every log L although there may
be more than one run-partition of L.

[Example] Figure 3 shows run-partitions of logs
L, and L,. The run-partition ($11 || S12 || S13)
is not maximum in L;. However, (R11 || Ri2)
is maximum. (Rz1 || Ra2) is maximum but
(521 ” Sog ” 523) is not in L,. O

Ry Ria
ot e, et Nttt
Ly = < ap by cp) dpy e Sy 91) Py |
[N e
S11 S12 S1s
Ry Raa

Ly = < aj3) ¢ biz) epy dpy Sia) by 91)
Nyt Nrcvae o Nt et
Sa1 S22 Sas

Figure 3: Run-partition

[Definition] Let (R || ... || Rix) and (Ra ||

|| Rax) be maximum run-partitions of logs
L, and L, respectively. L; and L, are said
to be run-equivalent iff (1) h = k (= m), and
(2) Ri; and Ry; are priority-based equivalent for
i=1,..,m. O

[Example] Let us consider two logs Ly and L

as shown in Figure 3. The run-partitions (R

[| Riz) of Ly and (Ra1 || Ra2) of Ly are rum-
equivalent because Ry; and Ry;, and Ry; and Rj;
are priority-based equivalent, respectively. O

There are two kinds of broadcast communica-
tion service on the priority.

[Definition] The cluster service of a cluster C is
said to be a priority-based ordering (PriO) service
iff every receipt log in C is information-preserved
and is run-equivalent with each other. The PriO
service of C is said to be a priority-based total
ordering (PriTQ) service iff every receipt log in
C is order-equivalent with each other. O

[Example] Examples of PriO and PriTO services
are shown in (1) and (2) of Figure 4, respec-
tively. Here, a cluster C is supported by three
entities E;, E;, and E;. In (1) and (2), every
entity receives all the PDUs broadcast in C, i.e.
a, b, ¢ d, e, and f. Hence, RL;, RL;, and RL3
are information-preserved. A run-partition (R,

|| Ra;) of RL; is maximum, where Ry; includes b,
¢, d, and e, and Ry; includes a and f (i = 1,2,3).
Ry1, Ria, and Ry3 are priority-equivalent, and so
are Rj;, Raa, and Rj3. Hence, every receipt log
is run-equivalent in (1) and (2). In the PriO ser-
vice (1), PDUs which have the same priority may
be received in any order, e.g. ¢ and e, and a and
f are received in different orders. On the other
hand, all the entities receive the same PDUs in
the same order in the PriTo service (2). O

SL; = < ap) bl]
SLy = < ¢pg) dpyy |
- S = < e fig]

Ry Ri2

P et VS N
RLy = < bpy) cp efz) dpy) ofz) Sz |
Ry R,

P e I N
RLy = < by epy cpg) dpy) ag) fiz))
Ry Rs3
e e N
RL3 = < bjg) e[y cpgp dpyy fiz oz]
(1) PriO service
Ry Rya
e e
RLy = < bpy cp) efz) dy) fz) fiz)]
. Ry Raa
rr———— e —— o —
RL; = < by ¢y efz) dpy) ap) fiz |
Ru Raz

RL3 = < byg) ¢y ey dpy apz) fiz]
(2) PriTO service

Figure 4: PriO and PriTO

4 Priority-Based Total Order-
ing (PriTO) Protocol

We present a protocol which provides the
PriTO service for the application entities by using
the 1C service.

4.1 Transmission and receipt

Each entity E; has the following variables (7, &
=1,.,n).

¢ SEQ = sequence number of PDU which E;
would transmit next.

¢ REQ; = sequence number of PDU which E;
expects to receive next from E;.

¢ ALj, = sequence number of PDU which E;
knows that Ej expects to receive next from
Ek. ' ’

—110—

o minAL; = minimum of ALjy,...,ALjn.

e PAL;; = sequence number of PDU which E;
knows that Ej expects to pre-acknowledge
next from Ej.

o minPAL; = minimum of PAL;y,..., PALjn.

PEQ; = sequence number of PDU which E;

expects to pre-acknowledge next from Ej;.

Each PDU p from E; has the following control
information for each Ej, in addition to p.SRC),
p.SEQ, and p.PRI.

o p.ACK; = sequence number of a PDU which
E; expects to receive next from E;.

Each entity E; broadcasts a PDU p according
to the following transmission procedure. Here,
enqueue(L, p) denotes an operation to put p in
the tail of a log L. broadcast(p) is an operation
to broadcast p by using the 1C service.

[Transmission procedure]
p.SEQ := SEQ; SEQ := SEQ + 1;
p.ACK; := REQ; (j = 1,...,n);
enqueue(SL;, p); broadcast(p); O

When a higher-priority PDU p is received, p
has to jump over lower-priority PDUs received
in the receipt log. Here, a priority-based insert
operation < is introduced.

[Priority-based insert] Let L be a priority-
based ordered log < pi1 ... Prn], and p be a PDU.
A priority-based insert L <« p is defined to be a
priority-based ordered log < p1 ... i1 P Pi ... Pm |
where p. PRI > p;.PRI. O

For example, < ap by cuy | < dpy is <
afg) by dig)], and < agg by ey] < egg) s
< agq bpg egg) < -

Each entity E; accepts a PDU p from E; ac-
cording to the following accept procedure. When
p is received, a pseudo-PDU p* is created for p.
p* is a PDU which is the same as p except that p*
has no data. p* is given a priority 0. E; has two
logs RRL; and PRL; for receiving PDUs. They
are the subsequences of RL;, and RRL; is con-
nected to PRL;.

[Accept procedure]
if (37.SEQ = REQ;) { .
RRL; pf(;]; (PRL; || RRL;) <« p%;

REQ; := p.SEQ + 1;
ALpj :=p . ACKy (h=1,..,n);
}o

p is priority-based inserted to a concatenation of
PRL; and RRL;. Hence, PDUs in PRL; || RRL;
are priority-based ordered. The pseudo-PDU P{.o]
is inserted to the tail of RRL;. This means that
the order of the pseudo-PDUs in the receipt log
shows the receipt order of the PDUs.

PDUs in the receipt log are pre-acknowledged
according to the following procedure. -

[Pre-acknowledgment (PACK) procedure]
while ((p? = top(RRL;) is not a pseudo-PDU)
or ((p’ is a pseudo-PDU)
and (p.SEQ < minAL;))) {
p’ := dequeue(RRL;); enqueue(PRL;, p');
if (p7 is a pseudo-PDV) {
PEQ; :=p'.SEQ + 1;
PALn; :=p.ACKy (h=1,..,n);
}
}o

PDUs are forwarded to the application entity in
the priority-based order by enqueuing the PDUs
into a log ARL; according to the following pro-
cedure. Here, delete(L, p) denotes a procedure
to remove a PDU p in a log L. The applica-
tion entity receives the PDUs from ARL; in the
priority-based order.

[Acknowledgment (ACK) procedure]
NotEnd := TRUE;
while (NotEnd) {
if (p7 = top(PRL;) is not a pseudo-PDU) {
if (p.SEQ < minPAL;) {
P’ := dequeue(PRL;);
enqueue(ARL;, p7);
delete(PRL;, p™);
} .
} else NotEnd := FALSE;
}o

4.2 Failure

In our system, the 1C service is used as the
underlying service. In this service, some entity
E; may fail to receive some PDU. E; detects the
PDU loss by using the sequence number of PDUs.
If E; detects that it fails to receive a PDU, all

—=111—

the entities agree on which PDU they fail to re-

ceive by broadcasting the information on REQ.

In {23, 25, 26], Then, every entity rejects all the
PDUs following the lost PDU in the receipt log.
The PDUs rejected are rebroadcast. That is,
go-back-n protocol [27] is used.

5 Starvation-Free PriTO Pro-
tocol

In the PriTO protocol, PDUs are forwarded to
the application entities in the priority-based or-
der. One problem is that lower-priority PDUs
can be left waiting indefinitely in the receipt log
even if they are acknowledged. That is, a PDU
p has to be left waiting in the receipt log until
higher-priority PDUs which have jumped over p
are acknowledged. In order to resolve the starva-
tion problem, we introduce a run synchronization
protocol to end the current run and to start a new
run. By using this protocol, PDUs left waiting in
the receipt log for the prefixed time are forced to
be delivered to the application entity.

Each entity E; has a variable TOSEQ,, (h =
1,...,n) which denotes a maximum sequence num-
ber of timed out PDU from Ej. Initially, each
TOSEQ,, = NIL. When each PDU p is acknowl-
edged, a timer starts for p.

[Run synchronization protocol]

(1) The timer for a PDU ph is expired in E;. E;
stops the PACK and ACK procedures while
E; ‘accepts PDUs. TOSEQ, := p".SEQ.
E; broadcasts a Run-Sync PDU s where
s.TOSEQ; = TOSEQ; and s.PEQ; = PEQ;
(§ = 1,...,n). s carries information on which
PDUs are timed out and until which PDUs
from each entity are pre-acknowledged in
s.TOSEQ; and s.PEQ);, respectively.

(2) Suppose that E; receives the Run-Sync s
from E;. E; stops the PACK and ACK pro-
cedures while PDUs are accepted. Then,
TOSEQ,, := s.TOSEQ, if TOSEQ, = NIL
or TOSEQ, < s.TOSEQ, (h = 1,..,n). If
E; finds that the timer for g* is expired,
and TOSEQ, < ¢*.SEQ, then TOSEQ,
:= ¢*.SEQ (k = 1,..,n). E; broadcasts a
Run-Sync-Pack PDU sp where sp. TOSEQ,,
= TOSEQ; and sp.PEQ, = PEQ, (h =
1,...,m).

(3) If each entity E; receives Run-Sync or Run-
Sync-Pack PDUs from all the entities in
the cluster, E; broadcasts a Run-Sync-Ack
PDU sa where sa.TOSEQ) = TOSEQ), and
sa.PEQ, = PEQ, (h = 1,...,n).

(4) Suppose that every E; receives the Run-
Sync-Ack PDUs from all the entities. Here,
all the entities have the same TOSEQ) and
PEQ,, (h = 1,...,n). First, the PACK pro:
cedure is executed and all the pseudo-PDUs
which are pre-acknowledged are moved from
RRL; to PRL;. Next, the acknowledged
PDUs which precede the PDU timed out
lastly, and the timed out PDUs are moved
from PRL;to ARL; in the priority-based or-
der. Then, the PACK and ACK procedures
are restarted. O

After the steps from (1) to (3) in the run synchro-
nization protocol, every entity agrees on which
PDUs are pre-acknowledged and -are timed out.
Here, since F; stops the PACK and the ACK pro-
cedures, AL is not changed even if E; receives
PDUs during the protocol execution. Further,
at (4), PDUs which are acknowledged and are
timed out are moved to the application entity in
the priority-based order. Here, the current run is
forwarded to the application entity. As a conse-
quence, every application entity receives the same
PDUs in the same priority-based order.

[Example] Figure 5 shows an example of the run
synchronization. There are three entities Ey, Es,
and Ej. . . .

(1) First, Eq, E;, and Ej receive the PDUs as
shown in (1) of Figure 5. For example, E;
accepts PDUs a, b, ¢, d, e, f, g, h, ... in
this order which is denoted by the sequence
of the pseudo-PDUs, and a, b, ¢, d, e, f are
already pre-acknowledged in F;. a and d are
forwarded to the application entities in E,
and Es, but not in E; yet. Suppose that the
time out occurs for a in E; and b in E;3. E;
and E3 broadcast Run-Sync PDUs.

(2) Ei1, E;, and E; broadcast Run-Sync-Pack
and Run-Sync-Ack PDUs. - Every entity
agrees that b and PDUs preceding b are
timed out by checking TOSEQ. PDUs pre-
ceding h are pre-acknowledged by checking
PEQ, and all the PDUs preceding e are ac-
knowledged. '

—112—

ARL; PRL;

RL;: <...]
Rl <..apdy] <

RL3: < ... ars) d[q] <

<ap) d e fra) by epp - oy

et2) fia) bpay eqy -

RRL;

—

timed out

Yoy <oy 2oy €foy fior | < 9oy Bjoy -+]

Yoy <oy efo Ffo 9oy | < Pioy -]

eta) fia) by cpay - Yoy 1 <oy efoy figp 9oy) < higy -]

(1) detection of timed-out PDUs

RLy: < -..]
RL2: < ... a5 dig)] <

RL3: < ...ap dy] <

<) dia e fia) b ey - ofy By
e(2) fia) bpay ey -

e(2] fi2) bpa epj -

— .
acknowledged :

—

timed out

oy 4oy i €foy fioy oy 1 < gy -]
by : “or i efo) fro 9oy] < Bjgy -]

b ; oy i oy fioy 9oy] < hfgy -]

(2) agreement of pre-acknowledged and acknowledged PDUs and timed out PDUs

BLy: <...a) digy by] < eqa) fia) e - g €y Sty 9oy 1 < Bjgy -]

RLy: <... afs) dm blll] < epg) f[g] 1] - cl’ol chJ f[:)] ng)]

< hig o]

RL3: <..ap)dy by] < e[a} fla) 1) - c['0] e[‘o] f[‘:,] gl‘ol] < h['°]]

(3) termination of the run synchronization procedure

Figure 5: Example of run synchronization

(3) Then, a, d, and b are forwarded to the ap-
plication entity in E;. e and f are not for-
warded because they are not acknowledged.
cis not forwarded because it is not timed out
although it is acknowledged. Since a and d
are passed already, only b is passed to the ap-
plication entities in E; and Ej. E, E,, and
E3 have the same priority-equivalent runs,
ie. < arg) d[4] bm]]

6 Concluding Remarks

In this paper, we have discussed a broadcast
protocol which provides priority-based receipt or-
dering of PDUs by using the 1C service. Further-
more, the receipt sequence of PDUs is partitioned
into runs. PDUs in each run are ordered accord-
ing to the priority of the PDUs. If there exist
some PDUs which are acknowledged already but
are left waiting in the receipt log for a long time,
they are forced to be forwarded to the application
entities. Here, a run which includes the PDUs is

created. By this scheme, every entity receives the
same sequence of the same runs while a starva-
tion problem is resolved. By the protocol, appli-
cations where various kinds of data are broadcast
in a group of entities can be easily realized. It is
implemented already in Sun workstations inter-
connected by the Ethernet which is used as the
1C service. :

References

(1] Birman, K., Schiper, A., and Stephen-
son, P., “Lightweight Causal and Atomic
Group Multicast,” ACM Trans. Computer
Systems, Vol.9, No.3, 1991, pp.272-314.

[2] Chang, J. M. and Maxemchuk, N. F., “Re-
liable Broadcast Protocols,” ACM Trans.
Computer Systems, Vol.2, No.3, 1984,
pp.251-273.

(3] Chanson, S., Neufeld, G., and Liang, L., “A
Bibliography on Multicast and Group Com-

—113—

4

—

[6

—

(7]

(8

=

(9]

(10]

(11]

(12]

(13]

[14

I

(15]

munications,” ACM SIGOPS OS Review,
Vol.23, No.4, Oct. 1989.

Defense Communications Agency, “DDN
Protocol Handbook,” Vol.1-3, NIC 50004-
50005, 1985.

Ellis, C. A., Gibbs, S. J., and Rein, G. L.,
“Groupware,” Comm. ACM, Vol.34, No.1,
1991, pp.38-58.

Garcia-Molina, H. and Kogan, B., “An Im-
plementation of Reliable Broadcast Using
an Unreliable Multicast Facility,” Proc. of
the 7th IEEE Symp. on Reliable Distributed
Systems, 1988, pp.428-437.

Garcia-Molina, H. and Spauster, A., “Mes-
sage Ordering in a Multicast Environment,”
Proc. of the 9th IEEE ICDCS, 1989,
pp.354-361.

IEEE “IEEE Project 802 Local Network:

Standards-Draft,” 1982.

International Standards Organization, “OSI
— Connection Oriented Transport Protocol
Specification,” ISO 8073, 1986.

Kaashoek, M. F., Tanenbaum, A. S., Hum-
mel, S. F., and Bal, H. E., “An Efficient Re-
liable Broadcast Protocol,” ACM SIGOPS
OS Review, Vol.23, No.4, 1989, pp.5-19.

Kaashoek, M. F. and Tanenbaum, A. S,,
“Group Communication in the Amoeba Dis-
tributed Operating System,” Proc. of the
11th IEEE ICDCS, 1991, pp.222-230.

Kurose, J. S., Schwartz, M., and Yem-
ini, Y., “Multiple-Access Protocols and
Time-Constrained Communication,” ACM
Computing Surveys, Vol.16, No.l, 1984,
pp.43-70.

Lamport, R., “Time, Clocks, and the Or-
dering of Events in Distributed Systems,”
Comm. ACM, Vol.21, No.7, 1978, pp.558-
565. T

Liu, M. and Papantoni-Kazakos, P., “A Ran-
dom Access Algorithm for Data Networks
Carrying High Priority Traffic,” Proc. of the
9th IEEE INFOCOM, 1990, pp.1087-1094.
Luan, S. W. and "Gligor, V. D, “A
Fault-Tolerant Protocol for Atomic' Broad-
cast,” IEEE Trans. Parallel and Distributed

_ Systems, Vol.1, No.3, 1990, pp.271-285.

(16]

(17]

(18]

(19]

20]

(21]

[22

-

23]

[24]

(25]

[26]

(27]

—114—

Melliar-Smith, P. M., Moser, L. E., and
Agrawala, V., “Broadcast Protocols for Dis-
tributed Systems,” IEEE Trans. Parallel
and Distributed Systems, Vol.1, No.1, 1990,
pp.17-25.

Metcalfe, R. M., “Ethernet: Distributed
Packet Switching for Local Computer Net-
works,” Comm. ACM, Vol.19, No.7, 1976,
pp-395-404.

Nakamura, A. and Takizawa, M., “Reliable
Broadcast Protocol for Selectively Ordering
PDUs,” Proc. of the 11th IEEE ICDCS
1991, pp.239-246.

Nakamura, A. and Takizawa, M., “Design of
Reliable Broadcast Communication Proto-
col for Selectively Partially Ordered PDUs,”
Proc. of the IEEE COMPSAC’91, 1991,
pp.673-679.

Nakamura, A. and Takizawa, M., “Priority-
Based Total - and Semi-Total Ordering
Broadcast Protocols,” Proc. of the 12th
IEEE ICDCS, 1992, pp.178-185.

Schneider, F. B., Gries, D., and Schlichting,
R. D., “Fault-Tolerant Broadcasts,” Science
of Computer Programming, Vol.4, No.l,
pp.1-15, 1984.

Sharrock, S. M. and Du, D. H. C., “Efficient
CSMA/CD-Based Protocols for Multiple
Priority Classes,” IEEE Trans. Computers,
Vol.38, No.7, 1989, pp.943-954.

Takizawa, M., “Cluster Control Protocol for
Highly Reliable Broadcast Communication,”
Proc. of the IFIP Conf. on Distributed
Processing, 1987, pp.431-445.

Takizawa, M., “Design of Highly Reliable
Broadcast Communication Protocol,” Prec.
of IEEE COMPSAC’87, 1987, pp.731-740.

Takizawa, M. and Nakamura, A., “Partially
Ordering Broadcast (PO) Protocol,” Proc.
of the 9th IEEE INFOCOM, 1990, pp.357-
364. o T

Takizawa, M. and N‘ak_amuvr'a, A., “Reliable
Broadcast Communication,” Proc. of IPSJ
InfoJapan, 1980, pp.325-332.

Tanenbaum, A. S., “Computer Networks
(2nd ed.),” Prentice-Hall,;1989. -

