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LOTOS Enhancement for Specifying Time Constraints
Among Non-adjacent Actions and Verification of Equivalence

Akio Nakata Teruo Higashino Kenichi Taniguchi

Dept. of Information and Computer Science, Osaka University
Machikaneyama-cho 1-1,Toyonaka-shi, Osaka, 560 Japan

In this paper, we propose a language LOTOS/T, which is an enhancement of Basic LOTOS. LOTOS/T
enables us to describe time constraints in formulas of 1st-order predicate logic. In LOTOS/T, the user only
describes the logical relation of time at which each action must be executed. Time constraints among non-
adjacent actions can be described. Use of equality (=) and inequality (<) as the time constraints enables
us to describe intervals, timeout and delay easily. We define the syntax and semantics of LOTOS/T
formally. The semantics of LOTOS/T is defined using the Labelled Transition System (LTS). We give the
inference rules for constructing the LTS’s from given LOTOS/T expressions. We show that the LTS’s can
be constructed mechanically. Then we define both timed and untimed bisimulation equivalences. If the

corresponding LTS’s are finite, we can verify their equivalences mechanichally. A practical example is also
given.
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1 Introduction

Formal languages based on Process Algebra, such as CCS[10],
CSP[6], ACP[2], LOTOSI[8] and so on, have been proposed
to specify communication protocols and distributed systems.
Although these languages can express temporal ordering of
the actions, they cannot express explicit time constraints
among the actions. It is necessary for the real-time systems
and communication protocols to specify discrete quantitative
time, because time constraints of such systems are frequently
altered depending on implementations. In such cases, we
must guarantee that the system’s essential behaviour would
not be changed.

In this paper, we propose a language ‘LOTOS/T’, which
is a timed enhancement of Basic LOTOS. LOTOS/T allows
us to describe time constraints by the 1lst-order predicate
logic formulas. We believe that the logic-based approach is
very flexible and powerful, e.g. interval or primitive con-
struct. The Ist-order predicate logic is well-studied, fits to
automatic verification and is easy to describe complicated
constraints in ‘as is’ way. Moreover, it will be easy to inte-
grate logical time constraints into guard expressions of (Full-
JLOTOS. Time is considered discrete. Each process has its
own time-table(clock), which is started when it is invoked.
Time is expressed as a non-negative integer. The semantics
of LOTOS/T is definied using the Labelled Transition System
(LTS) used in LOTOS. Unit time progress is expressed by the
action tic. We give the inference rules for constructing the
LTS’s from given LOTOS/T expressions. Time constraints
are described by the predicates of integers, which must con-
tain a special free variable ¢t (denotes the current time) and
may contain other free variables, associated to each action.
Use of equality(=) and inequality (<) in the predicate will
enable us to describe intervals, timeout or delay. easily and
naturally. Moreover, time at which an action occurred can
be assigned to a variable. So it is possible to describe time
constraints against actions not directly followed by. For up-
ward compatibility, if no predicate is associated to the action,
the predicate ‘true’ is assumed for its time constraint. In this
case, the action is considered executable at any moment (not
urgent). The LTS’s can be constructed from given LOTOS/T
expressions mechanically using the inference rules.

Four equivalences are introduced, the first two are timed
strong/weak bisimulation equivalence and the last two are
untimed ones. Timed bisimulation equivalence is used. for
checking if two systems are eqmvalent and have the same
time constraints. Untimed bisimulation eqmvalence is used
for checkmg if two systems are equivalent in spite of the dif-
ferent time constraints. If the corresponding LTS’s are finite,
we can easily check the four bisimulation equivalences by the
algorithms in [9, 14].

This paper is organized as follows. In Section 2, the syntax

and semantics of LOTOS/T are defined formally. In Sec-

tion 3, the definition of equivalences related to timed seman-
tics is given. In Section 4, a simple but practical example is
provided. Section 5 concludes this paper and further prob-
lems are shown.

2 Definitions

2.1 Syntax

The syntax of new features we proposed to specify time con-
straints is defined as follows.

B :
t+1/0B&
[t +2/4B L5

tic
tic
tic

tic %
-

Figure 1: The semantics of B

Definition 1 Behaviour expressions of LOTOS/T are de-
fined as follows (the priority of operators are analogous to

LOTOS): -

= stop _(non-temporal deadlock)
| emit (successful termination)
|- o E (untimed action prefiz)
| a[P(t,2); E (timed action prefiz)

| EF (choice)

| Bl|E (interleaving)

| E|E (synchronization)

| E|[AlE (parallel composition)

| E[>F (disabling)

| E>>F (enabling)

| hideAinE (hiding)

| Plgs,. .- 9] (E) (process invocation)

where a € ActU {i} ( Act denotes a finite set-of all ob-
servable actions, i denotes an internal action) , A C Act,
k € N, and P(t,%) stands for a predicate which has a free
variable t, denoting the current time, and other variables & (
Z denotes a vector of the variables). & denotes a vector of the
value-expressions.

Predicates are well-formed formulas of 1st-order theory of
integers containing =, < as atomic predicates, +, — as func-
tions. Var denotes a set of all variables of the Ist-order the-
ory. Note that this 1st-order theory is decidable because it is,
essentially, a subset of Presburger Arithmetics(7]. (]

First, we will give an informal explanation of LOTOS/T.

Example 1

3}; stop

B denotes a process which ezecutes a between time 2 and
3 and executes b after 3 unit of time elapsed.

B=a[2 <t <3 Az =t];bt = o+

The predicate zo =t denotes that the executmg time of a is
assigned to the variable zo. The semantic model of LOTOS/T
is the LTS. We intend that the LTS in Fig. 1 denotes the
operational semantics of B.

This LTS is obtained as follows. In Fig. 1, the root node
corresponds to B. First, only the unit time progress action

tic is executable for B. Therefore, the edge LRI appended
to the root node. If the tic is executed, then one unit time
elapsed. Since the current time is incrementéd, [t + 1/t]B
is obtained as the new behaviour expression. Here, [e¢/z]B
denotes a behaviour expression B whose every occurrence of
the variable z is replaced with the expression e.
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At the state [t + 1/¢]B, only tic is executable. Then [t +
1/t}B tig [t+2/t]B is appended. At the state [t+2/t]B, the
tic and action a are executable. If the tic is executed, then
[t + 3/t]B, that is, a[t < 0 A zq = t];b[t + 3 = =g + 3};stop
is obtained. If the tic was executed for [t + 3/t]B, then the
action a could not be executed. In this case, we say that the
action a is urgent, and we assume that the action a must be
executed immediately (before the tic is executed). Then only
a is executable. If a is executed, then “0” is assigned to the
variable t, representing the current time. Since zo = t+3, the
value of the variable z, is fixed to 3, and b[t+ 3 = 3+ 3]; stop
is obtained as the new state (behaviour expression). So b is
executed after 3 unit of time are elapsed.

Next, we will give a formal definition of LOTOS/T. First,

we will introduce the notion of the predicate contexts and
defined /undefined variables.

Definition 2 Predicate contexts are syntactically defined by
the following BNF. Here, E is the syntactical component rep-
resenting a behaviour expression which is used in Definition 1.
C = a[s};E|a[P(t,T)];C
| CIE | E[C | CI[AllE | E|[AlC
| ClIIE | Bll|IC | CIIE | BlIC
|C>E|E>C|C>>FE|E>>C.0O

For example, let us consider the behaviour expression B in
Example 1. For this behaviour expression B, the following
two predicate contexts are possible:

C = afe];bft = o + 3]s stop
C' =af2 <t <3 Azo =t];b[e];stop

Here, “¢” denotes a time constraint of the current action.
In the context C, the variable “z,” is undefined because the
value of the variable “z,” is not fixed when a is executed.
However, in the context C’, the variable z, is defined because
the value of zo has been fixed when b is executed.

Formally, the defined/undefined variable are decided as fol-
lows. Here, DVar(C) and UVar(C) denote the sets of de-
fined/undefined variables for a predicate context C, respec-
tively.

Definition 3 For any predicate context C, DVar(C) C Var
is defined recursively as follows. :

DVar(afe}; E) & 0
. daes  {yly is an element of }
DVar(a[P(t,2);C) = U DVar(C)
DVar(CAE) ¥ DVar(C)
DVar(EAC) ¥ DVar(C)
(& e{l,1{4]l,[>,>>})
And UVar(C) ¥ Var - DVar(C). 0

Hereafter, we define the set of predicates P(t, %) which can
be used in the predicate context C. In the following defini-
tion, FVar(P) denotes a set of all free variables occurred in
a predicate P.

Definition 4 A sét of predicates allowed to use in the predi-
cate context C, denoted as Pres(C), is defined as a minimum
set which satisfies the following conditions:

o “o<t< e <t and 4 < e,” are in Pres(C).
Here, e; and e, denote drbitrary terms consisting of only
integers, the variables in DVar(C), and operators + and
—. If e and e, are the same, then “e; <t < e,” is
abbreviated to ‘¢ =e,”.

e if P € Pres(C) and ¢ ¢ FVar(P)U DVar(C), then
“PA(x =1t)” is in Pres(C).

e if P, P, € Pres(C) and FVar(P,)NFVar(P)NUVar(C) =

0, then both “P,V P,” and “Py A P;” are in Pres(C).

e if P € Pres(C) and FVar(P) N UVar(C) = 0, then
“~P” is in Pres(C).

Note that the predicate P(¢, ) may be described as P(t,Z4, Zu)

if necessary, where the 2nd parameter Z, denotes a vector of
the defined variables in # and the 3rd parameter Z, denotes
a vector of the undefined variables in Z under C.

Definition 5 A predicate P(t,Z) is valid under a contezt C
if P(t,%) satisfies the following conditions. :

1. (decidability) For any n € N and 9, satisfiabilities of the
two formulas P(n,¥,%,) and (FP)(n, ) &f 3’3z, [t >
n A P(t,9,%,)] are decidable. Note that F denotes a
mapping on formulas defined above.

2. (uniqueness of substitution) For any n € N and o, there
ezist unique values € such that P(n,¥,c) holds if the for-
mula 3%, P(n,,E,) is satisfiadle. Also such values € are
computable fromn and T i.e. there exists a partial recur-
sive function ¢p(n,¥) such that 3%,P(n,?,&,) implies
P(n,5,¢p(n,0)).

Remark: Conditions 1 and 2 are used to make sure the se-
mantical model of the ezpression is constructive. m}

We say a behaviour expression B is valid iff all predicates
appeared in B are valid under its contexts, i.e. for any C' and
P such that B = C(P), P is valid under C.

For the elements of Pres(C), the following property holds.

Proposition 1 For any context C, all the predicates Pres(C)
are valid.

Proof. Since each predicate P in Pres(C) is described as
a logical combination of some integer linear inequalities,

P and FP in Definition 5 are expressions in Presburger
Arithmetics [7]. Since it is known that satisfiability of
Presburger Arithmetics is decidable [7], satisfiabilities of

P and FP are also decidable. Therefore, Condition 1

in Definition 5 holds. Condition.2 also holds. For the

- details, see [13]. 0

Pres(C) is useful for describing valid predicates. If other
class of 1st-order theory is considered, the conditions in Def-
inition 5 does not always hold.

Example 2 Under the predicate contest “aft = z; b[e]; stop
7 4 = g2 4224+ 1Ay = 2t” satisfies the conditions 1 and
2 of Definition 5. However, 4 = 22 +2z+ 1Ay > t” vio-
lates the condition 2, and ‘¢ = y® +9y%2® + 2*” (Diophantine
polynomial) violates both .

Example 3 Other ezamples are given below. The first one
contains untimed action sandwiched between time-constrained
actions, and infinite interval for the time constraint. The
second one describes an infinite behaviour. '
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alt = zfibcft> z +2; stop\‘
bclt > 2],stop

biclt+1 > 2]; stog
bclt + 2 > 2);stop

stop

c[t > 2);stop

c[t + 12 2J;stop
c[t +2 > 2|;stop

a[t = 4; stop[Jb[t = 0]; P
a[t = 3);stop
aft = 2];stop
aft = 1];stop
alt = 0]; stop

Figure 2: The semantics of E and P

1. E = alz = t];b;cft > z + 2); stop
2. P =alt = 5); stop[Jb[t = 1}; P
The corresponding LTS’s are shown in Fig. 2.

In LOTOS/T, untimed or infinite behaviours may be de-
scribed (for example, the processes E and P in Example 3).

2.2 Operational Semantics

In this section, we will give the formal! semantics of LO-
TOS/T. The operational semantics of LOTOS/T is an ex-
tension of LOTOS. The difference is the treatment of transi-
tions of the extra action tic. Here we define the operational
semantics of LOT'OS/T by giving an inference system of the
transition relation (see Table 1).

2.2.1 Inaction

The behaviour expression stop is extended to express non-
temporally deadlocked process, which cannot do any other
computations except the infinite sequence of tic. The be-
haviour expression exit is extended to execute tic actions
any times before executing § action.

2.2.2 Action Prefix

The behaviour expression a[P(t, Z)]; B means that the action
@ can occur at time n if P(n, €) holds for some Z. Because the
predicate P is assumed to be valid, satisfiability of P(n, #) is
decidable (from condition 1 of Definition 5), and the value &
which satisfies P(n, ) is uniquely computable (from condition
2).

In order to express urgency, we define that the action tic
cannot occur if the action cannot happen in the future, i.e.
when FP(1) = 3t'3z[t' > 1 A P(t',%)] does not hold. Satisfi-
ability of FP(1) is also decidable (from condition 1).

The semantics of the untimed action prefix, a; B, is the
same as that of aftrue]; B.

2.2.3 Internal Action

For the behaviour expression i; B, the internal action is con-
sidered always urgent, so its execution is prior to tic action.
The rest is similar to action prefix.

2.2.4 Choice

We define the choice operator be weak-choice[11]. For ex-
ample, “aft = 1];stop” and “bft = 2];stop” are equiva-
lent to “tic;a;stop” and “tic;tic;b;stop”, respectively.
However, “eft = 1];stop[Jbt = 2];stop” is not equivalent
to “tic;a;stop[]tic;tic;b;stop” because the choice is oc-
curred at time 0. It must be equivalent to “ tic; (a;stop []
tic;b;stop) ”. The inference rules in Table 1 are introduced
to construct the latter semantic model.

2.2.5 Parallel

Parallel operators (|||, |, |[[4]]) always synchronize tic ac-
tions in LOTOS/T. Consequently, the time constraint of in-
teraction is the logical product of the time constraints of the
actions in both processes.

ex.) In a;b[2 < ¢ < 4];stop][b]lc; b[3 < t < 5];stop, the
time constraint of the interaction bis 3 < ¢ < 4.

2.2.6 Disable

The definition is similar to LOTOS except the tic action.

2.2.7 Enable

Similar to LOTOS, except tic synchronizes unconditionally
and enabling is prior to the tic action. The value passing
form B; >> accept Z in B, is also possible, although we
omitted this for the simplicity. The definition of this form is
analogous to Full-LOTOS.

2.2.8 Hide

Similar to LOTOS, except tic occurs only if B cannot ex-
ecute the hidden action m order to express urgency of the
hidden action.

2.2.9 Process Invocation

To preserve modular property of processes under global time,
a process invocation acts exactly the same behaviour as the
behaviour at time 0, no matter when it is invoked.

2.2.10 Example

By applying the inference rules shown in this section, we can
construct the corresponding LTS as follows. Let us consider
the process E in Fig. 2.
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Table 1: The inference rule of transition

Inaction
stop tie stop (1) exit - stop (2)
. tic .
exit == exit (3)
Action Prefix
P(0,8) FP(1)
a[P(t,2)}; B - [¢/z]B (4) olP(t,2); B BS a[P(t+ 1, 8)} [t +1/0B  (5)
B B (6) ;B S o[t +1/4B (7)
Internal Action
P(0,2) ~P(0,z) FP(1)
ilP(t,2)}; B - [¢/2]B ® i, 2); B ESi[P(t+1,2)i[t+ /0B (9)
4B - B (10)
Choice
B, -2 B B, -2 B!
—————iff f e ActU {51} ————t— iff € ActU {63}
Bif|B, — Bj (11) By[|B; — Bj (12)
B, 8S B B, S B
B.[}B; %5 B[ B (13)
B, ¥ B B, BS B, BS By, B, ¥S
By[|B, 5 B (14) BB, 25 B} (15)
Parallel
B B tic tic
B, 2 B B,-2 B By — B B, — B;
B - 2 2 iff g e AU{S} L ’m’ B
Bi|[A]|B; —— Bj|[A]|B; (16) By|[A]|B; = Bj|[A]|B; (17)
g Il __ﬂ__’ Il :
B‘—:B‘ ifag AVa=i B - B2 ifagAva=i
B,|[A]|Ba — Bi|[4]|Ba (18) Bi|[A]lB; — Bi|[A]|B; (19)
Bi|[0]|B; > B’ Bi|[Act)|B, = B' ’
_AMZG— iff @ € ActU {8, tic,i} -—luzzu—— iff @ € ActU {6,%ic,¢}
B|||B: = B' (20) By||B: = B' (21)
Disable
B, =% B! B, - B
— — 272 B e Actu{bi)
Bi[> B, — Bi[> B; (22) Bi[> B, -2 By (23)
B -5 By B ESE BHSp
By[> B, % B (24) Bi[> B, 225 Bi[> B} (25)
Enable
By -% B} B, -4 B!
By >> B; -2 B, >> B (26) B, >>B, - B, (27)
BIEEBi thi?B; Bl?é"
By >> B 25 B >> B, (28)
Hide
B Y
B—B iff B € (Act— A)U{5,i}
hide A in B -2 hide A in B’ (29)
B B aea BYS B BA forallaca
hide 4 in B — hide A in B’ (30) hide 4 in B 25 hide 4 in B’ (31)
Process Invocation -
&/z)B{g\/q1,--. 9\ =B
[e/21B{91/91 gk/'?} iff @ € ActU {tic,8,i} A Plgi,...,gx](Z) := B is a definition
Plg,... ,gil(8) = B’ 32)
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o E = alt = z};b;cft > = + 2];stop - b;¢ft > 2];stop
(by rule (4)),

o b;cft > 2];stop tic b;clt +1 > 2];stop (by rule (5)),

and so on.
For the process P in Fig. 2, the following actions are pos-
sible:

o p Ui alt = 4];stop(Jb[t = 0}; P (by rules (32), (13),

),

e aft = 4];stop{lét = 0;
(14) and (5)),

tic

P == gt = 3];stop (by rules

and so on. : -

Note that we regard two states as the same if satisfiability
of the correspondi'xig predicates for each £ on 0 < ¢ < oo are
equivalent. For instance, w.r.t. E in Fig 2, aft = z]; b;ct >
z + 2]; stop tig aft+1=ga);b;clt+1 > z +2];stop holds by
the inference rules. Here, satisfiabilities of two predicates of
the action a, t = z and ¢t + 1 = z, are equivalent, i.e.

VH0 <t = Faft =] = 't + 1 =2 (33)

holds (Note that = in “¢ = 2” and z in “¢ + 1 = z” have no
longer the same value. So we describe the latter formula as
w4+ 1= z™).

Furthermore, for any value assignment of = and z’, sat-
isfying (33), into two predicate two predicates of the action
<

Vio<t'=[t'>z+2=['+1>2"+2] (34)

holds.

To formalize the idea above, we can verify if E and [t +
1/t]E are representing the same state by checking satisfiabil-
ity of the following predicate:

VIVE[0 StAO St =
Ieft=2zAt' 2z+2]=
et +1=2"At'+12>2" +2]] (35)

So we can now state aft = z}; b; c[t > = +2];stop ~= tig aft =

z};b;c[t > z + 2);stop (i.e. this node has a self loop of tic).
Aging (replacing ¢ with t+1 ) does not have effect on Pro-
cess Invocation, because Process Invocation does not have the

variable ¢ literally until the process is invoked. For example,

w.ar.t. Pin Fig 2, P tig alt = 4];stop{Jb[t = O, P - P

holds by the inference rules. So the corresponding LTS has a
cycle, as shown in Fig 2.

3 Equivalence

3.1 Timed Bisimulation Equivalence

Definition 6 A relation R s timed strong bisimulation &f
the following condition holds.

if ByRB, , then for any a € ActU {§,tic}, the
following two conditions hold:
1. if B; =% B, then 3AB4[B, - B} and B{RBj]
2. if B, == B}, then 3B{[B; — B} and ByRB;| O

Definition 7 The behaviour expressions B and B' are timed
strong bisimulation equivalent, denoted by B ~; B, iff there
ezists a timed strong bisimulation R such that BRB'. (]

The equational theory of timed strong bisimulation equiv-
alence including expansion theorem is given in [13]..

Timed weak bisimulation equivalence (=), where the in-
ternal action 7 is considered unobservable, can also be defined
similarly.

Example 4 The following two behaviour expressions are timed
strong bisimulation equivalent:

B=a2<t<3Az =1t);blt =25+ 3; B
C = aft = 2); bt = 5]; C[la[t = 3]; bt = 6];C

3.2 Untimed Bisimulation Equivalence

Here we introduce an untimed bisimulation equivalence where
tic is considered unobservable. Using this equivalence, we
can prove whether two timed expressions execute the same
observable event sequences. Like timed bisimulation equiva-
lence, untimed bisimulation equivalence has two definitions,
one is untimed strong bisimulation equivalence, where only
tic is considered unobservable,.and the other is untimed weak
bisimulation equivalence, where both tic and i are considered
unobservable. :

Definition 8 For each action a € (ActU {6} — {tic}) U
{€}, the relation =% over behaviour ea:presswns is defined as
follows:
B(2%) = (2B,

ifa € ActU {6} — {tic}
BES)'B ifa=eO

B=%p'¥

Definition 9 A relation R is untimed strong bisimulation if
the following condition holds:

if ByRB, , then for any a € (ActU{8}—{tic})U{e},
the following conditions hold:
1. if By == B, then 3B}[B, == B) and B!RB}]
2. if B, ==> B}, then3B:{B, == B! and BiRB} O
Definition 10 The behaviour ezpressions B and B' are un-

timed strong bisimulation equivalent, denoted by B ~, B’,
iff there exists a weak bisimulation R such that BRB'. [

“Untimed weak bisimulation equivalence, denoted by =,,
can be defined similarly. .

Proposition 2 The behaviour expressions which are timed
strongfweak] bisimulation equivalent are untimed strong[weak]
bisimulation equivalent, respectively, i.e.:

B~ B = B~,B
B~,B' = Bw~,B 0

Proposition 3 ~, is not a congruence, i.e.:
3By, B:[(By ~. B;) A (B[] B: # B[|B,)]

Proof. Choose B, = a[t = 0}; stop, B, = aft = 2); stop and
B = b[t = 1]; stop. O
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Note that from Proposition 3, untimed bisimulation equiva-
lence is hardly suitable for axiomatic proof system.

Example 5 Let B and D denote the following expressions,
respectively:

B =a[2 <t <3Azo=1t];b[t = zo + 3]; stop -
D = aft = 2); stopl}|b[3 < t < 5); stop

Then, B and D are untimed strong bisimulation equivalent
because

R={({t+k/4B, [t +1/D)0 <k <3A0 <1< 2}
U {(b[t + k = m + 3}; stop, b[3 < t + | < 5}; stop)|
2<m<3AE<M+3A3ILILS}
U {(stop, stop)} ‘

is an untimed strong bisimulation which satisfies BRD. O

In the following Proposition, we mention the decidability
of these equivalences.

Proposition 4 If the corresponding LTS’s of both By and B
are finite, then four equivalences defined above are decidable.

Proof. Analogous to [9, 14].

Note that the corresponding LTS of a behaviour expression
is not always finite, but if the LTS is finite, then equivalences
are decidable from Proposition 4.

4 Example

Here we introduce a more practical example. The example
shown in Fig. 3 models a remote controller or something that
has only one press button for input and executes 4 output
actions according to the timing patterns of pressing button.
The timing patterns are:

e long click once,

e short click once,

e double short click and

e short click followed by long click.

The second one is used for quitting, while others are continued
to be accepted infinitely. Pressing button is modeled by the
sequence of the actions p (short for ‘press’) and r (short for
‘release’). The corresponding output actions are lc (short
for ‘long click’), sc (short for ‘short click’) and dc (short for
‘double click’) and slc ( short for ‘short and long click’).

If d2+d3>d4, it may cause violation of time constraint (tem-
poral deadlock). And if d1>=d2, it may cause second click be
lost. So the sound implementation must satisfy d1<d2 and
d2+d3<=d4.

This will be checked by constructing the LTS for some val-
ues to d1,d2,d3 and d4 satisfying above. In the LTS, the
temporally deadlocked state has no outgoing arc including
tic. Whether or not the behaviour has been modified be-
cause of the time constraint is checked by verifying untimed
bisimulation equivalence with the untimed specification like
Fig. 4.

5 Conclusion

We have proposed a language LOTOS/T, a timed enhance-
ment of Basic LOTOS. LOTOS/T enables us to describe time
constraints among actions in a flexible way using formulas of
1st-order theory. )

In order to construct the LTS from a given LOTOS/T
expression mechanically, we need a decision procedure for
Presburger Arithmetics. We have developed the decision
procedure[5] on a Sun SparcStation ELC. For the predicates
given in this paper as examples, satisfiabilities of the predi-
cates can be decided within one second. Even for more com-
plex predicates such as the logical combinations of ten integer
linear inequalities, their satisfiabilities can be decided within
a few seconds in most cases. Therefore, LOTOS/T is enough
powerful for practical purposes and suitable for mechanical
proof method. We have developed LOTOS interpreter[15]
and a test system for LOTOS with data parameters(4]. Us-
ing these systems, we can construct the LTS from a given
LOTOS expression mechanically. Now we have a plan to de-
velop the decision procedure for proving the timed/untimed
bisimulation equivalences described in Section 3 by using the
above tools.

In spite of its capability of higher level description, the se-
mantic model of LOTOS/T is the same as LOTOS, because
we consider discrete time. So many verification methods de-
veloped for LOTOS are still available for LOTOS/T.

We did not introduce timing-interaction operator defined
in [3]. The strength of this is that locality of specification is
preserved, as mentioned in [3] (but differs from Timed-Action
LOTOS(3] because urgency is still supported in ours ). Ur-
gency of interaction can still be expressed in LOTOS/T by
hiding the interaction from outside, but urgency of observ-
able interaction cannot be expressed. So expressive power of
LOTOS/T is weaker than Timed-Interaction LOTOS[3] and
Timed Petri Nets. But LOTOS/T is sufficient to use for for-
mal description of specification and timed implementation to
verify whether or not implementation satisfies untimed spec-
ification by checking untimed bisimulation equivalence.

Untimed bisimulation equivalence is introduced in order to
consider the two processes, which behave the same but in
different time constraints {e.g. in different speed), be equiva-
lent. Similar but more advanced investigations are made for
CCSin 12, 1].

Future works are:

1. to provide timing of interactions (like timer operator of
Timed-Interaction LOTOS ) and non-deterministic ex-
ecution delay (like Timed Petri-Net) to LOTOS/T for
more practical timed description and performance eval-
uation, and

2. further exploration of untimed bisimulation equivalence.
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