< VF AT TREESHRAE . 66—10
(1994. 7. 7)

PLaRA FPRIRREREM E TV IZBIT 5
BE7O baVOT A NRYIOBEAEKD—FIE

FHE, WEET, WOB%E, HIHR, 40—
B S A T AR TR

HoEL AETIE, HFERESMOHETICMZ CAHELFEET DD LIV AT LD
PERA R BT 7 v (LITFERSM/ink .8) % %2, T EFVTHE,NIEE 70 b
DFEFALRED HE-UIORF & [T 2 WA ERBRO /2O OUIORN % BEIER T 570 DF L\ F
BERRETL. COEFVTHIEI ARHF - RV R FEEERICHBELTYS, LY
A IATMEE REET L7200 HIHNE., £BBOEREMF T, ANELZRTERELLIRS
EEFRTER, BREOMRE, KALBROAPLEABRETERETL. CDLI) 27T ALK
LT, BELEERTTNTONRLIEKER LoD, BEATIREEOFEL T, EUIO
R s rE)hreHEL, 95, ARIOREEMEL D, EUIORN L AEKT 5.

Automatic Test Case Generation for
Communication Protocols in an EFSM Model

Xiangdong Li, Shinji Fukuda, Masahiro Higuchi, Teruo Higashino and Kenichi Taniguchi
Department of Information and Computer Sciences, Osaka University
Machikaneyama 1-3, Toyonaka, Osaka 560, Japan

Abstract - In this paper, we propose an automatic test case derivation method for an
extended finite state machine model called EFSM/in. In the EFSM/in model, each EFSM
has a finite control and a finite number of registers. The data types of I/O data and registers’
values are restricted to the integer type. The registers are used only for keeping input values.
The transition conditions on input variables and register variables are written using addition,
subtraction, comparison and some Boolean operators. For such a restricted class, we give
an algorithm for deriving UIO sequences automatically where the derived UIO sequences
contain not only I/O events but also their concrete data values, if the UIO sequences exist.
The algorithm is carried out using a procedure for solving integer linear programming
problems.

1. Introduction

Precise specifications are essential for the design
and implementation of distributed systems and
communication networks. The use of formal
description techniques(FDT's) allows the
automation of conformance testing [BoUy 91]. In
the protocol conformance testing, there are two
aspects. One is control flow. The other is data flow.
The control flow is usually described as a simple
specification model of finite state machines
(FSM's). While the test cases can be generated for
the FSM models automatically, they become
usually infeasible for more complex models, such
as extended FSM's because of the data parameters.

The selection of appropriate test cases including
data parameters is an important issue for
conformance testing of communication protocols.
Certain authors have considered extended finite
state machine (EFSM) specifications which
include data parameters and additional state
variables. Usually, the data flow relations between
input/output parameters and state variables are
considered in the test selection process [Sari 87],
however, it is generally assumed thatthe transitions
do not contain enabling conditions depending on
the additional state variables, or such dependencies
are treated in an informal manner. The approach of
[ChZh 94] generates the values of the data
parameters using a heuristic constraints solver
automatically. In the approach of [UrYa 91], first, a
flow graph is constructed. Then, the relations
between input and output data are observed and
the test cases are derived based on the observa-
tions. The approach of [Wali 92] proposes an
axiomatic approach to generate test cases where,
by traversing a given path in the EFSM carefully,
the extended path is generated.

In this paper, first, we introduce an extended
finite state machine model called EFSM/in. In the
EFSM/in model, each EFSM has a finite control
and a finite number of registers. We only consider
the data parameters belonging to the integer type.
The registers are used only for keeping input datal.
The operations used for representing transition
conditions are restricted to addition, subtraction,
comparison and some Boolean operators. For
such a class, we give an algorithm for deriving
UIO sequences automatically where the derived
_ UIO sequences contain not only 1/0O events but
also their concrete data values. It is known that the
theory of integers with addition is decidable [HoUl
79]. This is the reason why we can generate the
UIO sequences with data values automatically, as
further discussed in this paper. The derivation
algorithm is carried out using a decision procedure
for solving integer linear programming problems.

The paper is structured as follows. The definition
of our EFSM/in model is given in Section 2. The
general methods for generating UIO sequences for

1 Our EFSM/in model means an EESM, model for keeping input values.

FSM models cannot apply for EFSM models. In
Section 3, the reason is explained. In Section 4, we
provide an idea to solve this problem.

2. Our EFSM Model

In this paper, we use an EFSM model called
EFSM/in. First, we introduce some notations.
[Definition 2.1]

A term which consists of integers, variables of
integer type, and operators "+" and "-" is called a
P-term. A P-sentence is defined inductively as
follows.

(A) If t1 and t2 are P-terms, then "t1=t2", "t1<t2",
"t1<12", "t1>t2" and "t1>t2" are P-sentences.

(B) If & and P are P-sentences, then "(cr) and (B)",
"(a) or (B)", "not ()", "(a) D (B)" are P-
sentences. 1l

For example, "x","3" and "x+y-3" are P-terms.
The expressions "x=y+1" and "(x2y-z) or (z=w)"
are P-sentences. However, "x242x-3=0" is not a
P-sentence because multiplication is used.

Using these notations, we define the EFSM/in
model formally. In our EFSM/in model, an
EFSM has a finite state control and a finite number
of registers R1,....Rn where "n" denotes the number
of the registers. The specification of an EFSM is
described as a labeled directed graph such as Fig.
1. The types of all registers must be integers. We
assume that the number of I/O gates is finite. Each
node and edge represent a state of the finite control
and a transition, respectively. Each edge has a
label whose form is <C,a?x/b!E,RD>. Here, "a"
and "b" denote gate names. The symbol "a?x"
denotes an input event and the variable "x"
represents an input value given from the gate "a".
More than one input values may be given for an
input event. Such an input event is described like
as "a?y,z". The event "b!E(x,R1,....Rn)" denotes
an output event and the value of the expression
"E(x,R1,....Rn)" is emitted from the gate "b" (more
than one outputs may be emitted). The output
E(x,R1,....Rn) must be a P-term. The pair of one
input event and one output event is executed at
each transition. Such a pair is called an I/O event.
At the initial state sinit , the initial values
R1.init,....Rn.init of the registers are specified. The
first element "C" of the label is called a transition
condition. A transition condition "C" in
<C,a?x/b!E, RD> must be a P-sentence which
may contain the variable "x" and registers
"R1",...,"Rn". The value of the transition condition
"C" is decided by substituting the current input
value and the current values of the registers into
"x" and "R1,...,Rn", respectively. If the value of the
transition condition "C" in <C,a?x/b!E, RD> is
true, then the IO event "a?x/b!E" can be executed.
Otherwise, it is not executable. We assume that
the EFSM is deterministic. That is, if there are state
transitions "s-<C1,a?x/b!E1,RD1>->t1", "s-<C2,

a?x/d!1E2 RD2>->12" , ..., "s-<Ck,a?7x/f!Ek, RDk>-
>tk" from a state "s", for any input value and any
register values, at most one of Ci,...,Ck must be
true. The third element RD in the label
<C,a?x/b!E,RD> is called a register definition
statement. The register definition statement is
described as an n-tuple of substitution statements
[SS1, ... ,SSn] where each SSj must be either
"RjeRj" or "Rje—fj(x)". Here, "fj(x)" must be a
P-term which may contain only the variable "x".
The substitution statement "Rj«R;j" denotes that
the value of the register "Rj" is not changed in this
transition. The substitution statement "Rj«fj(x)"
denotes that the value of the register "Rj" after
executing this transition becomes fj(x), where "fj"
is a function to calculate the next value of the
register "Rj" from the input value. In the labeled
directed graph representing the EFSM, the
substitution statement "Rj«Rj" is omitted.

We assume that there is a reset event for each
state in a given EFSM. That is, we assume that
there is a transition sk-<true, reset/null, {R1«
R1.init, .. .Rné Rn.init}>->sinit for each state sk
where sipit denotes the initial state of the EFSM
and Rj.init denotes the initial value of the resister
Rj. Such reset events are not described explicitly in
the labeled directed graph representing the EFSM.
The I/O event "reset/null” may be abbreviated as
"reset". We also assume that each state is
reachable from the initial state. Hence, for any state
sk, there exists a test case starting from the initial
state sinit and ending to the state sk (here, we treat
a sequence of /O events as a test case). Note that it
is undecidable in general whether, for a given
EFSM M and its state sk, there exists a test case for
leading M to trace a transition sequence from the
initial state to the state sk. However, if it exists, we
can find it using the similar way to our test case
derivation method which we propose in Section
4.1. For example, "a?0/e!0, a?1/e!0" is a test case
starting from the initial state s1 and ending to the
state s3 in Fig. 1. Since we assume the reset events
for all states, this assumption means that the EFSM
is strongly connected.

{R1<0, R2<-0} {

<(R2=0). a?xelR, (Ri<x}> L(ORIST), e2/cR L[}>

<true, e?Z/dIR14R2, { }>

Fig. 1 An Example of Our EFSM/in Model

[Example 2.1]

Fig. 1 is an example of our EFSM/in model.
There are five states and two registers. The state s
is the initial state. The initial values of the registers
R1 and R2 are both 0. Suppose that the current
state is s2 and the current values of the registers R1
and R2 are both 0. Then, since the transition
condition (R2=0) at s2 — s3 is true, the transition
$2 — s3 is executable. If the input event "a?x" is
executed, then the current value "0" of the register
R2 is emitted to the gate "e" and the input value
"x" is substituted to the register R1. [1

3. Application of General UIO Methods for

EFSM's and Their Problems

Some methods have been proposed for
generating UIO sequences for FSM models (for
survey, [BoUy 91]). In general, such methods
cannot apply for EFSM models. In this section,
first, we explain the reason.

Fig. 2 is the FSM which is obtained from the
EFSM in Fig. 1 by ignoring the register values and
I/O data. For the FSM, we can generate a UIO
sequence for identifying each state (see Fig. 2).
Here, such UIO sequences are also treated as the
UIO sequences for our EFSM/in model. For
example, "e/c" is a UIO sequence for identifying
the state s4. The I/O event "e/c" corresponds to the
transition s4 — s5. Let us consider to apply the
UIO sequence for the EFSM in Fig. 1. In Fig. 1, in
order to execute the event "e?x/c!R1", the current
value of the register R1 must satisfy its transition
condition "(0<R1<7)". However, this value is
determined, for example, when the transition s2 —
s3 (<(R2=0), a?x/e!'R2,{R1<x}>) is executed
since the input value "x" is substituted to the
register R1. Therefore, in order to execute the
transition s4 — s5, the value satisfying the
condition "(0<x<7)" must be input when the
transition s2 — s3 (I/O event a?x/e!R2) is
executed. In order to execute the transition s2 —
s3 (I/O event a?x/e!R2), the transition condition
"(R2=0)" must hold. The value of R2 is
determined when the transition s1—s2
(<true,a?yfely,{R2¢y}>) is executed where the
input value "y" is substituted to R2. This input
value "y" must be zero in order to execute the
transition s2 — s3. That is, if we consider data
values, then the event sequence "a?y/ely,
a?x/e!R2, e?z/d!R1+R2, e?z/c!R1" needs to be
executed and the condition "(0£x=R1<7) and
(y=R2=0)" for the input data must hold. The event
sequence corresponds to the transition sequence
"$1 = 52 = s3 = 54 — s5". By substituting "x"
and "y" into "R1" and "R2" of the event sequence
"aly/ely,a?x/e!R2,e?z/d!R1+R2,e?z/c!R1", res-
pectively, the following event sequence is obtained.

alyfely, a?x/ely, e?z/d!x+y, e?z/c!x
Condition : (0<x<7) and (y=0)

For example, since <x,y,z>=<1,0,0> is a solution
satisfying the condition "(0<x<7) and (y=0)", the
event sequence "a?0/e!0, a?l/e!0, e?0/d!1,
€?0/c!1" is a test case with data values to execute
the UIO sequence "e?x/c!R1" (transition s4 — s5)
described above.

S1: afe,cb
S2:¢che/b
S3:e/d
S4:efc
S5: ¢/b,afe

UIO Sequences

Fig. 2 FSM Transformed From EFSM in Fig. 1

In this paper, we call the event sequence
"aly/ely, a?x/ely, e?z/d!x+y, e?z/c!x" an extended
UlO (E-UIO) sequence for identifying the state s4.
The condition "(0<x<7) and (y=0)" is called the
executability condition for the E-UIO sequence.
We also call the event sequence "a?0/e!0, a?1/e!0,
e?0/d!1, e?0/c!1" an extended UIO (E-UIO)
sequence with data values for identifying the state
§4. Hereafter, "e?0/c!1" is called a UIO sequence
with data values. And the event sequence
"a?y/ely,a?x/ely,e?z/d!x+y" ("a?0/e!0, a?1/e!0,
€?0/d!1") is called a preceding UIO sequence for
the UIO sequence "e?z/c!x" ("e?0/c!1"). Each E-
UIO sequence (with data values) consists of a pair
of a preceding UIO sequence (with data values)
and a UIO sequence (with data values). From the
above discussion, we must find not only UIO
sequences with data values but also their preceding
UIO sequences with data values in order to
identify each state in a given EFSM. This is a
difference for test case generations between FSM
models and EFSM models. This problem has been
also discussed in [UrYa 91, Wali 92].

4. Test Case Generation for Our EFSM Model

In this section, first, we define the E-UIO
sequences formally. Here, we assume the number
of input variables of each transition is one for
simplicity of discussion. However, the properties
presented in this section also hold for the case that
the number of the input variables is more than one.
[Definition 4.1]

r(h-2)

Let UIOj denote a UIO sequence "sjﬂ...—» Sh-1

Y sh" for a state sj of an EFSM M. And let

o g WL GD) i
TR1-h denote a transition sequence "s15..5 sj—

tr(h-2) uwh-1) o, .
-~— sh-1- ' sh" starting from a state s1 and
ending to the state sh via states s2,...,Sj,...,Sh where

TR1-h contains UIOj as the tail sequence. Here,

we assume that each transition trk is "sk-
<Ck,ak?7xk/bk!Ek, RDk>->sk+1". If there exists an
input event sequence "a]?n1,a2™2,..., ah-17nh-1"
(n1, ..., nh-1 are concrete data values) such that the
input event sequence is executable for any given
registers' values u],...,up at the state s1 of M, then
we say that the transition sequence TR1-h is an E-
UIO sequence for the state sj which corresponds to
the given UIO sequence UIOj. For those input
values and registers' values ul, ..., un at the starting
state s1, the corresponding output values are
defined uniquely. We say that the transition
sequence with data values TC1-h = "a1?n1/b1!vy,
...» 31-170h-1/bh-1!vh-1" is an E-UIO sequence
with data values corresponding to TR1-h. 1

Note that the input values n1,...,nh do not depend
on the registers’ values ul,....,un, and that we call a
given transition sequence as an E-UIO sequence if
and only if an E-UIO sequence with data values
can be generated for any register value at the
starting state of the transition sequence. Therefore,
we do not treat a transition sequence as an E-UIO
sequence if the corresponding E-UIO sequence
with data values can be generated only for some
specific registers' values. This condition is used
when the E-UIO sequences are connected as a test
suite. For example, since we assume that a given
EFSM M is strongly connected, there is a test case
« leading the EFSM M to trace from the initial
state sinit to the state s1. The values of all registers
when the test case o is executed are also
determined. Using those values, an E-UIO
sequence TC1-h with data values starting from the
state s1 is obtained. By connecting the test case o
and the E-UIO sequence TC1-h with data values,
we can check whether the state sj is correctly
implemented in a given IUT.
[Procedure 4.1}

we can decide whether a transition sequence
TR1-h is an E-UIO sequence of an EFSM M
using the following procedure.

. u trlor(-1) e

Input : a transition sequence TR1-h="s1-..— "8j—

we(h-2) tr(h-1) "
.~ Sh-1- 'sh" where we assume that

each transition trk is "sk-<Ck,ak?xk/bk 'Ek,
RDk>->sk+1".
1. Let Cond denote a Boolean variable, and let p
denote an integer variable.
Cond«—true p<h
2. While p is not equal to 1, repeat the following
three steps.

2.1 If there is "Rj¢ fj(xp-1)" in RDp-1, then
replace all "Rj" in Cond with fj(x). If the
same variable name "xp-I" has been
already used in Cond, then use a new
variable, and replace all "Rj" in Cond with
fi(x") where x' denotes a new variable name.

2.2 Cond « Cond and Cp-]

23pep-l

3. ©TR1-h¢Cond.

4. If (1) ®TR1-h does not contain register vari-
ables, (2) TR1-h contains a UIO sequence for a
state sj of an EFSM M as the tail sequence and
(3) it is satisfiable, i.e., there exist concrete data
values for the input variables x1,...,xh-1 such that
the value of ®TR1-h is true, then we decide that
TR1-h is an E-UIO sequence for the state sj. If
one of three conditions does not hold, then we
decide that TR1-h is not an E-UIO sequence. []
Here, we say that ®TR1-h is the execuzability

condition for the transition sequence TR1-h. The

executability condition @ TR1-h denotes the
condition which the EFSM must satisfy to execute
the given transition sequence TR1-h. For example,
if the transiion sequence B="s1 = s2 —s3 —s4 —
s5" in Fig.1 is given, the executability condition

@B is "(0<x<7) and (y=0)". If the transition

sequence f'="s3—s4—s5" in Fig.1 is given, the

executability condition ®p' is "(0<R1<7)". For a

given transition sequence f3, if PP contains register

variables, then the executability of the transition
sequence P depends on the register values which
have been defined in a preceding transition
sequence. However, if ®f does not contain register
variables, then the executability of the transition
sequence B depends on only the values of the input
variables used in . If @B is satisfiable, then we can
generate concrete input data values of a test case
tracing the transition sequence 3 from a solution of

Dp. The input values of the variables not contained

in ®f can be arbitrarily determined. The output

data values are determined depending on those
inpﬁxt values and register values at the starting state

of B.

[Lemma 4.1]

For a given transition sequence [§, the

executability condition ®f is a P-sentence.
(Proof) From the definition, all transition condi-
tions are P-sentences. In Procedure 4.1, some
register variables, say Rj, may be replaced by fj(x)
based on the substitution statements such as "Rje«
fj(x)". However, fj(x) is a P-term. Therefore, the
replaced expressions are also P-sentences. Then,
this lemma holds.

A logical expression containing only 3, V and
P-sentences is called a Presburger sentence. It is
known that it is decidable whether a given
Presburger sentence is true or not [HoUl 79].
[Property 4.1}

For any executability condition DB(X1,...,Xk)
where Xx1,...,xk denote the variables appeared in
@, it is decidable whether DB(X1,....Xk) is satisfi-
able or not. And if ®B(x1,..,xk) is satisfiable, a
solution <nl,...,nk> satisfying DB(x1,....xk) can be
generated mechanically. {1

A solution can be generated through integer
linear programming [HiBo 94].

Let us consider the transition sequence (E-UIO
sequence) B="s1 —s2 — s3— s4 —s5" in Fig.1.
For this transition sequence B, DB(x,y) is "(0=x=7)
and (y=0)". Since the condition "(0<x<7) and
(y=0)" is a P-sentence, a solution, say
<x,y>=<1,0>, is obtained mechanically. Since the
variable "z" in the transition sequence "a?y/ely,
a?x/ely, e?z/d!x+y, e?z/c!x" is not appeared in the
executability condition CDﬁ(x,y), any value, say
"0", may be given as the value of "z". Using those
values, we can generate an E-UIO sequence
"a?0/e!0, a?1/e!0, e?0/d!1, e?0/c!1" with data
values for identifying the state s4. Since the starting
state of the E-UIO is the initial state s, we can
check whether the state s4 is correctly
implemented in a given IUT by giving the input
event sequence of this E-UIO from the initial state
and observing its output event sequence.

We cannot determine the values of outputs
directly from ® if the output values depend on the
registers values at the starting state. Let us generate
an E-UIO sequence for identifying the state s3 in
Fig.1. A UIO sequence for the state s3 is
"e?z/d!R1+R2". By giving the UIO sequence
UIO3 to Procedure 4.1, the executability condition
OUIO3="true" is obtained. Since PYUIO3 does not
contains the register variables, UIO3 is also an E-
UIO sequence for the state s3. In this case, any
integer value, say "1", may be given as the input
value "z". However, the output value "R1+R2" is
determined depending on the transition sequence
which has been executed before executing this E-
UIO sequence. For example, in order to identify
the state s3, we must lead a given IUT to trace the
initial state s1 to the state s3 and then we must give
the E-UIO sequence "e?z/d!R1+R2". There exists
a test case, for example "a?0/e!0, a?1/e!0", for
leading the EFSM to trace the initial state s1 to the
state s3. If the test case "a?0/e!0, a?1/e!0" is
executed from the initial state, then the values of
the registers R1 and R2 become 1 and 0, respe-
ctively. Then, the value of "R1+R2" becomes "1"
when the EFSM enters the state s3. That is,
"e?1/d!1" is an E-UIO sequence with data values
for identifying the state s3. By connecting
"a?0/e!0, a?1/e!0" and "e?1/d!1", we can check
whether the state s3 is correctly implemented in a
given IUT.

In both cases, for any executability condition &
without register variables, we can generate the
transition sequences with data values satisfying the
executability condition @B mechanically if all
registers' values at the starting state of the transition
sequence [are given and ®p is satisfiable.

State E-UI0 ayigj Transition E-UIO with data values
s] alyfelyclzply (v20) $1-352 85 a?l/el1,c?4/b11
52 alyfely,c?z'bly, (y20) 5182 a?l/ell,c?4/bl1,

c?zp!Ry and (y<2)
53 e?z/d!R1+R2 true 53354 e?1/d!1
sq aly/ely, a?x/ely, (0Sx<7) sj-—rsp-s3 a?0/el0, a?1/el0,
e?z/dix+yetz/clx and (y=0) —osq—ss e?0/d!l, e?0/k!l
s5 a?y'fely’.c?z/bly’, (y20) a?l/ell c?4/bll,
c?zb!Ry.a%/ely and (y<2) c?3/0!0, a?0/c!0

355381 c?3/10

§138285
—8]1-382

Fig. 3 E-UIO Sequences

For the EFSM in Fig. 1, E-UIO sequences are
given in Fig. 3. Let E-UIOk denote the E-UIO
sequence for identifying the state sk in Fig. 3.
Integer "0" is given as the values of the registers
"R1" in E-UIO2 and E-UIO4 since the initial
register value of "R1" at the initial state s1 is "0".
In E-UIO3, integer "1" is given as the value of
"R1+R2" since the value of "R1+R2" becomes
"1" when the EFSM enters the state s3 after
executing a test case "a?0/e!0, a?1/e!0" from the
initial state.

[Theorem 4.1] .

For a given UIO sequence UIOj for identifying
a state sj of an EFSM M, if there exists an E-UIO
sequence with data values containing UIQj as the
tail sequence, then we can generate it mechani-
cally.

(Proof) Using breadth first search, we can
enumerate every transition sequence f§ containing
UIOj as the tail sequence. If (1) ®§ does not
contain register variables and (2) it is satisfiable,
then f is an E-UIO sequence. From Property 4.1, it
is decidable whether @ is satisfiable or not. If it is
satisfiable, then concrete data values for f3 are
obtained from the solution satisfying ®f and the
registers' values at the starting state of 8- mechani-
cally. If there exists an E-UIO sequence, such an
E-UIO sequence can be found eventually. 1

If a state si of an EFSM M is reachable from the
initial state, then we can find a test case & leading
M from the initial state to the state sj using the
above technique. Since, in this paper, we assume
that all states of an EFSM M are reachable from
the initial state, such test cases can be generated
mechanically.

Since our EFSM/in model can simulate Turing
machines, it is undecidable whether there exists an
E-UIO sequence with data values for a given UIO
sequence. There may exist a case that there does
not exist an E-UIO sequence with data values for a
given UIO sequence. For such a case, the above
breadth first search continues infinitely. Therefore,
we must decide by ourselves when we stop to
extend the transitions.

5. Conclusion

In this paper, we have proposed a new technique
to generate E-UIO sequences mechanically for a
restricted class of EFSM's. We have been
developing a tester for generating E-UIO sequen-
ces. In order to generate each E-UIO sequence,
some integer linear programming problems must
be solved. In our experiences, the transition
conditions are very simple for most practical
examples. Such an observation is also shown in
[ChZh 94]. From those results, we can conclude
that the number of the constraints of integer linear
programming problems which we must solve is at
most 10 or 20. It takes about 20 second for our
tester to solve the integer linear programming
problems whose constraints' numbers are 30 using
a SUN SPARCstation ELC in most cases. One of
the future works is to show the usefulness of our
approach using the tester.

References

[BoUy 91] B. S. Bosik and M. U. Uyar : "Finite
State Machine Based Formal Methods
in Protocol Conformance Testing",
Computer Networks ISDN Systems,
22, pp. 7-33, 1991.

[ChZh 94] S.T. Chanson and J. Zhu : "Automatic
Protocol Test Suite Derivation”, IEEE
INFOCOM'%4 (to appear).

[HiBo 94] T. Higashino and G. v. Bochmann :
"Automatic Analysis and Test Case
Derivation for a Restricted Class of
LOTOS Expressions with Data
Parameters”, IEEE Trans. on Soft.
Eng., 20, 1, pp. 29-42, 1994.

[HoU179] J. E. Hopcroft and J. D. Ullman :

"Introduction to Automata Theory,

Languages, and Computation”,

Addison-Weslay, 1979.

B. Sarikaya, G. v. Bochmann and E.

Cerny : "A Test Design Methodology

for Protocol Testing", IEEE Trans. on

Soft. Eng., pp. 518-531, May 1987.

[UrYa91] H. Ural and B. Yang : "A Test
Sequence Selection Method for
Protocol Testing", IEEE Trans. on
Comm., 39, 4, pp.514-523, 1991.

[WaLi92] C.-J. Wang and M. T. Liu : "A Test
Suite Generation method for Extended
Finite State Machines using Axiomatic
Semantics Approach”, Proc. 12th IFIP
Symp. on Protocol Specification,
Testing and Verification, pp. 29-43,
1992.

[Sari 87]

