TNF AT TREESBLE 67— 2
(1994, 12. 2)

e- E%Eﬁf—f‘ﬁﬁ? n—7iEE (e-CO) 7u b ar

i BT EIR B

FOR BRI TR E 2R
E-mail {tachi, taki}@takilab.k.dendai.ac.jp

EBO T v DI — TEECE BEINAAy -V E{ T o ARBED X5 EHFTRET 50
KEEH L A2, ¥ BHLALDO Ay t—Tik, BLETRAY y MCREEh, REXN . ThbOHH
ANFATy POREEE Ay —VDR LV —L2F 3, R —LAOAYy rONEFEER Y — a0
EERZAZBERD 3, KR TR, ZA—THOLT o ACH LT, <Ay FETEEL, XY —24
DZEIEFEY T 3EEREA 7+~ 7 BE T v b arkowTHL 5. HEEEECOBE#ELF—~—F v
CXB1-7y F OBRERFBEETH, }/k—Vkaoﬁﬁ%ﬁ&i6k€KH~ﬁm%ﬁ&b&wbi%%
230 K7 = barnid, EHET v XOFEL KR NWIE ﬁﬁﬁﬂmﬂﬂﬁﬁmgomrwéo

e-Causally Ordering Group Communication (¢-CO) Protocol

Takayuki Tachikawa and Makoto Takizawa
Tokyo Denki University

The distributed applications require group communication of multimedia data among multiple pro-
cesses. A message including multimedia data at the application level is decomposed into smaller packets
at the communication system level. In this paper, we discuss the ordered, atomic, and non-loss delivery
of messages at the application level not at the system level. In some multimedia applications, the ap-
plication processes do not mind if some packets are lost. The application process specifies the minimum
receipt ratio € (< 1) showing at least how many percentages of whole data in each message the destination
process has to receive. The communication system delivers the packets to the destinations in the group so
as to satisfy the receipt constraint £. The protocol is based on the fully distributed control scheme, and
uses high-speed networks where the process may lose packets due to the buffer overrun and congestion.

1 Introduction

In the distributed applications like computer-
supported cooperative work (CSCW) [5), a group
of multiple processes are cooperated and multime-
dia data like video are exchanged among the pro-
cesses in the group. In this paper, a group of pro-
cesses is referred to as cluster. In the group com-
munication; each application process either deliv-
ers messages to all the destinations in the cluster
or none of them, i.e. atomic delivery. In the high-
speed networks [1], packets may be lost due to the
network congestion. Since the transmission speed
is faster than the processing speed of each process

“while the data transmission on the network is al-
most error-free, process may not receive packets
transmitted in the network. Thus, in the presence
of packet loss, the packets have to be delivered to
all the destinations, i.e. non-loss delfvery.

In addition to providing the atomic and non-
loss delivery, the group communication proto-
col has to provide the application processes with
kinds of ordered delivery of messages: locally
(LO), causally (CO), and totally ordering (TO)
delivery. In the LO service, messages from each

7

process are received in the sending order. That is,
if a process sends message ¢ after p, every desti-
nation process receives g aftér p. In the TO ser-
vice [4,7,8,10], all the destinations receive mes-
sages in the same order and in the sending order.
In the CO service, messages received are ordered
by Lamport’s happened-before relation [9). That
is, if p is sent logically before g; p is delivered
to every destination -before g. The CO service
is required in distributed applications like fault-
tolerant systems [13] and CSCW {[5].

In the distributed applications, multimedia
data like video and voice are exchanged among the
processes. Application processes transmit multi-
media messages to the destinations in the clus-
ter. The system process in the communication
system takes the message from the application
process, decomposes it to smaller packets, and
sends and receives the packets by using the high-
speed network. The system process may receive
the packets out of order and may not receive
some packets. The group communication proto-
cols [3,4,7,8,11, 12, 15] support the atomic, or-
dered, and non-loss delivery of the packets while

the application processes may not care loss of
packets. In this paper, the application specifies
how much ratio € (< 1) of data in each message
have to be received at least by each destination.

If the system process could receive more packets’

than € of the message even if it does not receive
some packets, it is allowed to pass them to the ap-
plication and does not require the sender to send
the lost packets again. The application processes
are interested only in the receipt order of messages
but not packets.

In section 2, we present a concept of message
stream. In section 3, we discuss causal ordered de-
livery. In section 4, we present the data transmis-
sion procedure. Finally, we present the evaluation
of the e-CO protocol in section 5.

2 Message Stream

The communication system is composed of
three hierarchical layers, i.e. application, sysitem,
and network ones. A cluster C is a set of n (> 2)
system service access poinis (SAPs), ie. {Cy, ...,
Cn}. Each application process A; takes some com-
munication service through C; which is supported
by a system process S; (i = 1, ..., n). Si, ..., Sn
cooperate with one another by a group communi-
cation protocol to support group communication
service for C by using the underlying network. C
is written as C = (Sj, ..., Sp}. The network layer
provides high-speed data transmission [1] for the
system layer. A data unit exchanged among appli-
cation processes and among system processes are
referred to as messages and packets, respectively.
S; may not receive packets due to the buffer over-
run and congestion.

Application processes Ay, ..., Ap exchange mes-
sages including multimedia data through the clus-
ter C. Message a sent by A; is passed to S; and S;
is decomposes a into smaller packets a,, ..., ax (h
> 1). Here, a; is referred to as in a. For example,
one frame of MPEG [6] is decomposed into cells
in the ATM network [2]. A stream of message a
is a collection { ay, ..., ax) (h > 1) of the pack-
ets decomposed from a. In Figure 1, application
process A; sends message a to 4; and A; sends
b to A; after receiving a. S; takes a from A; and
decomposes a into a stream (ay, a3, a3). After
receiving a,, az, and ag, S; reassembles them into
a and passes a to A;. Similarly S; decomposes b
into { by, b; }. S; sends b; and b; to S;.

Packet a; depends on a; (a; |= a;) iff a; cannot
be passed to the application process if a; cannot.
For example, if the key for deciphering a; is in-
cluded in a;, the application process cannot ac-
cept a; because a; cannot be deciphered unless a;
is received, i.e. a; = @;. a; and a; are indepen-
dent iff neither a; |= a; nor a; |= a;. a; precedes
a; (@; F aj) iff a; has to be passed to the appli-
cation process before a;. a; and a; are eguivalent
iff neither a; - a; nor a; F a;.

[Assumption] Packets a; and a; in message a are

a b

f——]
A;
Apl. \ /
AJ‘ ~

ay az asz bl bz
[e R s B e

AN

Figure 1: Message stream

tn

time

independent and equivalent. O

In the high-speed network, packets may be lost
and may be delivered to the destinations not in
the same order. Application processes may not
always require the communication system to re-
ceive all the data in each message. For example,
in MPEG, the application process can playout the
video image from the frames received even if some
B-frames are lost.

Suppose that A4; sends a to A4;. S; decomposes
a into stream (ay, ..., a3). It is written as' @ = (
@y, ..., @4). Let |a| denote number h of the packets
in a. S; sends ay, ..., @), to the destination, say S;
by using the high-speed network. S; reassembles
a;, ..., a; into a and passes a to A S; may
not receive some packets due to the buffer overrun
and congestion. Here, let received stream p;;(a) be
substream of a including packets which Sj receives
from S,, pij(a) C a. The receipt ratio w‘,_,(a.) ofa
in 4; is |pgi(a)] / Jal (< 1).

Here, Receipt logs RL;-" and RL? denote se-
quences of messages and packets which applica-
tion and system process A; and S; receive, re-
spectively. Sending logs SL# and SLf denote se-
quences of messages and packets which A; and S;
send, respectively. If message a precedes b in log
L, a —1, b. For example, in RL#, if A; receives
message a before b, a — g4 b.

[Definition] Let a be a message sent to A; by
A;. For a constant € (< 1), RL is c-mformatwn
preserved iff A; can accept pij (a.) if mij(a) > e O
€ is the minimum receipt ratio which A; gives to
the system process S; when sending message a.
Even if S; does not receive some packets of a, S;
notifies 4; of the acceptance of a if S; could re-
ceive more packets of a than e. In the MPEG,
for I-frame, € = 1, and for B-frame, ¢ < 1. For
example, S; decomposes message a issued by A;
into a stream (@y, ..., a5) and sends it to S;, and
S; receives ay, az, as, and as but not as. pij(a) =
(a1, a2, a3, a5) and 75(a) = |pys(a)l/la] = 4/5
= 0.8. Suppose that A; requires S; to send a with
& = 0.6. Since my;(a) = 0.8 > &, S; passes p;;(a)
to Aj.

— 8 —

time Y Y Y

3 Causal Ordering of Mes-
sages .

Here, let s;[a} and 7;[a] be sending and receipt
events of message o in application process A;, re-
spectively. Precedence relations = [3] among the
events and < among the messages are defined as
follows.

[Deﬁnltlon] For every pair of events e and e, e

= ¢ iff

(1) e happens before e’ in A;,

(2) for some (not necessatily different) A; and 4;,
there exists some message a such that e =
s;[a] and €' = rj[a], or

(3) for some event e”, e = e” and e’ = ¢’. O

[Definition] For every pair of messages a and b,

a causally precedes b (a < b) iff s;{a] = s;[b]. O

a < b means that a is sent before b at the appli-

cation level. a and b are causally coincident (a ||

b) iff neither'a < b nor b < a. a X b means that a

<borallb

[Definition] For every pair of messages o and b

which A; receives from 4;, RL is local-order pre-

served iff @ —ppa bifa —spa b. O

If RL# is local-order preserved, A; receives mes-
sages from each A; in the sending order.
[Deﬁmtmn] RL# is causally preserved iff for ev-
ery pair of messages a and bin RL?, a —rpa b if
a<b O

In Figure 2(1), since A} receives b after a, RL{ is
causally preserved. In Figure 2(2), a || b since A,
sends b before receiving a.

Aj Ap A Aj A

A
\b‘

(1) @

Figure 2: Causality at application level

[Definition] RL? is serial if for every message a

(a1,. ,a.g)andb—(bl, ...,b),

(1) an —pps o if B <k, and)

(2) there is no by such that ay —pgps by —gps
a;. O ' *

(1) means that S; receives packets from each Sj;

in the sending order. (2) means that packets ina

and b are not interleaved.

System process S; takes message a from A;.
t;[a] denotes the event. S; decomposes it to a
stream and sends the stream to S; by using the
high-speed network. S; receives the packets from

_..9__

timeY

S; and reassembles them into message, i.e. pij(a).

S; delivers pij(a) to A;. This event is denoted
by d;[a]. Then, A; receives p;j(a) from Sj. rj[a]

dgnotes this rece)p_t event. Let a and b be'message

sent by A; and A;, respectively.

[Deﬁmtlon] a ceusally precedes b (a. < b) iff t;[q]

= t;[8]. O

[Definition] RL# is cousally preserved for each

common destmatlon Ay, of a and b iff dy[a] = da[b)]

if t;[a] = ¢;[b]. O

Let us consider Figure 2 and Figure 3. Here,
we can assume that s;[a] and #;[a] occur simul-
taneously because S; sends a as soon as taking a. -
Figure 3 shows the data transmission among three
system processes S;, Si, and Si. In Figure 3(1),
5, sends packet by in b after receiving the last a;
in a. S receives a; before by, i.e. at —RL$ by.
Figure 2(1) shows the data transmission among
Aj, Ay, and Ay for Figure 3(1). Ap sends b to
Ay after receiving a and Ay receives b after a, i.e.
a < b. Next, in Figure 3(2), Si starts to send
the stream of b before receiving all the packets in
a. Figure 2(2) shows the application-level data
transmission of Figure 3(2). Since Ay sends b not
after receiving a, a || b.

In Figure 3§2) suppose that S;‘ receives the
packets as RLj < a- --by]. Sk re-
assembles them into message and passes it to Ag.
S may pass a before b because a, is received be-
fore by. If so, the causal ordering of packets in
a and b except a; and b; is meaningless for the
application process. In this paper, we would like
to discuss how to causally order messages at the
application level not at the system level in order
to reduce the processing overhead of the commu-
nication system.

5 S S 5 S S
ay ay
ay
< by \'\'\-
r\'r

W @

Figure 3: Causality at system level

In Figure 4, S; sends S) stream (ay, a3, as,
a4, as) of message a. In Figure 4(1), Sy does not
receive as, and S, starts to send stream (by, by)
of b to Sy before passing a to Ay. Here, a || 5. In
Figure 4(2), Si does not receive a,. If the receipt
ratio wjn(a) > € in S, on receipt of a5, Sy passes
pin(a) = (a1, as, a4, as) to Ap. After that, Sp
takes b from A, and sends b; and b; to Si. Here,
tj[a] = tn[b] since di[a] = tx[b]. Hence, a < b.

We define the following services supported by

time \

1l
i

I

by
—~—
\
6 (2)

Figure 4: Causality at system level

r

the system and application layers.

[Definition] -

(1) A network service is a multi-channel (MC)
one iff every RLf is local-order-preserved.

(2) A system service supported by C = (Sy, ...,
S,) is e-causally ordered (e-CO) iff every
RIL# is e-information-preserved and causally
preserved. O : :

S; can receive the packets from each process in
the sending order in the MC service while 5; may
not receive some packets. The MC service is sup-
ported by a system where every two computers are
connected by logical or physical high-speed links.
In this paper, we would like to discuss how to sup-
port a group of application processes with -CO
service by using the MC service.

4 e-CO Protocol
Here, suppose that a cluster Cis (Sy, ..., S,).
4.1 Variables

System process S; has the following variables
to send and receive streams (7, k = 1, ..., n).

* & = minimum receipt ratio given by 4;.

+ SEQ = sequence number of stream which S;
expects to send next or is sending at present,
i.e. stream number.

* REQ; = sequence number of stream which
S; has accepted most recently from S; with
respect to . .

* DLV; = sequence number of stream from §;
which S; has passed most recently to 4;.

+ ALj; = sequence number of stream which S;
knows S; accepted most recently from S;.

S; has the following variables to send and receive
packets (7 = 1, ..., n).
+ mSEQ = sequence number of packet which
S; expects to send next, i.e. packel number.
* mREQ; = sequence number of packet which
S; expects to receive next from Sj.
* LST; = number of packets lost in a stream
which S; is receiving from S;.
* BUF; = available buffer size of S; which S;
knows.

Here, let minAL; denote minimum in ALy, ..,
ALn; (7 =1, .., n). Let minBUF be minimum
in BUF,, ..., BUF,. o

Let (ajy, ..., an '} be a stream of message a sent
by A;. Each packet a, in a has the following fields
(k=1,.., k).

+ CID = cluster identifier.

* SRC = source system process of at, i.e. S;.

+ SEQ = stream number of a. '

+ mSEQ = packet number of a;.

) Stream a has the following variables (j = 1, ...,
n).
+ mTotal = number of packets in q, i.e. |a| =h.
* ACK; = sequence number of stream which
S; has accepted most recently from S;.
* DACK; = sequence number of stream from
S; which S; has passed most recently to A;.
» BUF = available buffer size of S;
* SRC = source system process of ay, i.e. S;.
+ SEQ = stream number of a.

4.2 Transmission and acceptance of
packets

S; decomposes message a from A; to stream (
ajy, .., ap). Here, let W be a maximum window
size and H be a maximum number of packets in
stream, i.e. h < H, Let f be the maximum size of
packet. S; has to have buffer to store at least O(n)
packets {?]. S; sends packet a; by the following
data transmission procedure if the following flow
condition holds. Here, engqueue(L,a) means that
packet a is enqueued into a queue L. send(a)
means that a is sent to Sy, ..., S, by using the
MC network. S; has a sending queue SL; to store
packets which S; sends.

[Flow condition] minAL; < SEQ < minAL; +
min(W, minBUF / (H x f x n)). O

[Packet transmission procedure] {
fork=1toh {

ax.SRC := S;; ax.SEQ = SEQ;

ap.mSEQ := mSEQ; wmSEQ : = mSEQ + 1;

enqueue(SL;, ay);

if the flow condition holds, send(as);

else waits; }
SEQ:=SEQ +1;}0O

On receipt of packet a; from S;, S; accepts
a; by the following procedure. S; stores packets
accepted from S; into the receipt queue RRL;j 7
=1, .,n).

[Acceptance(mACC) procedure] If a;.SEQ =
REQ; + 1 {) '
if mREQ; # a,.mSEQ {

LST; := LST; + (ax.mSEQ — mREQ;); }
mMREQ; = a;.mSEQ + 1; BUF; := a;.BUF;
enqueue(RRL;;, ai); } O
In RRL;j, the packets from S; are stored in the
sending order. On receipt of ag, if a.mSEQ >
mREQj, it is found that S; does not receive ay
where a,.mSEQ > a,.mSEQ > mREQ; but S;

does not require S; to retransmit a). The number
of packets lost is accumulated in LST;. If LST; /
la| (= az.mTotal) > 1 — ¢, S; requires S; to send
the packets lost again.

4.3 Transmission and acceptance of
stream :

S; sends the stream a by the following proce-

dure.

[Stream transmission procedure] {

a.SRC := S;; a.SEQ := SEQ;

a.mTotal := h; a.ACK; := REQ; (j = 1,..,n);
a.DACK; := DLV; (j = 1,...,n);

a.BUF := avaﬂable buffer size of S;; } O

Here, some packet a; in a has additional fields
mTotal, ACK;, DACKj, and BUF. If 5; does
not receive a; from Sj, S; cannot accept a, i.e. a;
= a: (k # z). Hence, if S; loses a, S; requires S;
to send a. again. Another way is that a. is sent
more than one time. Even if one replica of a, is
lost, 5, can receive another replica of a,.

Here, suppose a = (ay, ..., a). If S; accepts
the last packet ay in a or it takes some time units
after S; accepts packet in a, S; decides whether to
accept the stream.

[Acceptance(ACC) procedure] { If (a.mTotal
— LST;)/ amTotal > € for a in RRLyj, {

the packcts in a are reassembled into stream a;

AL;; = a.ACK, (lc-.- 1, .., n)

BUF; := a.BUF}; enqueue(CRL,-j, a):
REQ; := a.SEQ; mREQ; := 1;
LST;:=0;}} 0

If S; accepts more packets in a than € x h, §;
accepts pi;(a) from S;. pij(a) is enqueued into
ARL;; as the stream a. The streams from S; are
stored in the sending order in ARL;;.

Unless S; cannot accept a, S; requires S to
send again the packets which S has lost. S; sends
RET(retransmission) packet to S; which carries
the list of SEQs of the packets. On receipt of the
RET packet from S;, S; sends the packets to S;
again. On receipt of the packets retransmitted, S;
stores them into RRL;;.

4.4 Causally ordered and atomic
delivery

Suppose that S; accepts stream p;;(a) of mes-
sage a sent by S;. Before passing p;;(a) to 4;, S:
has to order the streams in the causal precedence
order <. The streams a and b are ordered in < by
the following condition.

[Causality(C) condition] For every message a
and b, a < b iff

(1) a.SEQ < b.SEQ (a.SRC = b.SRC),

(2) a.SEQ < b.DACK; (a.SRC (= 5;) #
b.SRC). O

If S; sends a and b, t;[a] = t;[b] from condition (1).
If not, d;[a] => ¢;[b] from condition (2). Hence,
tj[a] = t&[b] (b1.SRC = Sy), i.e. @ < b at the ap-
plication level. S; orders streams in < by the fol-

lowing procedure. dequeue(ARL;j,a) means that
the top a of ARL;; is removed.
[Causality Ordering (C) procedure] {
while (the top a in some ARL;; is found such
that a < b for the top of every ARL;;) {
dequeue(ARL;j,a); enqueue(CRL;,a); } } O
S; has to know that all the system processes
have accepted a. If a satisfies the following ac-
knowledgment (ACK) condition, S; considers a as
accepted by all the system processes, and passes
a to A; by the following procedure. deliver(a)
means that S; passes a to A;. Here, a is referred
to as acknowledged in C.
[Acknowledgment (ACK) condition]
minAL; > a.SEQ (where a.SRC = S;). D
[Passing message (P) procedure] {
while (the stream of the top a {(where a.SRC =
5;) of CRL; satisfies the ACK condition) {
dequene(CRL;, a) ; DLV; := a.SEQ
deliver(a): } } O
Figure 5 shows the overall flows of messages in
the data transmission procedure.

5 FEvaluation

The e-CO protocol supports the causally or-
dered delivery of application messages and not
packets. Here, suppose that message a is decom-
posed into packets aj, ..., ap (|a| = h). We com-
pare the £-CO protocol with the CO protocol sup-
porting the causally ordered delivery of packets at
the communication system level with respect to
the number of comparison operations executed to
deliver a to the application process. Table 1 shows
the number of comparisons. In the CO protocol,
the fields of every packet are checked for the ACC,
ACK, and C procedures. On the other hand, only
the top packet aj is checked by the ACK and C
conditions in the e-CO protocol. Thus, the pro-
cessing overhead of a can be more reduced in the
e-CO protocol.

Table 1: Number of comparison operations

procedure ACC c ACK

protocol (©0(1) | (0(n)) | (O(n))
CO (e =1) h h h

e-CO h 1 1

ACC = Acceptance condition,
C = Causally preserved condition,
ACK = Acknowledgment condition:

Next, we would like to think about the number
of packets retransmitted for packet loss. In the
e-CO protocol, the packets are not retransmitted
if the destinations accept more than ¢ packets in
message. ‘While each time loss of packet is de-
tected, the lost packet is retransmitted in the CO
protocol. Let h be average number of packets in
message. Let o be probability that packet is lost

CRL; ARL;; RRL;;
' I <@®]l« I <aar..an]e | — 5
A4i— - <@]« || <@@]< I <pipr-p]e I «5;
| <@l || <zmz.z]e" | — Sn
ACK C) ACC . mACC .
a; : packet a;, (a): stream a.

. Figure 5: Receipt procedure

by one destination. In the CO protocol, the pack-
ets lost are retransmitted. Hence, o x h packets

4

are retransmitted. On the other hand, if ¢ < (1 —
€), there is no packet retransmitted in the £-CO
protocol. If o > (1 ~ ¢), (¢ — o) x h packets
are retransmitted. Figure 6 shows the number of
packets retransmitted for o. The e-CO protocol
implies less retransmissions.

0.15
cCo (e = 1) ——
= e-CO (e = 0.95) ===
¥ e-CO (e = 0.92) ----
@
3
2 0.1
o
b4
b4
S
5
=
2 0.05 ko
- R
g Tl
5 —
2 oy
o ==
0.9 0.95 1
-3

Figure 6: Retransmitted packets for o
6 Concluding Remarks

In this paper, we have discussed a group com-
munication protocol named ¢-CO protocol to ex-
change multimedia data among application pro-
cesses by using the high-speed network. The mes-
sages are causally ordered at the application level
not at the communication system level. Applica-
tion specifies the minimum receipt ratio £ of mes-
sages to be received. The e-CO protocol is based
on the distributed control. By using the e-CO
protocol, the processing overhead of the commu-
nication system can be reduced because it is not
required to support the atomic, causally ordered,
and non-loss delivery of every packet transmitted
in the network. The &-CO protocol implies less
processing overhead and less retransmissions than
the packet-level group communication protocols.

References

{1} Abeysundara, B. W. and Kamal, A. E,
“High-Speed Local Area Networks and Their
Performance: A Survey,” ACM Computing
Surveys, Vol.23, No.2, 1991, pp.221-264.
Bae, J. J. and ‘Suda, T., “Survey of Traf-
fic Control Schemes and Protocols in ATM
Networks,” Proc. of the IEEE, Vol.79, No 2
1991, pp.170-189.

Birman, K. P., Schiper, A., and Stephenson,
P, “Lightweight Causal and Atomic Group
Multicast,” ACM Trans. on Computer Sys-
" tems, Vol.9, No.3, 1991, pp.272-314.

[3

o)

[s

—

(9]

(10]

(11]

(12]

(23]

(14]

(15]

[16]

(17]

Chang, J. M. and Maxemchuk, N. F., “Re-
liable Broadcast Protocols,” ACM Trans.
on Computer Systems, Vol.2, No.3, 1984,
pp-251-273.) _
Ellis, C. A., Gibbs, S. J., and Rein, G. L.,
“Groupware,” Comm. ACM, Vol.34, No.l,
1991, pp.38-58.

Gall, D., “MPEG: A Video Compres-
sion Standard for Multimedia Applications,”
Comm. ACM, Vol.34, No.4, 1991, pp.46-58.
Garcia-Molina, H. and Spauster, A., “Or-
dered and Reliable Multicast Communica-
tion,” ACM Trans. on Computer Systems,
Vol.9, No.3, 1991, pp.242-271.

Kaashoek; M. F. and Tanenbaum, A. S.,
“Group Communication in the Amoeba Dis-
tributed Operating System,” Proc. of the
11th IEEE ICDCS,1991, pp.222-230.
Lamport, L., “Time, Clocks, and the Or-
dering of Events in a Distributed System,”
Comm. ACM, Vol.21, No.7, 1978, pp.558-
565.

Melliar-Smith, P. M., Moser, L. E.; and
Agrawala, V., “Broadcast Protocols for Dis-
tributed Systems,” IEEE Trans. on Parallel
and. Distributed Systems, Vol.1, No.1, 1990,
pp.17-25.

Nakamura, A. and Takizawa, M., “Priority-
Based Total and Semi-Total Ordering Broad-
cast Protocols,” Proc. of the 12th IEEE
ICDCS, 1992, pp.178-185.

Nakamura, A. and Takizawa, M., “Causally
Ordering Broadcast Protocol,” Proc. of the
14th IEEE ICDCS, 1994, pp.48-55.

Powell, D., Chereque, M., and Drackley, D.,
“Fa.u]t—Tolerance in Delta~4 " ACM Oper-
ating Systems Review, Vol. 25 N02 1991,
pp.122-125.

Ravindran, K. and Shah, K., “Causal
Broadcasting and Consxstency of sttnbuted
Shared Data,” Proc. of the 14ih IEEE
ICDCS, 1994, pp.40-47.

Tachikawa, T. and ’I‘aklzawal M., “Selective
Total Ordering Broadcast Protocol,” Proc. of
the 2nd IEEE ICNP, 1994, pp.212-219.
Takizawa, M. and Nakamura, A., “Reliable
Broadcast Communication,” Proc. of IPSJ
Int’l Conf. on Information Technology (In-
foJapan), 1990, pp.325-332.

Verissimo, P., Rodngues L., Baptlsta, M.,
“AMp: A nghly Parallel Atotmc Multicast
Protocol,” Proc. of ACM SIGCOMM, 1989,
pp.83-93. '

