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abstract

With the recent development of Computer Systems, various human-like tasks could now be accomplished by
simulated Agents. However people 10 using such an agent could be of various levels of cxpertise, and it is scarcely
possible for everyone to fully exploit the facilitics available from an agent.

In this paper, we propose a trainable Natral Language User Interface (NLUI) for such agents, The proposed modcl
of NLUI is a gencral onc which is bascd on Neural Network techniques, After being trained with proper’ Nawral
Language subset, it becomes a task-specific NLUI and acts correctly in the domain for which it is traincd.

The nctwork is designed such that it can work.with large input sentences. In fact the module has no constraint as

regards to the icngth of the input scntences. Also, it is very robust, and during cxperiment showed very high
recognition ratc cven with unscen and broken inputs.

Keywords:  Nawral Language Interface, Neural Network, Agent, Hybrid Learning Schemes



1. Introduction

With the recent developments of Computer Systems,

many tasks which was previously done by human, could
now be accomplished by computér. At the same time
computer networks are rcaching almost cveryone. This
background has made possiblc a situation, where an agent,
simulated by computer systcm, could dcliver human
oricnicd tasks of diffcrent kinds. However, the users of
these agents, we call 'uscr' from now, could be of various
levels of intelligence and cxpertise. The best way to
exploit facilities available with an agent is to have a
natural language interface wrapped around the core tasks of
the agent. More so, if the NL Interface could cope with
brokcn and conversational forms of inputs. It would be
sufficient if the Natural Language Processor(NLP) could
exccute well only in the domain concerned with the task
of that particular agent, and rcject irrclevant phrasces.

As the agents arc of various types, the domain of
language used by them could also be different. Instcad of
creating individual NLP, we look for onc which, when
initialized and trained properly, would deliver proper NL
Interface to the agent. Also, when the task of the agent
changes or is extended, the NLP should be able to adapt to
the new domain, alter proper training.

To achieve the required featurcs, as mentioned, the
Rulc-based NLP would be inadequate for our purposc.
Considering a generalized modcl of the training aspects, a
Necural Network(NN) approach was considered 10 be
suitable.

Till now, we alrcady have some works with NN-NLP
{11 [2] (3] [4]. In onc of the récent works, PARSEC(S5]
parses scniences bascd on deep case representation. It
succceded to demonstrate the cffectivencss “of
Conncctionist Model comparcd to ordinary algorithmic
parser, especially for noisy input seatences, which are
common in convcrsational form.

In this present context, only parsing is not sufficicnt.
We need a complete Natural Language Interface. In our
proposed NN-NLP modcl, we further need

(1) Some [Internal Rules to decide proper targel
functionalitics from scmantic structurc of input
sentences, using task-specific knowledge c.g. what
information in which slot of case-frame, what
inference on that, and which functiononality etc.),
which is difficult to formalize in gencral, and has
been a big load 10 system designers,

(2) NL Generator which generates NL sentences bdccd
on the scmantics of the input and the conlexL

The main contribution of this paper is our proposcd
nctwork, which can infer target function from semantic

structure of uscr's input. The input, in the form of ASCIL |

characters, is directed to the agent, and is usually consists
of a few scnicnces. We proposcd a network modcl which
is ablc to cope with very long sentences. In fact, there is

no limit in the length of input sentence. This would be
impossiblc with existing nctworks of NLP, which would
grow in sizc with the scntence Iength. Even during
cxperiments we uscd sentences as long as having 6
clauscs. ‘

The natural language generation part was done simply
by using somc rcserved template strategy. They are
selccted deterministically from the semantic structure of
the uscr's input command and its subscquent classification
by our proposcd nctwork. Further required variables ¢.g.
time, date, place ctc. arc extracted properly from the
Knowledge Base of the agent.

The proposed model is simulated in an cxperiment,
where our NLP is uscd as NL interface for secretary agent.
It responded nearly perfectly cven on unscen and broken
input phrascs.

In the next section, we give an over-ali description of
the whole model. In Scction 3, we focus on Function
Deciding module and cxplain it in detail. In Scction 4, we
discuss about the experimental results, where our network
is being simulated to perform the tisk of a secretary.
Results by testing with unscen and broken phrascs show a
good lcvel of gencralization by our NN-NL ‘interface.
Finally in conclusion, we summarize our work, indicating
the drawbacks and the future exiensions.

2. Model
2.1 Formal Description of the Model

The flow diagram of the proposed model is shown in
Figurc 2.1. Definitions regarding the dynamic bchavior
arc given in Definition A1 and A2. Data dcfinitions arc
given in Deflinition B1 to BS Mcta-symbols arc uscd
with their usual meanings.

Definition Al defines Intelligent Agent(1A), which
takes as its input <USERINPUT> from cnvironment
(user), and generatc the corrcsponding output
<OUTSENTENCES>.

As we can sce in Figure 2.1, IA is divided into 3
pants, NL:Interpicter, NL-Generator, and Task Handler.
Task Handler is a module which handlcs the corc task of
the agent with simple command-bascd interface.

Definition A2 definés the threc functional units,
namcly NL-Interpreter, NL-Generator, and Task Handler.

Definition B1-1 defines that <USERINPUT>, which
has local structure of <Clause>, <phrase>, and the
smallcst units arc a scrics. of <word>s. The features of
these <word>s must have been defined and saved carlier in
the Knowlcdge Basc of Featurc Translator. )

By NL-Intcrpreter, the <USERINPUTS is parsed, and
then classificd into proper funclion according to its
mcaning. The generalized <FunctScript> is sent to NL-
Gencralor.

NL-Gencrator send to Task Handler <Command>s
described in the <FunctSeript> (Definition B1-2), and get




<response>s from Task Handler (Definition B2).

Finally, NL-Generator sclect proper <template>
sentence corresponding to the <responsc>, from a sct
defined by the <FunctScript>. Valucs for the variables arc
also obtaincd from thc <response>. to gencrate
<OUTSENTENCES> to be dclivered to the uscr.

<USERINPUT>

l NL-Interpreter l

 <FunctScript>
_<Command>

I NL-Generator I : {I:s;:‘dler

<response>

Intelligent-Agent

y <OUTSENTENCES>

Figure 2.1 The Agent Model

Definition Al
Intelligent-Agent

Definition A2
NL-Interpreter : <USERINPUT>— <FunctScript>

 <USERINPUT>=*<OUTSENTENCES>

NL-Generator :
<FunctScript>x (Taskl{andler) *— <OUTSENTENCES>

Tasklandler -

Definition B1-1
<USERINPUT> ::=
<Sentence> :=

<Clause>((_<Clause>) I (,
.12)
<Clause> ::= <Phrase>(_<Phrase>)"
_<Phrase> ::= <word>(_<word>)’
<word> ::= { W | WEKBOfFT }

Definition B1-2
<FunctScript> ::=

(<Command>) *
<Command> ::=

<Command>—><response>

(<Sentence>)*

<Clause>))"

+(<template>)’

<commandname>X (<parameter>) "
<commandname> ::=
{ C | Cis a predefined.name }

<parameter> ::= { P | P is a parameter }
‘e.g. date, time, etc.
‘<template> ::=

(T 1 Tis sentences with fixed
structure and blanks for
variables )

Definition B2
<response> ::=

{ R |1 R is an output from TH

identifying response }
Definition B3
<QUTSENTENCES> ::=

(<template>+(<response>) * y !

2.2 Model Description
Figurc 2.2.1 shows the block-level structure of the
who.c model. Task Handler and four internal modules-of
NL Processor arc described in the next subscctions.
(i) Task landler
Task Handler(TH) consists of .the Knowlcdgc Basc
rclated (o the task, and TH-Program, which reads from
and. writes into the KB, depending on the input
command. TH is specific for the task.
Linguistic jobs arc achicved in NL-Interface. The
other actual core tasks arc all facilitatcd-by lbc TH.
(i) Feature Translaior
The form of user's input scntences are ASCII
character sequences. The first module of NL Interface is
Feature Translator, which translatc the ASCH characters
word by word into internal word representation of Word
Feature, as is traditionally done in [1] [5]} (sec Fig 2.2a).
INPUT SENTENCES (ASCI)
“1 would like to see prolesser.

April 8 is the most canvenient for me,
but how sbout him? *

Feature Translator

Connectionist Parser -
MOO0D:
{CLAUSEY
INTERCLAUSE: Maln

ACT: would like.
Agent:1 © .-

Function Deciding Moduie‘
Tésk Handler

TH Knowledge
Program Baae :

Wl
DEEP CASE REP)

JTASK HANDLER RESPONSE
‘-

OUTPUT SENTENCES

*On April 8, professor will be free’
from 10:30 1o 12;30. Will you make appointment?”

Figure 2.2.1. Internal Modules

Word fcature is a set of immb'c'rs, which rcpresent the
syntactic and task-specific scmantic fcatures of that
word. The values of this sct of numbers arc uscd as
activation levels of input units in the nctworks of
subscquent module. They arc arbitrarily coded and saved
in the Knowledge Basc of Feature Translator during



initialization.

Our feature mapping diffcrs from other works in that,
its values are continuous. Traditional reprcsentations
were binary. There, a particular feature is rcpresented by
a dimension consisting of scveral bits. With a particular
input word, only onc of the bits in that group may be
fired, depicting its fcature for that dimension. In our
feature representation, a dimension is represented with a
single unit, and the property of the dimension is
expressed with its activation value, which varics from a
minimum 0 to a. maximum 1.(scc’' Fig. 2.2b). This
scheme saves a lot of units in the Input layers, when a
large number of scmantic fcatures arc rcquired.

(a)

‘professor’

i

i
| S

feswre rep. of  prolessor

Continuous

W-

(b) Binary

noun
pronoun
adjective
adverb
aux-vert
vert
reposition
Confontion
interjectior.

L anticle
I human

o ehoot T ST 0.6
ORJECT { .05“‘" ]

TYPE) me

PART
OF|
SPEECH

SO OO DT D

size| intermediate

L. irrelevan
PLURAL [

Figure 2.2.2 (a) Feature Translator Moduie
(b) word feature of ‘professor’ in
binary/continuous representation

(iii) Connectionist Parser

Figure 2.3 shows thc structure of Conncctionist
Parscr (CP) module[S). CP takes a scntence (the scrics
of word-features) as input and gencrates semantic parse
trec of the sentence. For Semantic structure, casc-bascd
represcentation is uscd [8] [9).

CP consists of 5 ncural nctworks, all of which arc
feed forward typc with a single hidden laycr and with
partial conncctions. The diffcrent networks arc linked by

C-programs, which handics the. correcl input-output
relations: of the networks. Somctimes these modules
need to do some data manipulation before delivering to
the input of the next network..

PHRAGSE nciwork detects boundarics between phrases
of a scntence inputted as a scrics of words(fcatures).
CLAUSE network takes a scries of phrase blocks and
detects boundarics between clausces in the sentence. The
ROLE nctwork correctly labels the decp cascs, c.g.
ACTION, AGENT, RECIPIENT, ctc. The
INTERCLAUSE nctwork correctly dewermines the mood
label of the whole scntence, e.g. STATEMENT,
INTERROGATIVE, ctc. The MOOD network correctly
determincs the interclause label ¢.g. MAIN, SUBORDI-
NATE, RELATIVE, ctc. to cach of the clauscs.

"I would like to sce professor,  April 8 is the
most convenient for me, but how about him?”
N

\
—
PHRASE bouadary ] wﬂ W’ ooo
W\E@ ROLE tabe! M()Orl-b:l INTERCLAUSE tabel
(] / e
CLAUSE boundary E
[SENTENGE! ISENTENCE2
MOOD: _Statement MOOD: _Interregstive
ICLAUSE} ICLAUSES
INTERCLAUSE:  Main INTERQLAUSE: ~ Main
ACT: would like ACT: s
AGENT: ) REC: for me
CLAUSK2 STATE: the most convenlent
INTERCLAUSE:  Sub TIME: Apri 8
ACT: e CLAUSE2
REC: prof. P INTERCLAUSE:  Main
REC: sheut him
STATE: how
MISC: W)

Figure 2.3 Connectionist Parser Module

(iv) Function Deciding Module
This is thc main module of ‘our proposcd Sysicm
(Figure 2.1). The Function Deciding Module (FDM)
takes secmantic structure of input scntences (rom CP.
Then by using NN described in Section 3, it classifics
the input to some proper function, The corresponding
function script’is sent to NL Gencrator.
Detailed explanations are given in Scction 3.
(v) NL Generator
From this module, NL Scntences arc gencrated, 1o be
delivered to the user. NLG takes as input the script from
FDM and responses from TH. Bascd en the proccdure
described in the script, NLG sclect the iemplate (fixed
output scniencces) most appropriate to the TH-responses.
The blanks (variables) arc filled with proper valucs
received from the TH, to gencrate the NL response for
the input.

3. Function Deciding Module
Figure 3.1 shows thc construction of Function
Deciding(FD) Module. This module consists of a single
Ncural Network(NN) and a sct of Function Script(FS).
Semantic structure from parser is presented 1o this




NN, transformed by C-code 10 a suitable form, Then the
network classify the input to some proper function, and
the corresponding FS is sent to NL-Generator module.

Semantic Struciure
(SENTENCE? {SENTENCE2
MOOD: Statement MOOD: Interrogeilve
(CLAUSE1 {CLAUSE}
INTERCLAUSE: Main INTERQLAUSE:! Muin
ACT: ‘would tike ACT: L
AGENT: ) REC: for me
[CLAUSE2 STATE: the most
INTERCLAUSE: Sub convenbent
ACT: toses TIME: Apriig ]
REC: prof. ICLAUSE2
11 INTFRCLAUSE: Main
N REC: about him
STATH: how
1SC: bt 11

function Script
. taHtGenerator

|

Figure 3.1 Function Deciding Module
ICLAUSE FEAT:Main-state (CLAUSE FEAT:Main-State
ACT: would like ACT: s
AGENT: I AGENT: nil
REC: mil REC: for me
OBJECT :nil OBJECT:nil
STATE: nil STATE: the most convenient
TIME: mil TIME: April ®
MISC: nil MISC: ndil /
, o Lo
N\ ICLAUSE FEAT:sub-Clause 3
\  RCT: b see [CLAUSE Fal'rzuun—xnt-:nq
AGENT: nil
REC:  prof. ACT: nil
AGENT: nil
OBJECT:nil
REC: about him
STATE: nil X
TIME: mil OBJECT:nil
MIsC: nil STATE: how
TIME: mil
MISC: but

INPUT LAYER
{semantic structure
clause)

Unsupervised
Compertive
Leaming
HIDDEN LAYER 1 Netwark

(clause proto lype)

HIDDEN LAYER 2 Supervised

Leaming
Network
OUTPUT
LAYER
{function script
number)
Figure 3.2 Function Declding Network

Figure 3.2 shows the structure of FD Network. This
network is characterized by the following three features.
(1) Hybrid Leaming Schemes

This is a hybrid network, for which the upper part is
an Unsupervised Competitive Learning (UCL) nctwork
and the lower part is a Supervised Learning (SL) network.

By using UCL, we could accclerate the learning
speed, which would otherwise be extremely slow, if only
Back-Propagation learning is used.

(2) Representation of Input Layer

Input to the 1A may be scveral sentences, and cach
scnicnce again consists of scveral clauses. If we present
all the input semantic structure dirccily to input layer,
extremely large number of input units and conncclions
would be required. For an input of three sentences, cach
consists of 3 clauses, we would nced about 15,000 input

ncurons. The calculations arc hs follows.
14,634 =[(27Fcatures/word X 4Words/casc X

15Cases/clausc + 5SLabels/clausc) X
3Clauses/sentence -+ 3Labels/sentence] X

3Scatence/input

To facilitate using smaller nctwork, the whole
semantic structurc nceds to be divided. For this, some
mechanism would be required to memorize the
information of the previous scquence. To implement this,
a nctwork with recurrent connection [6] [7] is suitable.
Our modecl takes semantic structure, as input and keep the
previous context in the Hidden Layer 1(HL1).

Instead of representing the whole semantic structure
of input scniences together, the network scquentially
takes clauscs, which are local structure of the total input
scntences. A clausc is a congenial unit into which the
whole input should be divided. This is because the
minimum unit of structurc in deep-case is an Action-
rooted tree, which is usually closed within a clause.

By UCL network these clauscs are clustered into
similar groups. Depending on the input clause, only onc
unit :n HL1 fires (sct to '1'). This unit is a prototype of a
cluster, and represent the category to which the input
clausc belongs to.

Activations of HL1 units arc gradually decayed with
cycles of input clauscs, by sclf-rccurrent conncction a

(<1, here we use 0.85). So after all the clauses arc
presented, HL1 would memorize the whole input,
represented by activation pattern of clause-prototypes.
Activation would be 1 for the last input clausc and a N

for the first input clause, when total N naumber of clauses
are inputied.

Finally, this HL1 pattern is classified by lower SL
network, and we would get the proper funclion

By the proposed method, we could reduce the number
of input neurons from the above 15,000 to about 1,200.
We succceded Lo classily cven very long inputs,
consisting of 3 scntences and 6 clauses, in our
experiment.
(3) Distance

In our nctwork, the input domain forms a n-
dimensional space, where n is the number of featurcs in a
clausc. The UCL network clusters input vectors based on
their distances in that input spacc.



However, each axis of the input space represents a
word-feature. For one such dimension, the valuc 1.0 may
be used to represent human’, 0.8 to ‘object’, and 0.6 to
‘language’. So, ncarncss between thosce values is no
conscquence Lo the rescmblance of thc mcanings.

Instead of using Euclidean distance, we dcfine a new
distance D between input vector & and i-th prototype

W;, bascd on feature representation:
D(&. W)= Zj (Ej !=Wij)

where any (3 i =W, contributes 1

ij
else &, contributes 0.
4. Experiment

The proposed generalized model is simulated and then
trained with the task of a Secrctary. Here agent should act
for sccretary of a professor by executing tasks such as o
answer inquiries about professor’s schedule, to make
appointment, to take a message, elc.

For that task, 7 commands for Task Handler are
defined, as a start e.g.'when?' in Figure 2.2.1. For IA, we
defincd 8 functions which are some combinations of these
7 commands, as well as some different functions.

To train the network, we necd dilferent variations of
input sentences. This was done by collecting cxamples
from different persons. The whole input domain consists
of about 200 words and 118 patterns (106 patterns in
conversational forms and 12 patterns of broken
scntences). Each pattern itsclf consists of a few sentences
of which the longest sentence consists of 6 clauses.

We here describe two experiments on the Function
Deciding Network.

First, generalization performance is examined. By
gencralization we mean how the nctwork behaves, when
unscen sentences arc inputted. 106 input paterns of
conversational style ar¢ divided into two groups of
Training Samples(68 patierns) and Testing Samples (39
patterns). The nciwork is trained with 68 training
pattcrns. Then its gencralization ability is cxamincd by
testing with the unscen 39 test patterns,

Figurc 4.1 shows the network performance and
lcarning curve with training cpochs. Aficr completion of
training, the network showed nearly perfect
performance(92.3%) on testing patterns. Moreover, as
shown in the learning curve, the training converged very
quickly in less than 100 epochs.

we also examined robustness to broken inpul
sentences. After the completion of training with 68
samples, the network performance is tested with 12
broken sentences as input, in Figure 4.1, The result is
fairly satisfying, considering that thc network had neither
special noisc-modcling nor any training for such broken
sentences.

.'“]' 68 Training Swmples
T 68
100
I F 0 *

39 Teat Samples J l

N 36 |
\ I

averaged output error

12 Broken Sentences

. & L & g L] 9
Z ‘7s.o,|

Srrw on 8 forci ion of apack
3

Training Epoch
Generallzation Performance

Unsupuevised ilybrid

Figure 4.1

5. Conclusion

In this paper, we have proposcd a trainable NL
Interface for Intelligent Agent. Our intcntion was 10
design the model to be a general one. It could be uscd for
different purposcs, after it is trained with proper NL
subsct of its domain. The modcl is based on neural
nciwork, so ihat it could have such propertics as
Learnability, Adaptivity, Noise-Torelance, which we don't
cxpect with Rule-based NLP.

For the NL Interface, the parscr is 2 modified version
of a previous work on NN NL parser. We designed two
modules namcly Function Dcciding Module and Natural
Language Generator,

In the experiment, we trained and examined the main
network on the specific task of a professoi's sccretary. The
result was fairly satisfactory.

However, in the proposcd NLI, we haven't treated the
higher level processing, such as context. For future
extension of this work, it would be possible to add some
context processing mechanisms, and to design an extended
model of 1A,
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