RF AT THEREESEAE 69— 2

(1995. 3. 2)

T
—xEE g ban
KPH 8 R R
_ RETEBKF o
E-mail {chii, taki }@takilab.k.dendai.ac.jp
AWET TV 7= a3, BEMCTHELERS WSRO 7oL 2 6MlENns, FHET 7Y
r—3arTid. WEBIEERITR D 2Hic, BT ABTOAE L L 2P YETHD, ABLTIT.
BEFHE ADORT Yy TRAHVEAT v THIZ B 2T Z&I0 L3, —BEETo bar i
KT, KBRXTIE. MLRERTo havk, K70 ba 2T 3 4 DORF v 7Ttk L =61%
Y, AR O Fav T, BERROLL., RAZIERE, SHEMEICHLTE S,

General Consensus Protocols
Chiaki Yahata and Makoto Takizawa

Tokyo Denki University

Distributed applications are realized by the cooperation of multiple processes. In the distributed
applications, a group of processes have to make consensus to do the cooperation. In this paper, consensus
protocol is decomposed into four general steps, i.e. pre-voting, voting, global decision, and final local
decision. In the general consensus protocol, the process can change the mind after notifying other
processes of the opinion, various kinds of global decision logics can be adopted, and the cooperation

among the processes can be coordinated in centralized and distributed schemes.

1 Introduction

Distributed applications are realized by the co-
operation of multiple processes, each of which
is computed in one processor. The distributed
applications like groupware [1] are realized by a
group of multiple processes which are cooperated
by communicating with one another by using com-
munication networks. The processes in the group
have to make some consensus in order to do the co-
operation among them. In the consensus problem,
one value has to be decided by a group of processes
starting from a set of values of the processes.
There are kinds of consensus protocols required
by various distributed applications [9]. For exam-
ple, the two-phase commitment (2PC) [6] proto-
col is used to realize the atomic commitment {2] of
multiple subtransaction. In the commitment pro-
tocols, each process, i.e. subtransaction, cannot
change the mind after notifying other processes of
the vote, i.e. Yes(commit) or No(ebort). After
sending the vote to the coordinator process, the
process is in an uncertain state [10], where all the
processes can do is wait for the decision from the
coordinator because every process cannot change
the vote. However, in the human society, individ-
uals often change the minds even after notifying
others of the votes. For example, individuals often
change the schedules. In other applications, some
processes make an agreement even if the others
disagree with them. For example, in a meeting
of multiple members, something may be decided
if a majority of the members agree on it. In ad-
dition to the atomic commitment, various kinds
of decision logics have to be considered. When
considering the cooperation of multiple processes,

we have to think about what process coordinates
the cooperation among the processes. In the 2PC
protocol, the coordinator process plays a role of
the centralized controller. Some meeting has no
chair, i.e. every participant makes decision by it-
self. Thus, in addition to the centralized control,
we have to consider the distributed control where
there is no centralized controller.

In this paper, we assume that the communi-
cation network is reliable, i.e. each process can
deliver messages to any processes with no mes-
sage loss, and the network is not partitioned. We
would like to discuss a general framework of con-
sensus protocols in the presence of process fault,
i.e. stop-by-failure. The following points have to
be taken into account about the general consensus
model:

1 each process can change the opinion even af-
ter notifying other processes of the opinion,

2 each process can express the opinion No-idea
and Anyone-OK in addition to Yes and No,

3 various kinds of decision logics like all-
or-nothing and majority-consensus can be
adopted,

4 each process may be autonomous for the
group i.e. it may not obey the global deci-
sion, and

5 how to control the coordination among the
processes, i.e. centralized and distributed
controls.

In section 2, we discuss what has to be taken
into account on considering the consensus proto-
cols. In section 3, we present a general model of
consensus protocol. In section 4, we would like to

-7 —

discuss various consensus protocols based on the
general model.

2 Examples

A distributed system is composed of multiple
processors interconnected by communication net-
works. A distributed application is realized by the
cooperation of n (> 0) processes py, ..., Pn, €ach
of which is computed in one processor. In the
distributed applications, pi, ..., p» have to make
some consensus among themselves.

[Example 1] In the distributed database sys-
tem [9], if a transaction manipulating multiple
database systems, it has to be guaranteed that
the transaction either updates all the database
systems or none of them. It is an atomic com-
mitment [6,10]. There is one coordinator process
Po in the two-phase commitment (2PC) protocol
[2,6]. If a transaction would terminate, po sends
Vote Req message to all the processes pi,.
Each p; sends Yes message to pg if p; could com-
mit the transaction. If not, p; sends No to pp and
then aborts the transaction. If po receives Yes
message from every process, po sends Commit to
1o+ 1 Pn- If Po receives No, po sends Abort to all
the processes voting Yes. On receipt of Commit,
pi commits the transaction. O
The commitment protocols like the 2PC protocol
assume the following points:

1 no process can change the opinion after vot-
ing it,

2 the decision logic is based on the atomic com-
mitment, i.e. all-or-nothing principle,

3 there is one centralized controller, i.e. the co-

ordinator which coordinates the cooperation

of the participate processes py,: -+, pn.

process is not autonomous, i.e. it obeys the

decision of the coordinator, and

5 No dominates Yes, i.e. processes voting No
abort unilaterally without waiting for the de-
cision from the coordinator, and processes
voting Yes may abort if the decision of the
coordinator is Abort.

w»

[Example 2] Let us consider an example that a
group of individuals would like to go eating lunch
together. First, the individuals in the group ex-
change the tentative opinions on going out. Here,
one individual may say “I would like to go eating
lunch together”. Someone may say “No, I would
not like to go eating lunch together”. One may
say “I have no idea”. After listening to them,
each individual expresses the opinion, i.e. Yes,
No, No-idea, or Anyone-OK. Someone may ex-
press the opinion different from one which he ex-
pressed first. This means that he/she may change
his/her mind here.

Now, the group obtains the opinions from all
the individuals. The group has some logic to de-
cide whether to go lunch. For example, only if all
the individuals in the group agree on going eating

lunch, they may go eating. They may go eating
lunch if a majority in the group agree on it.

Next point is whether each individual obeys the
global decision or not. One individual p has to
obey the global decision if p depend on the group.
If p is autonomous for the group, p may not obey
the global decision. For example, some individual
does not go eating lunch together with the group
if he/she would not like. O

When considering the applications like the
groupware as presented in the example, the as-
sumptions on the commitment protocols have to
be relaxed. Following the examples, the general
consensus protocol has to take into account the
following points :

1 each process can change the opinion even af-
ter notifying other processes of the opinion,

2 each process can express the opinion No-idea
and Anyone— OK in addition to Yes and No,

3 various kinds of decision logics like all-
or-nothing and majority-consensus can be
adopted,

4 each process may be autonomous, i.e. it may

not obey the global decision, and

there are kinds of coordination among the

processes, i.e, the cooperation of the process

can be coordinated in the centralized on dis-

tributed scheme.

o

3 General Consensus Models
3.1 Basic procedure

A consensus protocol coordinates the coopera-
tion among processes py, ..., pn in order to reach
some decision. The general consensus protocol is
composed of the following four steps.

[General consensus protocol]

1 First, each process p; is required to express
the opinion. p; notifies all the processes of
its opinion pv; which is named pre-vote of p;.
This step is referred to as pre-voting.

p; receives all the pre-votes pvy, ..., pv,, from

P1, -+, Pn- p; makes a local decision on the

basis of pv,, ..., pv,. Here, p; can change the

tentative opinion again. Formally, p; obtains
the vote v; = Vi(pv,, ..., pv,). Here, V; is

a function which gives some value for a tuple

of values pv,, ..., pv,,. pi sends v; to all the

processes. This step is referred to as voting.

For the votes vy, ..., v, obtained from p;,

.+y Pn, a global decision v = GD(v,, ...,

v,,) is obtained. GD is a function which gives

v for a tuple of the votes vy, ..., v,. This

step is referred to as global decision.

4 p; obtains the global decision v. Based on v
and the votes vy,---,v,, p; makes the final
local decision and obtains d; = LD;(v, ...,
Un, v). LD; is a function which gives the fi-
nal local decision d; from the votes v;,...,v,
and v. This step is referred to as final local
dectsion. O

N

w

Let D be a set {dy,--+,dm, 1, T} of values.
Here, L. means that it is not decided which one
from dy,--+,dy is taken, e.g. process p; has
no idea on the decision. T means that any of
dy,-:-,dn is allowed, e.g. p; can vote any one &f
di,+ -+, dyn. Initially, p; has one value pv; in D as
the pre-vote. V; is a function from D" into D,
ie. for everypvj€ D (j =1,...,n), Vi(pvy, ...,
pv,) = v; € D. For example, if p; has no idea, p;
notifies all the processes of L. p; receives the pre-
votes pvy, ..., pv, from all the processes. Based
on the pre-votes obtained, p; makes the final lo-
cal decision by V;. For example, if p; obeys p;’s
opinion, v; = Vi(pvy, ..., pv,) = pv;. Here, it
is noted that v; may be different from pv;. While
listening to other opinions, i.e. pre-votes, p; can
change the opinion. p; notifies all the processes of
the vote v; obtained by V;.

Here, all the votes vy, ..., v, are collected by
one process or every process, depending on the
coordination scheme. For example, v;,---, v, are
sent to one coordinator in the centralized scheme.
The global decision v = GD(vy, ..., v,) is ob-
tained from the votes. GD is a function from
D" into D. As an example, let us consider the
2PC protocol where D = {1,0}. Each process
means a database server. Each process p; votes v;
€ {1, 0}. If all the processes vote 1, they commit.
If at least one process votes 0, all the processes
abort. Hence, GD(vy, ..., v,) = 1 if v; = 1 for

j=1,...,n GD(w, ..., va) = 0 if some v;
= 0. If the global decision is a value voted by a
majority of the processes, GD(vy,...,v,) = v if

Huilvi = v}| > §.

Each process p; receives the global decision v.
Problem is how p; behaves on obtaining v, i.e. p;
obeys v or not. p; has to obey v if p; is not au-
tonomous. If p; is autonomous, p; may not obey v
even if v is decided globally as presented in Exam-
ple 2. p; makes a final local decision by LD;(vy,
«ivy Un, v). LD; is a function from D™+! to D.
For example, if p; makes the decision of v; inde-
pendently of v, LD;(vy, ..., vp, v) = v. If p;
agrees on v, LD;(vy,...,vn,v) = v. If p; depends
on another p;, LD;(vy,++-,vn,v) = v;.

3.2 Process states

A local state of each process p; is given as a
tuple (pv;, vi, di) where py; is the pre-vote, v; is
the vote, and d; is the value finally decided by p;.
The local state denotes how p; makes the decision.
pi changes the local state on receipt of messages.
Here, suppose that D is a set {1,0, L, T} for sim-
plicity. First, let us consider an initial state of
B

For every state (@, b,¢), b=c= L ifa = 1,and
c=1ifb= 1. A state (a,b,c) is referred to as
transitable if b= L or c = L. (a, b, c) is referred to
as mind-changeable if b = L. For example, after
expressing the pre-votes 1, p; can vote 0 different
from the pre-vote, i.e. (1,1,.1l) is transited to

(1,0, 1).

[Definition] For a,b, and ¢ € D, if (a,b,1) is
transited to (a, b, ¢}, c is referred to as dominate b
if b# c(writtenasb<c). O

a < b means that process p; can change a to b.
a = b means that a > band a = b, and a < b.
a > b means that a > b or a = b. For exam-
ple, in the commitment protocol, 0 > 1 because
the process voting 0 only aborts. Figure 1 shows
the state transition of the 2PC protocol. (0,0,0)
means that a process voting 0 aborts. (1,1,.1)
means that the process votes 1. Up to the global
decision, (1,1, L) is transited to (1, 1, 1) if the pro-
cess commits, (1,1, 0) if the process aborts.

D is partially ordered on <. Since T can be
changed to any value in D, T is a bottom of D,
ie. foreverydin D, T <d. Avaluedin Dis
referred to as minimal in D iff there is no value d;,
in D such that d; < d. For example, in the 2PC
protocol, D = {1,0,1, T}, T is minimal in D. If
D has only one minimal value d, minimum, i.e. for
every dy, in D, d < dy. Each process p; can vote
the minimum d instead of voting T. For example,
in the 2PC protocol, p; can vote 1 if p; can commit
and abort, i.e. T <1 and 1 is minimum. A value
d in D is referred to as mazimal in D iff there
is no value di in D such that d < dg. If there
is only one maximal value d in D, i.e. for every
dp in D, dy, < d, d is the top of D. If p; votes
the maximal value d, p; never changes the mind.
Because d cannot be changed to any value.

For every pair of di and dj in D, the upper
bound of dy and dy, is a set {d|d € D,dp < 4,
and d, < d} of values dominating both dj and
di. di Udy denotes the least upper bound (lub)
of dy and dj,. That is, di U d}, is a value d such
that dy < d, dj <.d, and there is no d’ such that
di < d <danddp < d < d If not exists,
dyUd, =L

Let {(a,b,c) be a state. If b is maximal in D,
¢ has to be b because process voting b cannot
change the vote. Hence, if b is maximal, ¢ = b,
i.e. {(a,b,b). For example, if b = 0, i.e. process p;
votes No, p; aborts (¢ = 0), i.e. (0,0,0). Thus,
if b is maximal, (a, b,c) cannot be transited into
another state.

[Definition] A state (a,b,c) where b is maximal
is referred to as mazimal.Ol

State which is not maximal is referred to as tran-
sitable. Here, let us consider a state transition
from a state (a, by, c;) into (a, by, c;) where b, is
not maximal. If b; < b,, or by = b; and ¢; < ¢,
{a, by, c1) can be transited into (a, b, c;). For ex-
ample, 1 < 0 in the 2PC protocol. (1,1, L) can be
transited into (1,1,0) and (1,1,1) while (0,0,0)
cannot be transited Figure 1. Processes which are
in a transitable state after voting have to wait for
the global decision. On the other hand, processes
which are in a maximal state can terminate, be-
cause they made their final decisions already. For

" example, processes voting 0 aborts and processes
which have aborted cannot commit.

(1,1, 1) (1,1,1)

{0,0,0) (1,1,0)

Figure 1: State transition of the 2PC protocol

3.3 Global decision

After obtaining the votes vy, ..., v, from all the
processes py, ..., Pn, the global value v is globally
decided by using the function GD : D* — D.
For every tuple (vy,:--,vn) € D", GD(vy,*++,vn)
gives some value v in D. If 1 U.- .U, < v, every
process p; can change the vote v; to v. Unless
v; < v for some p;, p; cannot change the vote to v.
For example, suppose that there is a transaction
manipulating three database systems A4, B and C,
which votes 0, 1, and 1, respectively, in the 2PC
protocol. If GD(0,1,1) = 0, B and C can change
the vote to 0, i.e. can abort. On the other hand,
suppose that GD(0,1,1) = 1. A cannot commit
because B aborts already although B and C can
commit.

[Definition] GD is referred to as regular if
for every (vy,+--,v,) € D% v U--- U, <
GD(vy,---,vp). O

If GD is regular, every process can change the
vote into the global decision. If not, some process
p; may not obey the global decision unless v; < v.
For example, process aborting cannot obey the
global decision if the global decision is commit.

There are the following kinds of global deci-
sions:

1 Commitment decision : GD(v1,...,v,) = 1

if every v; = 1, GD(v1,...,vn) = 0 if some
v; = 0 where D = {1,0,1,T}.

2 Majority-consensus decision on v: GD(vy, ...
y¥n) = v if ey = v} > 3, otherwise
GD(v1,..., V) = 11U+ U,

3 () -decision on v: GD(vy,...,vs) = v if

every v; = v, otherwise GD(vy,...,v,) =
v U-+- Uy,

4 (1) -decision on v: GD(vi,...,vs) =
v if |[{wfjw = v} > r, otherwise

GD(‘I}l,...,ﬂn) =9 U--+Ur,.
5 Minimal-decision: GD(vy,+-+,vn) = v1,U---U
Vn.

6 Super-vote: GD(vy,--,v,) = v; if p; has the

highest priority.

In the commitment decision, only if all the
votes are 1, 1 is globally decided. If some process
votes 0, 0 is decided. It is used by the 2PC pro-
tocol. The commitment decision on {0,1,1, T}
can be extended to D = {dy,---,dm, L, T}
GD(vy,--+,v,) = v if every v; = v. Otherwise,
GD(vy,++,v) = v1U-+-Uv,. v U-+ Uy, means
a value to which every v; can be changed. If such

a value does not exist, i.e. vyU---Uwv, = 1, noth-
ing is decided. In the 2PC protocol, 1 < 0. Hence,
ifsome v; =0, vy U+ Uy, =0,

In the majority decision on v, if a majority of
the processes vote some v, v is globally decided.
Otherwise, nothing is decided if vy U---Uv, = L.

In the (7) -decision on v, if all the processes
vote some v, v is globally decided. Otherwise,
nothing is decided if v; U.-- Uy, = L.

In the (7) -decision on v, if #(< n) processes
vote some v, v is globally decided. If » > 3, the
() -decision is the majority one on v.

In the minimal decision, every process p; agrees
on the value v = v; U... U v, where v is mini-
mal values which every v; can be changed to. If
v U-.-Uv, = 1, nothing is decided. The binary
commitment decision is a kind of the minimal de-
cision. In the super-vote, the global decision is
value voted by the higher priority process.

In addition, GD can be defined based on the
application semantics. For example, if every pro-
cess obeys p;’s opinion, GD(vy,...,¥n) = ¥;.

3.4 Coordination schemes

Another point is concerned with which process

. coordinates the cooperation among the processes

Pi,+*yPn. I one process po named a coordina-
tor coordinates the cooperation of the processes
P1,°* "3 Dp, it is referred to as centralized control.
The 2PC [6] and 3PC [10] protocols are the exam-
ples of the centralized control. In the centralized
control, every p; first sends the pre-votes py; to po.
po collects pvy, ..., pv,, and sends (pvy,...,pv,)
to p1,...,Pn. On receipt of (pvy,...,pun), pi de-
cides the vote v; = Vi(pvi,...,pvs). pi sends v;
to po. On receipt of all the votes vy,...,v,, Po
makes the global decision of v = GD(vy,...,v,),
and then sends v to p;,...,ps. On receipt of
v, p; makes the final local decision of d; =
LD;(vy,...,vn,v).

P Pi Pn

4 : local decision (V)

O : global decision (GD)

O : final local decision (L D)
Figure 2: Distributed control

If there is no centralized controller, it is referred
to as distributed conirol. In the distributed con-

trol [Figure 2], each process p; sends the pre-vote
pY; to pr1,...,Pn. On receipt of pvy,...,pon, B
makes the local decision of v; = Vi(pvy,...,ptn)
by itself. p; sends the vote v; to py,...,pn. On re-
ceipt of vy, ..., vy, every p; makes the same global
decision of v = GD(vy,...,vn). Then, p; makes
the final local decision of d; = LD;(v;,...,Vn, v).
Each p; has the same GD and makes the deci-
sion by itself on the basis of GD. p; can make
the decision without waiting for the decision from
the coordinator. In the distributed control, ev-
ery process p; has to send message m to all the
other processes. If the broadcast network is used,
p; can send m to all the processes by issuing one
data transmission request of m to the network. If
not, p; has to issue n times requests of m.

4 Consensus Protocols

We would like to describe various consensus
protocols in terms of the general model.

4.1 Atomic commitment protocol

First, we would like to present the atomic com-
mitment protocol. In the commitment protocol,
suppose that 1 means commit and 0 means abort.

Since each process cannot change the mind, the
pre-vote is the same as vote, All the processes vot-
ing 0 abort unilaterally, i.e. without waiting for
the global decision. The initial state of process p;
is either (1,1, 1) or {0,0,0). (0,0,0) is maximal.
On the other hand, processes voting 1 may com-
mit or abort up to the global decision. Hence, 0
dominates 1, i.e. 0> 1.

Only if all the processes vote 1, they commit.
If some process votes 0, all the processes abort.
GD is the commitment decision, GD(1, ...,1) =
land GD(...,0,...) = 0. GD is regular.

The final local decision is LDi(vy, ...,0, v)
= v because p; voting 1 obeys the global deci-
sion. That is, the processes voting 1 are not au-
tonomous.

4.2 Extended commitment protocol

As presented before, each process can vote ei-
ther 1(Yes) or 0(No) in the conventional 2PC pro-
tocol. We would like to extend the commitment
protocol so that each process can vote L (No_
idea) and T (Anyone-OK). In the 2PC protocol,
each process p; may not be able to vote even if
pi receives Vote Req from the coordinator po, e.g.
pi is too heavy-loaded to vote. In such a case, p;
can vote L instead of voting 1 or 0, or p; can be
considered to vote L if no reply of VoteReq is re-
ceived in some time units. Processes voting . or
T are referred to as undecided. Processes voting
0 or 1 are referred to as decided. First, we would
like to present the basic protocol.

{Basic protocol]
1 First, the coordinator py sends Vote Req to all
the processes py,...,pn, e.g. if a transaction
T finishes all the operations.

2 On receipt of VoteReq from po, each p; sends
1 or 0 to po. In addition, p; may send L to
Po if p; could not decide whether to vote 1 or
0. p; may send T to po if p; could commit or
abort the transaction.

3 If po receives 1 from all the processes and
po would like to commit, po sends Commit
to p1,...,Pn. If po receives 0 from at least
one process and po would not like to commit,
po sends Abort to all the processes voting 1,
1, or T. If po receives T from all the pro-
cesses, every p; obeys po’s decision, i.e. if py
would like to commit, po sends Commit to
P1y- .-y Pn, Otherwise i.e. if po would not like
to commit, po sends Abort to p1,...,Pn.

4 Here, some process p; votes L. If all the de-
cided processes vote 1, pp sends Commitable
to the undecided processes.

5 If p; votes L, on receipt of Commitable, p;
sends 1 to py if p; could commit, 0 to po if p;
could abort. p; sends L to py again if p; still
could not decide 1 or 0.

6 If pp could not receive 1 or 0 from all the un-
decided processes after sending Commitable
m(> 1) times, po sends Abort to all the pro-
cesses, i.e. voting 1 or 0.

7 After voting 1, L, or T if p; receives Abort
from po, p; aborts. After voting T and 1, if
pi receives Commit from pg, p; commits. O

Next, suppose that po faults after each pro-
cess p; votes before sending the reply to all the
processes. After voting, process p; voting 1 or
L invokes the following termination protocol if p;
times out.

[Termination protocol]

1 p; sends StateReq to all the processes.

2 On receipt of StateReg from p;, each process
pi sends the local state to p;, i.e. 1 if p;
votes 1, 0 if p; votes 0, L if p; votes L, T
if p; votes T, Commitable if p; receives Com-
mitable, Commit if p; receives Commit, and
Abort if p; receives Abort.

3 p; makes the decision by the termination rule
if p; receives the replies of StateReq. O

{Termination rule]
1 If p; receives Commitable from some process,
p; commits if p; votes 1 or T.
2 If p; receives Aboriable from some process, p;
aborts.
3 If p; receives L from some process and p;
votes L, p; aborts.
4 If p; receives 1 from all the processes, p;
blocks.
5 If p; votes L and receives the states except
Commit or Abort, p; votes 1 or 0. O
If all the operational processes are in the state
of 1, they have to wait, i.e. block [10].
Next, suppose that process p; recovers from the
failure. Suppose that p; records the local state

in the log L;. p; invokes the following recovery
protocol if p; recovers.
[Recovery protocol]
1 p; restores from L; the state where p; failed.
2 If p; is not in a state of Commitable, Aboried,
1, or T, p; asks other processes in the same
way as the termination protocol.
3 If p; is in a state of L or T, p; aborts. O

4.3 Distributed
commitment protocol
Processes py, ..., p, cooperate as follows with-
out any centralized controller.
[Basic protocol]
1 Some p; broadcasts VoteReq to all the pro-
cesses.
2 On receipt of VoteReq, p; broadcasts the
votes, i.e. 1,0, 1, or T.
3 On receipt of 1 from all the processes, p; com-
mits.
4 On receipt of 0 from some process, p; aborts.
5 On receipt of T from all the processes, p; can
commit or abort by itself.
6 If p; receives 1 from at least one process and
T frem all the other processes, p; commits.
7 If p; receives 1 from at least one process and
1L from all the other processes, p; waits. If p;
times out, p; sends VoteRegq to the processes
voting L.
8 If p; votes L, on receipt of VoteReq, p; votes
by step 2. O
Suppose that p; stops by failure. If p; had not
received the vote of p; in some time units p; in-
vokes the termination protocol.
[Termination protocol]

extended

1 pi sends StateReq to all the operational pro-

cesses. :

2 On receipt of StateReq, p; sends the local
state to all the processes.

3 On receipt of the states, p; makes the decision
by the termination rule. O

[Termination rule]
1 If p; receives committed state from some pro-
cesses, p; commits.
2 If p; receives aborted state from some pro-
cesses, p; aborts.

3 If all the processes are undecided, p; aborts.
a

pj records the local state in the log L;. p; in-
vokes the following recovery protocol if p; recov-
ers.
[Recovery protocol]

1 p; restores from L; the state where p; failed.

‘2 If p; is not in a state of Commitment, Abort,
undecided, p; asks other processes in the
same way as the termination protocol.

3 If p; is in a state of undecided, p; aborts. O

5 Concluding Remarks

This paper discusses general framework of var-
ious consensus protocols. The general consensus
protocol is composed of four steps, i.e. pre-voting,
voting, global decision, and final local decision.
We have described various consensus protocols in
terms of the model. By composing the procedures
for pre-voting, voting, global decision, and final lo-
cal decision, we can make the consensus protocols
required in the applications.

References

[1] Barborak, M., Malek, M., and Dahbura,
A., “The Consensus Problem in Fault-
Tolerant Computing,” ACM Computing Sur-
veys, Vol.25, No.2, 1993, pp.182-184,198-199.

Bernstein, P. A., Hadzilacos, V., and Good-
man, N., “Concurrency Control and Recov-
ery in Database Systems,” Addison-Wesley
Publishing Company, 1987, pp.222-261.

[2

[

[3

=

Birman, K. P., Schiper, A., and Stephenson,
P., “Lightweight Causal and Atomic Group
Multicast,” ACM Trans. on Computer Sys-
tems, Vol.9, No.3, 1991, pp.272-314.

Ellis, C. A., Gibbs, S. J., and Rein, G. L.,
“Groupware,” Comm. ACM, Vol.34, No.l,
1991, pp.38-58.

Fischer, J. M., Lynch, A. N., and Paterson, S.
M., “Impossibility of Distributed Consensus
with One Faulty Process,” Journal of ACM,
Vol.32, No.2, 1985, pp.374-382.

[4

L=

[5

[

(6

—

Gray, J., “Notes on Database Operating Sys-
tems, An Advanced Course,” Lecture Notes
in Computer Science, No.60, 1978, pp.393-
481.

{7] Lamport, L., “Time, Clocks, and the Or-
dering of Events in a Distributed System,”
Comm. ACM, Vol.21, No.7, 1978, pp.558-
565.

Lamport, L. and Shostak, R., “The Bysan-
tine Generals Problem,” ACM-
Trans. Programming Languages and Sysiems,
Vol.4, No3,1982, pp.382-401.

Ozsu, M. T. and Valduriez, P., “Principle
of Distributed Database Systems,” Prentice-
Hall, 1990,

[10] Skeen, D. and Stonebraker, M., “A For-
mal Model of Crash Recovery in a- Dis-
tributed System,” IEEE Computer Society
Press, Vol.SE-9, No.3, 1983, pp.219-228.

[11] Turek, J. and Shasha, D., “The Many Faces
of Consensus in Distributed Systems,” Dis-
tributed Computing Systems, IEEE Com-
puter Society Press, 1994, pp.83-91.

[8]

—

9

—_—

