RAF AT 4 TRELSELE 7019
(1995. 5. 26)

SEZET v b anZRERN 7 v — 7 EE
SO BRET IR A

B ES A TR B TR
e-mail {tachi, taki}@takilab.k.dendai.ac.jp

[EEIEH Y 27 4C), RO v xXEco/r—FERLEL AL, Yo —FEEcR, TAr—TF
NOLT U ARAy t~CEBBTILEVIETHEL, £702RBEDLS5AEFTAYy t— V% %ET
S S ERPTELRET 2 0THD 5. ok hESEOEFRGRE, RRBMEFEL WS, KRTTR, 7
A—THOLT vt R L, REBEFREK, A v t—CREILI/A—TEE v tarconTH
L3, K7ubrari, Ny77F—r"9 I Aye—VofRiRc VB ImERERYFIATS. ¥
%, 167 0 RDGFEL E WRDHBOFHELCE TS, ZEA v v — CORPMFRIC X 2IHF
ok, Ay e—CoBBLRANCITSAHIC, Ay et— ok iRIBEL, HIHTY 3.

'}

Distributed Protocol for Selective Intra-group Communication

Takayuki Tachikawa and Makoto Takizawa
Tokyo Denki University

In distributed applications, a group of application processes is established and the processes in
the group communicate with each other. i.e. intra-group communication. Here, messages have to be
atomically delivered to all the destinations and be causally ordered. In addition, the processes send
messages to any subset of the group at any time. This paper presents an intra-group communication
protocol which provides the selective and causally ordered (SCO) delivery of messages. The SCO protocol

is based on the fully distributed control scheme.

1 Introduction

Distributed applications require group commu-
nications among multiple application processes.
One kind of group communication [6-8] is in-
tra-group communication where a group of pro-
cesses is established and the processes communi-
cate with one another in the group. In the se-
lective group communication [8), each process can
send messages to any subset of the group at any
time. [5] discuses a selective sending-order pre-
serving (SOP) protocol where each process can re-
ceive messages destined to the process in the send-
ing order. [8] discusses a selective totally ordering
(STO) protocol where every two common desti-
nation processes of every two messages receive the
messages in the same order by using the broadcast
network. ISIS {1] supports multicast where pro-
cesses can send messages to pre-defined groups of
processes where every two common processes in
every two groups can receive the messages sent to
both of the groups in the same order.

In this paper, we would like to discuss an intra-
group communication protocol supporting the se-
lective and causally ordered (SCO) delivery of
messages. While [6-8] use the broadcast network
and 1] use the reliable one-to-one network, the
SCO protocol uses the high-speed one-to-one net-
work. In the high-speed network, messages may

be lost due to the buffer overrun and congestion.
According to advances of VLSI technologies, each
process can be considered to be reliable. There-
fore, we can assume that the processes are reliable
but messages may be lost.

The sender of each message p [1,10] or se-
quencer [2] decides on the atomic and ordered
delivery of p to all the processes in the non-
distributed approaches. The SCO protocol adopts
the distributed control. Here, each process has to
send other processes the acceptance confirmation
of messages received. That is, more messages are
transmitted in the distributed control than the
non-distributed one. In order to decrease mes-
sages, the piggy back and deferred confirmation
are adopted.

In section 2, basic concepts are defined. In sec-
tion 3, we discuss the data transmission procedure
of the SCO protocol. In section 4, we evaluate the
performance of the SCO protocol by comparing
with the non-distributed protocols.

2 Basic Concepts

2.1 Selective causal order

A communication system is composed of ap-
plication, system, and network layers. The net-
work layer provides the system layer with high-
speed data transmission service. System process

—111—

E; sends messages to other processes by using the

network layer. In the high-speed network, E; may

fail to receive messages due to the buffer overrun
and congestion. A group G [?] of application pro-

cesses Ay, ..., A, is supported by E;, ..., E,,

written as G = (By, ..., En) (n > 2).

Processes Py, ..., P, at each layer use service
provided by the underlying layer. We model the
service of the underlying layer as a set of logs. A
log L is a sequence of messages, denoted as (m;
.. mg). my precedes my, in L (my ~p my) iff t <
u. P; has a sending log SL; and receipt log RL;,
which are sequences of messages sent and received
by F;, respectively (i = 1, ..., n). s;[m] and r;[m]
denote the sending and receipt events of message
m by process P;, respectively.

The causal precedence relation “<” [1] among
the messages is defined based [3].

[Definition] For messages m and m’ sent by F;

and Pj, respectively, m causally precedes m' (m

< m') iff s;[m] — s;(m']. O

m and m' are causally concurrent (m || m') if

neither m < m’ nor m’ < m. “<” is transitive. m

<m'iff m <m orm|| m.

m precedes m' in SL; (m ~»sg; m') if s;[m)]
— si[m']. Here, m locally precedes m' in P;. m
precedes m’ in RL; (m ~sgp, m') if i [m] — ri[m'].
[Definition] ‘

(1) RL; is selectively information-preserved iff
RL; includes all the messages in SLy, ..., SL,
which are destined to F;.

(2) RL; is local-order-preserved iff for every pair
of messages m and m’ sent by P; in RL;, m
~ g, M ifm o~ M.

(3) RL; is causally preserved iff for every pair of
mand m' in RL;, m ~pgy, m' if m <m/. O

Figure 1 shows the data transmission among four

processes E;, E;, E3, and E4. t < p < r < g be-

cause F sends p after ¢, E; sends r after receiving

p, and Ej sends g after receiving r. Since Fy4 re-

ceives g after p, RLs = (p q] is causally preserved.

That is, r4[p] — r4[q] since p < gq.

E) Ez Ea E(
i
T
\
~

y time

Figure 1: Causally preserved receipt

[Definition] Selective causelly ordering (SCO)
service is one where every RL; is selectively
information-preserved and causally preserved. O

The high-speed one-to-one network is local-order-
preserved but not information-preserved, i.e. mes-
sages may be lost.

2.2 Acceptance levels

There are levels on how system process E; ac-
cepts message p from E;.

+ E; simply accepts p iff E; takes p on receipt
of p if p is destined to E;.

« E; continuously accepts p iff E; simply ac-
cepts p and all the messages locally preceding
pin E;.

» E; causally accepts p iff E; simply accepts p
and all the messages causally preceding p.

Unless E; simply accepts p destined to E;, E; loses

p. If E; loses g locally preceding p in Ej, E; can

accepts simply but not continuously p.

[Theorem 1] For every process E; and message

p, if there is message ¢ (< p) which E; continu-

ously accepts from E,, E; causally accepts p. O
» E; atomically accepts p iff E; knows that ev-

ery destination of p simply accepts p.

A message g sent by each E), includes the confir-
mation of p which Ej has simply accepted before
sending q. Here, g is referred to as confirm p. If E;
simply accepts messages confirming p from every
destination of p, E; atomically accepts p.

+ E; continuously atomically accepts p iff E;
atomically accepts p and all the messages lo-
cally preceding p in Ej.

+ E; causally atomically accepts p iff F; atomi-
cally accepts p and all the messages causally
preceding p.

E; can pass them to the application in the causal
precedence order. p is fully accepted by E; if E;
could pass p to the application. In Figure 2, a —
B shows that o implies 8.

causally atomic

causal continuously atomic

continuous atomic

simple

Figure 2: Implication of acceptance

E; has to causally accept p in the presence of
loss of messages causally preceding p. If E; loses
q locally preceding p in E;, E; knows the loss of
g when E; receives messages locally following p
in E;. By Ej’s retransmitting ¢ to E;, Ej can
continuously accept p.

2.3 Control schemes

There are three kinds of schemes, i.e. cenirai-
1zed, decentrelized, and disirtbuted ones on how

—112—

to coordinate the cooperation among the system
processes Ei, ..., En. In the non-distributed pro-
tocols {1,2, 10}, one controller or a sender of mes-
sage p plays a role of the controller. They are
based on the two-phase commitment protocol. In
Figure 3(1), E1 plays arole of controller and sends
message p to E; and E3. Totally 3d messages are
transmitted and it takes three rounds for number
d of destinations.

In the distributed protocol, every E; makes de-
cision on the atomic and ordered delivery of mes-
sage by the cooperation with other processes. If
E; simply accepts ¢ from E;, E; knows that E; has
simply accepted every message psuch that r;{p] —
s;[g)- If E; simply accepts the message confirming
p from all the destinations of p, E; knows that E;
atomically accepts p. Even if some E) does not
receive messages confirming p, Ei can ask another
if p is atomically accepted. Figure 3(2) shows the
distributed control. Here, totally d® messages are
transmitted and it takes two rounds.

E, E, E3 E, E, E3

1>
T

p
q
4

(2) Distributed control

\ \ Y time
(1) Non-distributed control

Figure 3: Atomic delivery

In order to decrease messages in the distributed
control without increasing the delay time, we
adopt the following strategies:

(1) the acceptance confirmation is carried back
by the message, and

(2) each E; does not send the acceptance confir-
mation as soon as E; receives messages.

Here, messages with and without data are data
and control ones, respectively. After accepting
data message p from E;, F; sends data ¢ with
the confirmation of p to E; and the destinations
if there is data to send. If there is no data to E:
(E; or the destination of p), E; does not receive
the confirmation of p. While no additional con-
trol message is transmitted to Ey, it takes longer
to atomically accept p. E; sends the control mes-
sages to the processes which E; has not sent the
data messages for some time units.

3 Data Transmission

‘We present the data transmission procedure of
the SCO protocol for a group ¢ = (Ey, ..., Bn)
by using the high-speed one-to-one network.

Y lime

3.1 Transmission

Messages are sent to only the destinations in
G since the one-to-one network is used. FE; sends
message p with total sequence number sqn and lo-
cal sequence numbers lsny, ..., lsn,. Bach time
E; sends message, sqn is incremented by one.
Each time E; sends message to Ej, lsn; is incre-
mented by one. If the message is not destined to
E;, Isn; is not incremented (7=1,...,n) phas
field dst denoting the destinations in G.

E; has variables SQN, LSN4, ..., LSN,. SQN
denotes sgn of message which E; expects to send
next. LSN; shows lsn; of message which E; ex-
pects to send next to E;. E; constructs message
p by the following procedure.

[Transmission]
p.dst := destinations of p; p.src:= Ej
p.sgn := SQN; SQN := SQN + 1;
for (j =1, ..., n) { p.lsn; := LSNj;
if E; € p.dst, LSN; := LS§Q; + 1; }o

3.2 Continuous acceptance

E; has variable LRN; which denotes lsn; of
message which E; expects to receive next from E;
(j = 1, ..., n). Suppose that E; sends message p
to E;. On receipt of p, E; simply accepts p if E; €
p.dst and enqueues p into a receipt queue RRQ,
for E;. Messages from E; are stored in RRQ;
in the sending order. E; continuously accepts p if
p.sn; = LRN;. If p.lsn; # LRN;, E; finds that E;
does not receive message g from E; where p.lsn;
> g.lsn; > LRN;. F; requires E; to send again.
On receipt of ¢ from E;, E; stores ¢ in RRQ;.

Suppose that F; continuously accepts p from
E;. E; sends the acceptance confirmation of p
to E;. The confirmation of p is carried back by
message which E; sends to Ej. sgn of message
which E; expects to simply accept next from Ej
is stored in p.acky (h = 1, ..., n). On receipt
of p from Ej, E; knows that E; has continuously
accepted messages from E) whose sgn < p.ackn.

E; has n x n matrix AL. p.acky is stored in
ALjp (h=1,...,n)and p.sgn isin AL;; if p from
E; is accepted by E;. ALj; denotes sqn of message
from Ej, which E; expects to continuously accept
next. Hence, when F; sends p, p.ack; := AL;; (j
=1,..., n) in the transmission procedure.

Unless E; sends message to Ej, E; cannot know
which messages E; has accepted. E; sends at least
one message to every process every some time
units. E; has variables ACCy, ..., ACC, to de-
note to which process E; has to send the confir-
mation. Here, if ACC; = on, E; has not yet sent
E; the acceptance confirmation of message which
E; had accepted from E;. If ACC} is still on af-
ter some time units, E; sends Ej control message
with acky, ..., ack,, and theACCy := onfor h =
| P (8

On receipt of p from E;, E; accepts p by the
following acceptance procedure.

—113—

[Acceptance procedure]
if plsn; = LRN;, {
ALjp := p.acky (h=1,..., n);
LRN; := LRN; + 1,
forh=1,...,n, ACC}, := onif Ey € p.dst;
p is enqueued into RRQ;; } 0

3.3 Causal acceptance

Let p and ¢ be messages sent to E; from E;
and E}, respectively. If every message is sent to
all the processes in G, more exactly speaking, if
q.s7c € p.dst, the following condition (7] holds.
[Causality condition] If g.src € p.dst, p < ¢ iff
(1) if Bj = Ep, p.sgn < q.aqn,

(2) otherwise, p.sgn < g.ackj. O

In Figure 1, p.sqn £ q.ack; since t.sqn < p.sqn
and q.ack; = t.sqgn + 1. Thus, the causality con-
dition does not hold unless Ej, € p.dst. A message
p sent by E; carries the causal sequence numbers
csny, ..., ¢3g,, and E; has variables CSN,, ...,
CSN,.. On continuous acceptance of p from Ej,
E; updates CSNy, ..., CSN,, as follows.
[Causality rule]

(1) CSN; := p.sqn + 1 if E; = p.sre.

(2) CSNy, := maz(CSNy, p.csny) (for h =1, ...,
n, h# j). 0

Here, CSN), > ALjy (h = 1, .., n). Thus,

the causality number is derived from the total

sequence numbers. When FE; sends message gq,

g.csnp := CSNy (h =1, ..., n).

[Theorem 2] For every pair of messages p and gq,

p<gqiff

(1) p.sgn < q.sgn if p.sre = q.src,

(2) p.sqn < g.csnj for E; = p.src otherwise.

If E; simply accepts message q from E; where
g.lsn; > LRN;, E; finds that E; has not continu-
ously accepted message p where LRN; < p.lsn; <
g.lsn;. qis enqueued into RR Q; and p is transmit-
ted again. For RRQ; = (pi, ..., Pm), let PRRQ;
be a mazimally conlinuous prefiz (py, ..., py] of
RRQ; (m < h) where p; is continuously accepted
for every k < h and pay; is not if b < m.

E; moves messages continuously accepted in
RRQ,, ..., RRQ, to a causality queue CRQ by
the following procedure. In CRQ, messages are
causally ordered according to Theorem 1.

[Causally ordering procedure]

while (PRRQ, # ¢ for every j=1, ..., n) {

(1) E; finds the top p of some PRRQ; where p <
q for the top g of every other PRRQ,.

(2) p is moved from RRQ; to CRQ. If there is
the top g of some REdh such that p || ¢, g is
also moved into CRQ. } O

[Example] Let us consider a group G = (B, E;,
E3, E4) as shown in Figure 4. Here, me(ly, I,
{3, l4) shows message where sgn = k and csn; =
ki (i=1, ..., 4). Suppose that initially SQN = 1
in every process. E4 continuously accepts c; from
Ej3, a; from Ey, and c; from E;3. Ey sends dy to E3

and E4. At (1) of Figure 4, E4 has RRQ; = (a;
} RRQ, = (¢], RRQs = (c; 3 |, and RRQ, =
(dy]. Since PRRQ, = ¢, no message is removed
from any receipt queue. E4 continuously accepts
a3 from E;, and b; from E,;. At (2), RRQ, = (a,
a3}, RRQ; = (b3], RRQ3 = (c1 3], and RRQ,
= (dy]. The tops a1, by, c1, and d; of the receipt
queues are compared on csn. Here, PRRQ; =
RRQ; (i=1, .., 4). a; and ¢, are removed from
RRQ, and RRQj, respectively, and are enqueued
into CRQ since a, || ¢y, @3 < b3, and a3 < d;.
Here, RRQ, = (a3], RRQ; = (by], RRQ; =
(c2],and RRQ, = (d;]. Since c; || dy, c3 <
a3, and ¢;3 < b3, ¢z and d; are moved into CRQ.
Here, CRQ = (¢ @1 c3 d;] where ¢; < a3 < ¢;
= d,. Here, CRQ might be (aj ¢y c3dy], (a1 ¢;
dycz},0r(cyayd;c;]sincea; ||c; and ¢, || d;.

E; E; E3 E,

a(1,1,1,1)
ar(1,1,1,1) /
\\

[/

b;1(2,1,2,1)

T~

\ /]

c2(2,2,2,1
&2)dl(2,1,2,1)

(1)

\
A

/
a2(2,2,3, 1)

'\
b2(3,2,3, 1)

'\

[/

AW

<(2)

' time
Figure 4: Example

Here, suppose that E4 loses a;. E4 finds the
loss of @; on acceptance of a,. PRRQ, is empty
while RRQ, = (a3]. Hence, no message in RRQs
is moved to CRQ. On receipt of a;, B4 obtains the
same receipt queues as (2). Then, the messages
are causally accepted. O
[Proposition 3] For every message pin CRQ, E;
causally accepts p. O

Each time message p from E; is moved to CRQ,
AL := p.sqn. All the messages from every E;
whose sgn < AL;; are causally accepted by E;.

3.4 Full acceptance

Let p be message accepted by E; from E; and
minAL;(p) be min({ALy; | Ey € p.dst}). If p.sqn
< minAL;(p), p is causally atomically accepted.

[Theorem 4] If E; atomically accepts p, p is even-
tually atomically accepted by every destination.

[Theorem 5] For every message p in ARQ, E;

—114—

fully accepts p. O
E; has one acknowledgment queue ARQ in
which messages causally atomically accepted, i.e.
fully accepted are stored. While the top p of CRQ,
where p.dst = E;, satisfies p.sgn < minAL;(p), p
is dequeued from CRQ and enqueued into ARQ.
[Full acceptance]
while (p.sgn < minAL;(p) for the top p of
CRQ, where pis sent by E;) {
p is dequeued from CRQ and
enqueued into ARQ. } O

3.5 Flow control

FE; includes the number of available buffers in
the field buf of p, i.e. p.buf := BUF;. On accep-
tance of g from Ej, E; knows how many available
buffers E; has and BUF; := q.buf. Let minBF (p)
denote min{ BUF, | Ey € p.dst }. Each E; can
send message p only while the following flow con-
dition is satisfied. Here, W is the maximum win-
dow size and H is constant (> 1).

[Flow condition] mindAL; < SQN < minAL; +
min(W, minBF(p) / (H x n)). O

4 Evaluation

Table 1 shows how to realize the acceptance lev-
els in CBCAST [1], CO (7], and SCO protocols.
In CBCAST, the network layer supports the con-
tinuous acceptance i.e. reliable. While messages
may be lost in CO and SCO. In order to contin-
uously accept messages, the sequence numbers of
messages are used. While CBCAST uses the vec-
tor clock [4], CO uses the vector of sequence num-
bers assuming that the messages are sent to all
the processes in the group. SCO uses the vector
clock derived from the sequence numbers of the
messages. CBCAST and AMp are decentralized.
CO and SCO are distributed ones.

We assume that each process sends messages
randomly to d (< n) processes in a group § =
(Ei, ..., E,). In the non-distributed, one co-
ordinator C sends message p to the destinations
in G and the destinations send back the reply to
C if they succeed in accepting p. C sends the
confirmation of p if all the destinations receive p,
otherwise sends the failure to them. Hence, N(d)
= 3d messages are transmitted and it takes three
rounds for each message to be atomically accepted
as shown in Figure 3(1).

. In the distributed control, after accepting mes-
sage p from Ej, each destination FE; of p sends
the confirmation to E; and all the destinations
as shown in Fig 3(2). D(d) = d® messages are
transmitted and it takes two rounds E; sends the
confirmation to Ej if E; does not send message to
E for some time units, i.e. deferred confirmation.
The distributed and non-distributed controls with
piggy back and deferred confirmation are named

modified distributed and centralized controls, re-
spectively.

The non-distributed (Cp), modified non-
distributed (Ci), distributed (Do), and modified
distributed (D,) schemes are compared in terms
of number of messages and delay time to fully ac-
cept message. D; means the SCO protocol. Fig-
ures 5 and 6 show the ratios of the number of
messages and delay time of C;, Dy, and D; to
Co where n=10. Here, we assume that every E;
sends a (> 1) messages every one time unit. We
also assume that F; sends the control messages
to only the processes to which E; does not send
messages in k (> 1) time units. One round is r
time units. In Figures 5 and 6, a=1, k=4, r=4,
and d=5. Figure 5 shows that the longer & is,
the less control messages are transmitted and the
longer delay time it takes. However, D; does not
require much longer delay time than Dy and the
delay time of D; is much smaller than Cp and
C;. C; has the minimum number of messages but
the largest response time, about two times longer
than D;. Figures 7 and 8 show the ratios of the
number of messages and delay time for d. D, has
less messages than Cy and Dg. Ford = 3to 8, C;
has less messages than D; but the difference be-
tween C; and D, is smaller than 20% of D;. The
delay time of D; is 50% smaller than Cy and C;
and does not get much greater than Dp while the
deferred confirmation is used in D;.

In summary, C; has the least messages but the
largest delay time. Do has the shortest delay time
but the largest number of messages. Dy, i.e. SCO
supports the second least messages and the second
smallest delay time, but the difference from the
best one is small, i.e. smaller than 20%. Hence,
D; can support the better feature than the others
in terms of number of messages and delay time.

3 —r -~ - —
g B
? 2.5 c1 -
@ CO e
@

= 2

w

o gy gy
1)

é 1.5

3

o

- 1

o

8

o 0.5

g

o

o PR Rt PP
12 3 4 5 6 7 8 9 1011 12 13 14 15
k

Figure 5: Number of messages (n = 10)

5 Concluding Remarks

This paper has discussed the distributed intra-
group communication (SCO) protocol support-
ing the causally ordered and selective delivery of
messages to the destinations in the group. The

—115—

.Ratic of delay time

Katio of the number of messages

Table 1: Acceptance levels

["acceptance level | ISIS (CBCAST) | CO (broadcast) [SCO (point-to-point)
simple network service | network service network service
continuous network service | sequence number sequence number
causal vector clock sequence number vector clock
atomic decentralized distributed distributed
2 . 2 -
1.8} e 1.8 Eed
o
) ct c1
rer o 5 1.6 P
1.4 > 1.4
o
| R T s o 1.2 provmmem
.......... [
1 o 1
£
5
0.8 . 0.8}
)
0.6 o 0.6 f
...................] =
0.4 ® 0.4
29
0.2t 0.2
o N

1 2 3 4 5 6 7 8 9 1011 12 13 14 15
X

m

Figure 7: Number of messages (n = 10)

SCO protocol uses the high-speed one-to-one net-
work. Messages are sent to only destinations in

the group .

In order to reduce the number of

messages, the SCO protocol adopts the deferred
confirmation and piggy back. We have shown
that less messages are transmitted and it takes
less delay time in the SCO protocol than the non-
distributed control.

References
[1] Birman, K. P., Schiper, A., and Stephenson,

P., “Lightweight Causal and Atomic Group
Multicast,” ACM Trans. on Computer Sys-
tems, Vol.9, No.3, 1991, pp.272-314.

Kaashoek, M. F. and Tanenbaum, A. S,
“Group Communication in the Amoeba Dis-
tributed Operating System,” Proc. of IEEE
ICDCS-11, 1991, pp.222-230.

10

Figure 8: Delay time (n = 10)

[3] Lamport, L., “Time, Clocks, and the Or-

5]

(6]

(7

(8

(9

[10

—116—

]

]

dering of Events in a Distributed System,”
Comm. ACM, Vol.21, No.7, 1978, pp.558-
565.

Mattern, F., “Virtual Time and Global
States of Distributed Systems,” Parallel and
Distributed Algorithms, Cosnard, North-
Holland, 1989, pp.215-226.

Nakamura, A. and Takizawa, M., “Reliable
Broadcast Protocol for Selectively Ordering
PDUs,” Proc. of IEEE ICDCS-11, 1991,
pp.239-246.

Nakamura, A. and Takizawa, M., “Priority-
Based Total and Semi-Total Ordering Broad-
cast Protocols,” Proc. of IEEE ICDCS-12,
1992, pp.178-185.

Nakamura, A. and Takizawa, M., “Causally
Ordering Broadcast Protocol,” Proc. of
IEEE ICDCS-14, 1994, pp.48-55.

Tachikawa, T. and Takizawa, M., “Selective
Total Ordering Broadcast Protocol,” Proc. of
IEEE ICNPY4, 1994, pp.212-219.

Takizawa, M. and Nakamura, A., “Partially
Ordering Broadcast (PO) Protocol,” Proc. of
IEEE INFOCOM, 1990, pp.357-364.

Verissimo, P., Rodrigues, L., and Baptista,
M., “AMp: A Highly Parallel Atomic Mul-
ticast Protocol,” Proc. of ACM SIGCOMM
1989, pp.83-93.

