RANF AT 4 THEEBAE T0-16
(1995. 5. 26)

An Algorithm for Flexible Networking

M. Moser, K. Sugawara!, N. Shiratori

Tohoku University tChiba Institute of Technology
RIEC, Department of Computer Science Department of Computer Science
Shiratori Laboratory Sugawara Laboratory
2-1-1 Katahira, Aoba-ku 2-17-1 Tsudanuma
Sendai 980, Japan Narashino 275, Japan
Abstract

Many of today’s applications, especially applications using a computer network,
cannot deal with changes in the user requirements or available computational assets.
Due to the first problem, users are limited to the functionality offered by the system
as is, rather than being able to combine the elements of a service as they desire. The
second problem leads applications to degrade disgracefully if the availability of assets
changes while the application is running.

In this paper we first analyze both problems and their interconnection, then give
a unifying theoretical framework to deal with changes in the user requirements and
computational assets. Based on this framework we define a flexibility criterion for
applications. We then propose an agent framework, the Flexible Networking Kernel,
that allows users to configure a service out of a set of elementary services, and an
algorithm that, in the face of changing user requirements, supplies the best service
possible with the currently available computational assets.

RPhLEPVRY NT—F LV FDEDDT T XA

M. =—H#— K. EE! N. A5

L Sl = VFETEARY
BRECHER /KB EHAR. ABHESE EHRTER, TEHEE
TOSOMEMHFER. FF2-1-1 T275BEHF. #HB2-17-1
P

BEDEL DT T) r—ary, HlZavEa—52y bI—20%HNWET 7Y
r—varvid, 2-FEROENACHATREL IV E2 - S RFOEHEHEH =
BTV, E—OMELIN, I -FREFTOLEL L) ICERNY -~V X2EET
BIEWRTEY. VAFL08BTHHELZFOITIFE) Lk, TLE DM
BOIzD, 77V r—2a yOEFTHICHATE ZREIE LTI ZFORIZ VDY
ETT 5, .

ABEXTH, FFCOoOMELEEMOMFEEZ ML, DWTI—FERK
RAVE2—- S BEOERFR S KN BROEAL5 25, JOBBICETX
THUr—2avnRborSORELRET 2. RICT—FHIERNRI -2
POV —ERAEDLDBILNTCERLIZI TV Mok BHM, T4bD Flex-
ible Networking Kernel &, 2 —#EROEMICH LT Z OB A THETIR 22~
Ca- s BBE*AVTTELEIRROY — AL RBT 7L TY XA 2 RET
5o

1 Introduction

With the spread of powerful work stations
and network connections, demand for net-
worked real-time services is increasing. Real-
time services, however, require special soft-
ware support to guarantee the availability
of computational assets, but although those
mechanisms have been developed, transition
to the new solutions seems slow and difficult
due to the size and inertia of the user com-
munity.

Soft real-time services are real-time services
that allow for some decrease in the quality
of service, and thus can be provided with-
out computational asset guarantees. How-
ever, lack of computational assets may cause
the quality of service to decrease, and in exist-
ing systems the decrease is rather ungraceful.
In this paper we develop a model of a net-
worked service that relates the users’ require-
ments towards the service with the amount of
computational assets required to supply the
service. We then give an algorithm that pro-
vides the best service possible with the com-
putational assets available by gracefully re-
ducing the user requirements and selecting
the most suitable implementation for the ser-
vice requested by the user.

2 A Model

In the following we develop a model for a
multi-user service held over a computer net-
work. There are p participants, each equipped
with a regular work station, and the same
software is available at all p work stations. We
assume there is no real-time support, neither
by the operating system nor the networking
software, and the work station is not dedi-
cated, i.e. the service is sharing the compu-
tational assets of the work station with other
processes.

2.1 Participant Model

Every participant P can be described by the
following tuple:

P={(a,D,...,Dp,ry,...,7,L, P)

The computational assets of a user’s work
station can be measured in orthogonal terms
such as CPU cycles, core memory, trans-
mission bandwidth, transmission delay, etc.,
which span a n dimensional vector space V4.
The computational assets a currently avail-
able mark a point in this vector space:

a€Vy

The variables D; represent data streams
arriving at the work station, with D; be-
ing produced by the local peripherials, and
D,,...,D, being the data streams arriving
from the other participants. These data
streams D; consist of s elementary data
streams D:

3
Di= D}
j=1

The data stream D; generated by the lo-
cal periphery should be transformed to the
data stream Do, which consists of the elemen-
tary data streams D}, and transmitted to the
other participants as described by the require-
ments 1, while the data streams Dy,..., D,
coming in from the other participants should
be presented to the user as described by the
requirements ra,...,7p.

Similar to the computational assets, both
data and requirements can be described as
points in a m dimensional vector space
Vp with orthogonal dimensions such as
frames/sec., pixel resolution, number of chan-
nels, sampling rate, etc, all of which are as-
sumed to be discrete.

D;,ri € Vp

Further, L = (l,u),!,u € Vp describe upper
and lower limits for the requirements in each
dimension, thus bounding a subsection of Vp.
The priorities P € IR™ eventually provide pri-
orities for the axes of Vp. Both L and P will
be described in more detail in subsection 2.3
which is concerned with our notion of flexibil-

ity.
2.2 From the requirements to the
implementation

The service S can be decomposed into a col-
lection of s elementary services E; such as

audio, video, a whiteboard, etc., one for each
elementary data stream D? of data stream D;:

S={Ejlie1,...,s]}

Correspondingly, the vector space Vp can be
decomposed into a set of s orthogonal subvec-
tor spaces Vp;, one for each elementary ser-
vice, with the axes of each Vp,; beirg a subset
of the axes of Vp:

s
Vo = P Vi, Vi L Vpj, i # j
] i=1
Consequently, the requirements r; decompose
into orthogonal vector sums consisting of el-
ementary requirements, one for each elemen-
tary service Ej:

L4 . . .
ri=CDR!,Rl € Vpi, Rl L RE,j #k
i=1

Each elementary service implements the ele-
mentary requirements R} expressible in phe
subvector space Vp;, consuming a part D] of
the data stream D;. The elementary services
consuming a part D{ of data stream D, gen-
erate the part D} of data stream Dg. Thus,
the requested service S consuming the data
streams Dy, ..., Dy, and generating the data
stream Dy, is described by the requirements
R=(r1,...,7p, L, P).

Each elementary service E; consists of a set
of implementations [;; which realize the R’:

E_,' = {Ijklj € [1,...,8],k € IN}

Out of each set E; one implementation I;;(;)
is chosen to provide the requested service.
The amount dj-k(j) of computational assets
consumed by an implementation I;;(;) to re-
alize the elementary requirements Rf can be
written as a function fjy(;) of R] and Liriy:

Ty = Fir()(RE Lingiy)

Now, the overall computational assets d re-
quired to implement the requested service S
can be computed as:

» |IS]

d('ri) = Ezd;k“)’k(]) € [1" . IE]”

i=1j=1

The requested service can be provided while
the incoming data streams D; and the compu-
tational assets available suffice, i.e. while the
following conditions hold:

d(r;) £ a

D; = r,i€ll,...,p]

We will refer to the requested service as sati-
ated if the above conditions are satisfied.

2.3 Flexibility

Next to satiation, a service may S be in three
other states:

hungry The incoming data does not suffice
to satisfy the user requirements.

overfed More data is coming in than is
needed to satisfy the user requirements.

suffering The computational assets do not
suffice to process the data as requested.

When the service is hungry, some of its el-
ementary services are hungry. The hungry
elementary services could try to extrapolate
the missing samples. However, no general ex-
trapolation mechanism can be provided, as
the extrapolation algorithm depends strongly
on the kind of data involved. Therefore, this
issue will not be explored within this paper.
Rather, the implementations [j; of the hun-
gry elementary services reduce the require-
ments R to fit the incoming data D! by
means of a function §;4:

R = 8;(RI,Di), R € Vi

When the service is overfed, the service
may either provide a higher quality of service
than requested, or it may prune the incoming
data to fit the amount required. As prun-
ing can be implemented in a rather straight-
forward way, e.g. by dropping samples, and
may happen on the fly while processing the
data, we will, for the sake of simplicity only
treat the second method in this paper. We
can such assume that the implementations I
each provide a function 7 yielding the de-
sired amount D] of data:

D" = nj (R, DY), D" € Vp

A requested service suffers if either the user
requirements are increased, or the availability
of computational assets decreases to an extent
that the condition d(r;) < a is violated. Now
there are two possibilities: On the one hand
there may be a different choice of implemen-
tations Iz for the same requirements R,
which provide a satiated service, and switch-
ing to them absorbs the change. On the other
hand, the requirements may just be too high
to be satisfied with the computational assets
a available. In the latter case the require-
ments r; must be reduced to some lower re-
quirements r!’ that are in some way optimal.
The optimal requirements 7! can be charac-
terized as the one those closest to the origi-
nal requirements r;, for which the condition
d(r!) < a holds.

When defining the distance measure re-
quired to specify the closest requirements,
two additional features of the user require-
ments should be considered. The features are
the two remaining elements L and P of the
user requirements: Firstly, some requirements
may be more important to the user than oth-
ers, and thus should not be violated unless
unavoidable. It is therefore preferable to re-
duce the quality of service first in direction
of the lower priorized dimensions, as specified
by the priorities P. Secondly, the user speci-
fied limitations L on the requirements should
be respected. Lowering the quality of service
in the i-th dimension below the lower limit
l; may render the according elementary ser-
vice useless for the user. If, due to the lack of
computational assets, the requirements must
be reduced beyond this point it is preferable

" to drop the corresponding elementary service
completely to avoid wasting computational
assets.

The following weighted vector length ac-
counts for both priorities and limitations:

”vavP” = A Z(pi) U(v7L))2’v eVp
=1

The priorities p; amplify the contribution of
the higher priorized dimensions, while ¢ is a
threshold function that returns 0, if v violates
any of the limitations on the dimenstions of

the subvector space Vp; the i-th dimension
belongs to, or v; otherwise. Thus o accounts
for the fact that the realization of an elemen-
tary service E; is useless, if any of the require-
ments the elementary service has to satisfy is
below its lower bound.

We can now give the conditions the reduced
user requirements ri, which are produced by
a reduction function p, should satisfy:

flré =7l

d(ry)
T? = p(TE’L’Pva'%

8 .
! 17
T P r1,
=t

8;x(RI, D)

min.,

il

IA

a;

i

15
Ry =

Provided we hold the reduced requirements
r! that can be implemented with the avail-
able computational assets, they can be de-
composed into the elementary requirements
R"!. The selected implementations Ijy(;y of
the elementary services can then apply the
function ;i to obtain the required amount
D' of data from the data streams Df

A real system may be less flexible that the
ideal system, i.e. for certain elementary re-
quirements R'! there is no implementation.
Consequently, the reduction function p of the
real system may return a result that is dif-
ferent from the r! yielded by the reduction
function p of the ideal system. To measure
the degree ¢ of flexibility of a real system we
introduce the degree ¢ of flexibility:

l Z A(T,‘, Q(Tal” Paa'))
l vreL A('I‘,’,p(T,L,P,G,))
lIr — sl|

Il

(p:

A(r,s)

The requirements 7 run through all ! points
in the subspace of Vp that is bounded by the
limits L = (I,u). Obviously, ¢ is equal to
one, i.e. the system is ideally flexible, if g is
equal to p within the subspace of Vp. The
flexibility decreases with the number of re-
quirements yielding different results, and also
with the amount the results of ¢ and p differ.

2.4 An Algorithm

The function g can be implemented as a vari-
ant of the well-known knapsack problemf4]:
The size of the knapsack is the amount of
available computational assets a. The things
to be placed in the knapsack are the imple-
mentations Jjx that satisfy the elementary re-
quirements Rf-' , their value is the weighted
length ||R!|| of the requirement they satisfy,
and their weight the amount d;k computa-
tional assets they consume. In contrast to the
standard knapsack problem the implementa-
tions are grouped according to the elementary
service they belong to, and at most p imple-
mentations of each group, i.e. one for every
incoming data stream D; may be placed in
the knapsack. Further, the same implemen-
tation may be used more than one time.

Theorem 1 Suppose there ezisis an tmple-
mentation I;; for all reduced elementary re-
quirements R{ within the subspace bounded
by L. Then the above described algorithm
computes the ideal reduction function p, i.e.

0=p.

3 Related Work

Recently, there is strong interest in Japan
in developing what is called a Flexible
Network[15]. Although it is not yet suffi-
ciently clear what exactly a Flexible Network
should be there seems to be an emerging
agreement that it should be an extension of
the current network that is more user friendly
and softer with respect to temporary and per-
manent changes in the network behavior. The
starting point for the work presented in this
paper was provided by Shiratori et al.[12],
who identify the following three reasons for
the necessity of Flexible Systems:

1. changes in the representation of user re-
quirements,

2. temporary changes in the availability of
computational assets, and

3. permanent changes in the availability of
computational assets.

Further, a general definition of a Flexible Sys-
tem is presented in [12]. In this paper we fo-
cused on the second of the three aspects listed
above, building on the body of existing work,
and extending our previous proposal[8].

There are various mechanism that support
real-time services ranging from special hard-
ware, operating systems or real-time network
protocols, see e.g. [7][9][16][1]. However, tran-
sition to these solutions requires to replace
the according hard- or software, a process
that nowadays is difficult and slow, if not
impossible. Although the Internet had been
regarded as hostile to real-time services[10],
as it cannot provide any performance guar-
antees, a class of real-time services, so-called
play-back applications, which can deal with
loose performance guarantees, has been iden-
tified. The basic idea of play-back applica-
tions is to add some extra delay by buffering
the data coming in from the network. If the
transmission delay of the network increases,
interruption of the play-back is avoided by us-
ing the data in the buffer. It is believed that
a large class of future real-time services are
play-back applications[3]. DECspin was one
of the first multimedia services that was run
successfully on the Internet without any real-
time support. Vat is seen as the first adap-
tive application[10], which measures network
delay and dynamically adapts to it[11]. How-
ever, it has been found that the performance
of both services suffers when other computa-
tional expensive operations are running. Ac-
cording to our own experiences the same is
true for the IVS system[2], which applies a
sophisticated feedback mechanism to adapt
to network load and to avoid resource over-
consumption. We think that our scheme of
a Flexible System can improve this situation
significantly.

Although some systems reduce the amount
of the transmitted information by adaptive
coding[6], and some of the available systems
allow to employ different coding and compres-
sion mechanisms[11], none of them changes
the mechanisms automatically in face of lack-
ing computational assets. Rather, changes
in the transmission format, although recog-
nized automatically by the receiver, have to

be initiated by the user.

Further, the influ-

ence of other computational assets other than
network throughput and delay on the quality
of service are hardly ever considered. To our
best knowledge this paper for the first time
proposes an integrated approach to adaptive
resource monitoring and distribution that ex-
ploits the time-space tradeoff, which provides
a means for load shift and controlled degra-
dation of the quality of service.

References

(1]

(2]

3

—

(4]

(5]

(6]

(7]

(8]

Anderson, D.P., Herrtwich, R.G., Schae-
fer, C., SRP: A resource reservation pro-
tocol for guaranteed performance com-
munication in the Internet, Berkeley
Technical Report TR-90-006, February
1990

Bolot, J.C., Turletti, T., A rate control
mechanism for packet video in the Inter-
net, Proceedings of the IEEE Infocom
1994

Clark, D.D., Shenker, S., Zhang, L., Sup-
porting Real-Time Applications in an In-
tegrated Services Packet Network: Ar-
chitecture and Mechanism, Proceedings
of the ACM SIGCOMM ’92, Baltimore,
August 1992, pp. 14-26

Cormen, T.H., Leiserson, C.E., Rivest,
R.L., Introduction to Algorithms, The
MIT Press, Massachusetts, London

Cypser, R.J., Communications for Co-
operating Systems Addison- Wesley Pub-
lishing Company

Huitema, C., Turletti, T., Software
codecs and work station video confer-
ences, INRIA Technical Report, Novem-
ber 1993

Jeffay, K., Stone, D.L., Smith, F.D.,
Transport and display mechanisms for
multimedia conferencing across packet-

switched networks, Computer networks
and ISDN systems, Vol. 26, No. 10, 1994

Moser, M., Sugiura, S., Lee, S.D., Sug-
awara, K., Shiratori, N., An Agent

9

—_—

[10]

(11]

[12]

(13]

(14]

[15]

[16]

Framework for Flezible Networking, Pro-
ceedings of the FLAIRS-95 Workshop,
Miami, April 1995

Northcutt, J.D., Clark, R.K., May-
nard, D.P., Trull, J.E., Decentralized
Real-Time Schedulingg, RADC Techni-
cal Report RADC-TR-90-182, Carnegie-
Mellon University, 1990

Partridge, C., Gigabit
Networking, Addision-Wesley Publishing
Company, Reading, Massachusetts, 1993

Sasse, M.A., Bilting, U., Schulz, C.D.,
Turletti, T., Remote Seminars through
Multimedia Conferencing: Fzperiences
with the MICE project, Proceedings of
the INET '94

Shiratori, N., Sugawara, K., Kinoshita,
T., Chakraborty, G., Flezible Networks:
Basic Concept and Architecture, IEICE
Transactions on Communication, E77-
B(11), 1994

Shiratori, N., Sugawara, K., Kinoshita,
T., Chakraborty, G., Flezible Systems: A
Step Towards New Generation Networks,
Proc. of the 9th Intern. Conf. on Infor-
mation Networking, 477-482, 1994.

Sugawara, K., Kinoshita, T.,
Chakraborty, G., Shiratori, N., Agent-
Oriented Architecture for Flexible Net-
works, Proc. of the 2nd Intern. Symp.
on Autonomous Decentralized Systems,
April 25-27, 1995, Phoenix, Arizona (to
appear)

Tominaga, H., Flexible Networks — In-
troduction, The Journal of IEICE (Spe-
cial Issue on Flexible Networks, in
Japanese), Vol. 77, No. 4, 1994

Zhang, L., Deering, S.E., Estrin, D.,
Shenker, S., Zappala, D., RSVP: A New
Resource ReSerVation Protocol, IEEE
Network Magazine, Vol. 9, No. 5,
September 1993

