RIVF AT 4 T ESBNE 16— 8
(1996. 5. 186)

Checkpoint and Rollback in Asynchronous Distributed Systems

Hiroaki Higaki, Kenji Shima, Takayuki Tachikawa, and Makoto Takizawa

Dept. of Computers and Systems Engineering
Tokyo Denki University

This paper proposes a novel algorithm for taking checkpoints and rolling back the processes for
recovery in asynchronous distributed systems. The algorithm has the following properties: (1) Multiple
processes can simultaneously initiate checkpointing. (2) No additional message is transmitted for taking
checkpoints. (3) A set of local checkpoints taken by the multiple processes denotes a consistent global
state. (4) Multiple processes can initiate simultaneously rollback recovery. (5) The minimum number of
processes are rolled back. (6) Each process is rolled back independently of the other processes. Therefore,
the system is kept highly available by the algorithm.

FHEMOHE AT BT 2F 2y 7 RA vV IVREE v—1Ny 7 [
BRE R B @F BT ER B
{hig, sima, tachi, taki}@takilab.k.dendai.ac.jp
FO R R TR TR

R R FALBIE, FLWF 2y 7 #4 VI REFEF IV r—A Ny 7 BHEHFECOWTH
B, ARULCTRET 5F = v 7 K4 v PEBFHE, £80 7V v+ 2C X 3FIEETEBATRETH Y, T
DEDICHFFRIDF v e — VEBEE LA, ¥, KR CTERRT 2 v—a Ay 7AHFER. £E0 70t
A X 2FIHEFTHRESTRETH b, —BLAKHRBEAEDEFxz v 7R v i, BEA v tzx0H
Eu—ANy 7 D, TOu—ANy I}, FT v L HERPNCETIN S, RETEFER. C
DFEFEPRIRETC L > CRELBE I/ T vy 7OMBERFRL T B, lhick), v 27 a0y

RoEECCbOFMHEEYETT I e TE S,

1 Imtroduction

Information systems are distributed and are
getting larger by including many kinds of com-
ponent systems and interconnecting with various
systems, e.g., by the Internet, in the world. The
distributed systems are designed and developed
by using widely used products including freewares
and sharewares rather than specially designed
hardwares and softwares. These components are
not always guaranteed to support enough reliabil-
ity and availability for the applications. It is crit-
ical to discuss how to make and keep the systems
so reliable and available that even fault-tolerant
applications could be computed in the systems.

Checkpointing and rollback recovery are well-
known time-redundant techniques in order to al-
low processes to make progress even if some pro-
cesses fail. The processes take checkpoints by sav-
ing their state information in the local logs while
being executed. If the processes fail in the system,
the processes are rolled back to the checkpoints by
restoring the saved state information and then are
restarted from the checkpoints. In this paper, we
assume that every failure is transient, e.g., hard-
ware errors, process crashes, transaction aborts,
and communication deadlocks. The failures are
unlikely to recur after the processes are restarted.

‘We have to consider how to keep the system

consistent when taking checkpoints and rolling
back the processes. The consistency of the global
state is formalized by Chandy and Lamport [2].
Many papers [2,4, 5, 7-10] have discussed so far
how to take the consistent checkpoints among
multiple processes. In addition, it is critical to
discuss how to roll back the processes if the sys-
tem suffers from the process faults. If each pro-
cess is rolled back independently of the other
processes, the system may be inconsistent. One
idea [5] is to synchronize all the processes to be
rolled back by using the protocols similar to the
two-phase commitment protocol [1]. However, it
takes time to exchange messages among the pro-
cesses. In this paper, we would like to discuss a
new method where the processes are allowed to be
asynchronously rolled back and restarted.

In section 2, the conventional methods are re-
viewed. In section 3, we show a basic algorithm for
taking checkpoints and rolling back processes. In
section 4, we make clear the problem of livelocks
occurring in the rollback recovery. A livelock-free
algorithm is proposed in section 5. The evaluation
of the algorithm is presented in section 6.

2 Checkpoint and Rollback

A distributed system is composed of multiple
processes interconnected by channels, i.e., (V, L)

s’

VA

b;
mg
m/ K
Pj
m
)43

my
0,

S
\ / time

Figure 1: Consistent global state

where V = {p1,...,pn} Is a set of processes and
L € V?is a set of channels. In the distributed sys-
tem, three kinds of events occur: message-sending,
message-receiving and local events. The state of
a process is changed when an event occurs. An
event e, happens before another event e, (e, — €;)
iff one of the following conditions is satisfied [6]:
e e, occurs before e; in the same process.
e ¢, i3 a message-sending event for a message
m and e; is a message-receiving event for m.
e There is an event e, such that e, happens
before e, and e, happens before e;.

A local state of p; is determined by the initial
state and the sequence of events occurring in p;.
Messages are transmitted from p; to p; via a chan-
nel [p;,p;]. A state of [p;,p;] is defined as a set
of messages sent by p; but not yet received by p;.
For a set P of processes, a global state S(P) is a
set of local states of the processes in P and of the
channels with which the processes are connected.

If the processes take the checkpoints and are
rolled back to the checkpoints independently,
there exist two kinds of inconsistent messages: lost
messages and orphan messages. A lost message
means that a message-sending event occurs be-
fore the sender process takes a checkpoint and a
message-receiving event occurs after the receiver
process takes a checkpoint. An orphan message
means that a message-sending event occurs af-
ter the sender process takes a checkpoint and a
message-receiving event occurs before the receiver
process takes a checkpoint. By recording the re-
ceived messages in the log after taking a check-
point, the lost messages can be received by taking
them out of the log. However, if there exist or-
phan messages, the system becomes inconsistent.
Even if the processes record messages in the log
at message-sending events, the processes may not
send the messages after the rollback recovery if
the processes are not deterministic. Therefore, the
global state of the system is consistent iff there is
no orphan messages. Figure 1 shows three pro-
cesses p;, p; and pg. A global state S is consistent
because there is no orphan message. However, an-
other global state S’ is inconsistent because m; is
an orphan message.

There are two approaches to taking checkpoints
among multiple processes. One is asynchronous

checkpointing where the processes take the check-
points without cooperating with the other pro-
cesses [4,9,10]. This approach implies less over-
head because there is no communication among
the processes. However, domino effects may oc-
cur [7]. The other is synchronous checkpointing
where multiple processes are coordinated to take
the checkpoints [2,5,7,8]. By the synchronous one,
the overhead for taking checkpoints is larger than
the asynchronous approach while the overhead for
rolling back is limited. This paper discusses the
synchronous approach.

A global checkpoint is a set of local check-
points taken by all the processes in the system
[2,4,5,7-10]. Additional messages are transmit-
ted and processes are suspended during the check-
pointing procedure. However, all the processes are
not always needed to take checkpoints to keep the
system consistent after the rollback recovery.
Definition (semi-consistent) For a distributed
system (V, L), let P be a subset of V. A global
state S is semi-consistent for P iff there is no or-
phan message in the channels connected with the
processes in P. O
In our checkpointing algorithm, a message m con-
tains the information on whether the sender pro-
cess of m has taken a checkpoint or not. If the
sender process of m had taken a checkpoint, m is
referred to as a checkpoint message.

Checkpoint If a message-receiving event e for
a checkpoint message occurs in a process p which
has not yet taken a checkpoint, p takes a check-
point just before e.

The minimum number of processes take check-
points and no additional message is transmitted
to take checkpoints by using the protocol.

In the conventional methods, the processes
have to be synchronized to be restarted by the
following procedure after they are rolled back:

1) Request messages are transmitted from the
coordinator process to all the other processes
called cohort processes.

" 2) A reply message is transmitted from each co-
hort to the coordinator.

3) The coordinator transmits restart messages
to all the cohort. Each cohort is restarted
from the checkpoint.

One of the disadvantages of the method is that the
processes are suspended and additional messages
are transmitted to synchronize the processes. The
larger the system becomes, the longer the pro-
cesses are suspended. Thus, the system becomes
less available. In order to keep the system highly
available with the rollback recovery, we would like
to discuss a method where processes are less syn-
chronized to be restarted from the checkpoints.

3 Basic Algorithm

Here, we would like to show a basic algorithm
for taking checkpoints and rolling back processes
by using an example in Figure 2. The system

rl
Dy "
\\ z\\
3 2
r r
) I/ |
my T1
p
3 =
P e T
4
c"\ time

Figure 2: Semi-consistent global state.

consists of processes {pi, p2, P3, ps} and channels
{[p1, P2}, [P2, P3], [p3, p4]}. Here, [Pi)pj] denotes a
bidirectional channel between p; and p;. Each
process p; takes a checkpoint ¢'. If some failure
oceurs, p; is rolled back and restarted from c'.
¢! represents the sth checkpoint taken by pi. T
shows a p0551ble rollback event where p; is rolled
back to ¢. If ¢! occurs and 7 does not occur in

i, € is actwe For exam; le ¢} is active when
pi, ¢, y €2

p1 sends my. If py is rolled back from r} and is

restarted from c}, ¢} is not active.

If p; fails, it is not sufficient to roll ba.ck P
to the checkpoint because there may be orphan
messages. For example, if r} occurs in p; and p;
is restarted from ¢}, mg is an orphan message. In
order to realize a semi-consistent global state after
the rollback recovery, p; has to be restarted from

c?. That is, if p; is restarted from ci, an event

e} in p; where ¢i — e} has to be canceled by a
rollback recovery in p;.

Even if p; and p; are rolled back and restarted
from ¢} and ¢?, respectively, ps and p; are not
required to be rolled back. That is, if no event e}
where ¢t — &} occurs in p;, p;j is not required to
be rolled back. Thus, if p; is rolled back, we have
to identify which processes are rolled back.
Definition (rollback-domain) Let ¢ and ¢/ be
active checkpoints taken by processes p; and p;,
respectlvely Let &' and &/ be events such that 1)
¢ — ¢ and ¢ — e’, and 2) there is no event e
where c* —e—et orc’ — e —el. Here, &' = ¢
is defined iff e — &/. A rollback-domain D(p‘-) of
p; is defined to be a following set of processes:

o p; € D(p;) if there is an active checkpoint in

pi. Otherwise, D(p,) =0

. pJ € D(p;) if ¢/ is active in P and ¢/ = cf or

c* = ¢/ where ¢}, is active in ox € D(p;). O
For example, when p; takes a checkpoint c},
D(p1) = {p1}. When mp is transmitted from p;
to pz, pa takes a checkpoint ¢? before accepting
mo. Here, D(p1) = D(p2) = {p1, P2}

1t is clear that p; € D(p;) and D(p;) = D(p;)
for p; € D(p;), and D(p;) N D(p;) = 0 if p; ¢
D(p;). Aset C = D(p.,) of processes is referred to
as a rollback-class. If p; in a rollback-class C sends
a message m and p; in another rollback-class C’

Sy B
Cf s 71 / ';s
[H
my r my s
c;"\ HAN
1

Figure 3: Livelock in rollback recovery.

receives m, C and C’ are merged into C"” = CUC’
according to the definition. For example, before
mg is transmitted, p; and p; are in C = {p;,p2}
and p3 and p, are in C’ = {p3,ps}. When m; is
transmitted from ps to p;, C and C’ are merged
inte C" = CUC' = {p1,p2,P3,Pa}

Theorem If a process in a rollback-class C fails,
the system state is semi-consistent if only and all
the processes in C are rolled back to the active
checkpoints. O

That is, C is the minimum set of processes to be
rolled back for keeping the system semi-consistent.
However, p; has no information on which processes
are included in C. Suppose that pi, ps, p3, ps are
at 73, 72, 73, r#, respectively. p, does not know
that pg is in D(p,) while knowing that p; is in
D(p;). That is, p; has only the information on
whether the neighbor processes are in the same
rollback-class or not. Let W(p;) denote a p;’s view
of D(p;). W(p;) is a set of processes which p;
knows in D(p;), i.e., W(p;) C D(p;).

Based on the view of p;, p; can be rolled back
and restarted from the checkpoint by using the
message diffusion protocol [3].

1) If p; fails, p; sends request r to all the pro-
cesses in W(p).

2) On receipt 7, p; also sends r to all the pro-
cesses in W(p).

3) If p; receives r from all the processes in W(p),
p is rolled back and restarted from the check-
point.

4 Livelock in Rollback Recovery
Consider the following scenario (Figure 3).

1) ps takes ¢ and sends m; to py.
checkpoint message.
D(ps) = {pz,ps}-

2) p; receives m, and takes c? where the local
state of p; before receiving m; is recorded
in the log. Here, c? is active and D(p;) =
D(ps) = {p2,p3}. S1 = {3, 3} is semi-
consistent.

3) p; sends m; to p;. p; receives my and takes
¢y, Here, c} is active. D(p;) = D(p;) =
D(p_—;) = {p1,p2,p3}. p1 does not know if ps
is in the same rollback-class, i.e., W(p;) =
{p1,p2} C D(py).

4) P3 fa.xls and is rolled back from 73 to ¢. Now,
since ¢ is not active, ps is not in the rollback-

my is a
Here, ¢} is active and

class. Here, D(p1) = D(pz) = {p1,p2} and
D(p3) =0. S; = {c},c?} is semi-consistent.

5) p; sends mz to ps. ps receives mz and
takes a new checkpoint ¢3. Here, c3 is ac-
tive. D(p1) = D(p2) = D(ps) = {p1,p2,P3}-

W(p1) = D(p1) = {p1,p2,ps}, W(p2) =
{p1,?2} and W(p3) - {pI)PS}

6) ps is rolled back from 72 to c? because p3 i
rolled back at the step 4). Here, D(p;)
Dpsg = {p1,ps} and D(p;) = 0. S;
{c;,c5} is semi-consistent.

7) p3 sends mq to pa. py receives my and takes

2- D(p1) = D(p2) = D(ps) = {p1,p2, ps}-

8) p1 is rolled back from r} to c}. Here, D(p2) =

D(ps) = {pa,ps}. Ss = {c3,c}} is semi-
consistent.

©n

1]l

Thus, the rollback recovery can be continued for-
ever, i.e., livelock occurs. It is noted that ps does
not take c3 on receipt of mg if ps is not rolled back
before receiving mg.

Suppose that a rollback i has occurred in p;
and then p; receives a message m from p;. Let
¢’ be a message-sending event of m in p;. If an
event ' has occurred in p; where e — ¢ and
¢ — € — 7!, p; cannot receive m. That is, p; is
sure that p; would be rolled back by the rollback
of p;. The message-receiving event for m has to be
canceled. If p; receives m, the livelock may occur.
Hence, p; ignores mg.

Definition (generation) If an event e occurs in
a process p; after a checkpoint ¢} is taken and
before a rollback ¢ occurs, the genera.tlon g(e) of
e is 5. Otherwise g()is L (unknown). O

The generation g(e) of a message-sending event e
for a message m is piggied back by m. On receipt
of m, p; rejects m if p; knows by g(e) that m is
canceled by the rollback-recovery. By the method,
the livelock is prevented.

5 Algorithm
5.1 Assumptions and Definitions

A distributed system S = (V, L) consists of a
finite set V = {p1,...,pn} of processes and a set
L C V? of channels. We make the following as-
sumptions on S.

A1l The channels are bidirectional.

A2 The channels are reliable.

A3 For each channel, messages are transmitted
in the first-in-first-out order.

A4 S is asynchronous, i.e., a maximum message
transmission delay is unbounded and finite.

If [pi, p;] € L, pj is a neighbor process of p;. N*
is a set of neighbor processes of p;.

The following events occur in a process p;:

e Message-receiving event: p; takes out a mes-
sage m from a channel [p;, p;] and accepts m.

e Message-sending event: p; puts a message m
to a channel [p;, p;].

e Checkpoint: p; records the local state infor-
mation in the log. The sth checkpoint taken

by p; is denoted by ci.

e Rollback: p; restores the local state infor-
mation recorded at the checkpoint ¢ and is
restarted from ct. Here, the rollback is de-
noted by 7}

¢t is active f;om the time when ¢! is taken to the
time when r} occurs.

pi manipulates the following variables:

o A vector clock GL' = {gli,... gl\). Each gli
shows the current generation of p;. g! is in-
cremented by one each time p; is rolled back.
Initially, gl; = 0 and g} =1 for j #i.

o A flag flag'. If ¢ is active, flagt = True.
Otherwise, flag* = False.

e A subset W* C N of the neighbor processes
included in the rollback-domain D(p;) of p;,
i.e., W(p;). Initially, W* = 0.

e A sequence M' of messages received after
taking the active checkpoint in p;. Initially,
M*=0.

- A message m contains the data m.data and the
following information:

o A flag m.flag.

e A vector clock m.clock = {cly,...,cl,).

For a pair of vector clocks v = (v},...,v%) and

= {v],...,v), maz(v’, 11-7) is defined to be
(1;1, 3 Un) where each v = v} if 'u,c =1, = 'vk
if 'u’ ._J_ Vg = ma.:n(vk,'uJ) otherwise.
5.2 Checkpointing

The algorithm has to satisfy the following re-
quirements:
R1 A process which has an active checkpoint is
included in exactly one rollback-class.
R2 A global checkpoint in a rollback-class is
semi-consistent.)
R3 Every process p; has the information W* on
which neighbor processes are included in the
same rollback-class.

A process p; takes a checkpoint if one of the
following conditions is satisfied:

C1 If a checkpoint event occurs in p;, p; takes a
checkpoint.

C2 If a message-receiving event e occurs in p; and
p; receives a message m transmitted from a
neighbor process p; that has taken a check-
point, p; takes a checkpoint just before e.

C1 means that checkpointing can be initiated in-
dependently by multiple processes. C2 means that
there is no orphan message in [p;,p;]. Thus, R2
is satisfied. Suppose that p; sends a message
m after taking a checkpoint c;. If ¢} is active,
flag* = True. Thus, m.flag = True, i.e., mis a
checkpoint message. Suppose that p; receives m
after taking ¢, p; does not take another check-
point even if m.flag = True. As presented in the
previous section, if p; in a rollback-class C sends a
checkpoint message to p; in another rollback-class
C’, C and C’' are merged into one rollback-class
C". Thus, R1 is satisfied.

The system has to prevent from livelock caused
by a rollback recovery. Here, we would like
to present the checkpointing algorithm for the
livelock-free rollback recovery. Suppose that p
receives a checkpoint message m from py, ie.,
m.flag = True. Let e denote the message-
receiving event of m in p; and e* denote the
message-sending event of m in pp. If 7% has oc-
curred in p; where ¢¢ — e* and g(c!) < g(eh),
e' is canceled, i.e., m is not received. Other-

wise, p; takes a checkpoint c;(!,.-)_H. pi has the

local vector clock GL* = (gli,..., gl). Each time
p; sends m, m.clock = (m.cly,..., m.cl,,) where
chy = gli(k = 1,...,n). Here, on receipt of a
message m from p;, m is discarded if gli > m.cl;.

Pi Tecords an identifier of a neighbor process Pj
after taking a checkpoint if one of the following
conditions is satisfied:

® p; receives a checkpoint message from P

e p; sends a message to p;.
Hence, R3 holds.

Moreover, in order to assure that no message
is lost after the rollback recovery, if p; receives a
message m when p; has an active checkpoint ¢}, p;
records m in M*. If p; is rolled back to ¢} and is
restarted, p; receives m from M before receiving
from the channels.

The procedure Send(m) is executed when a
message-sending event occurs in p;. p; sends a
message m to a process m.receiver.

Send(m))
m.flag «— flag*;
m.clock — GL*;
send m to m.receiver;

The procedure Receive(m) is executed when a
message-receiving event occurs in p;. p; receives a
message m from a process m.sender.
Receive(m)

if flag® = True
if m.flag = True
add m.sender to W*.
GL' — maz(GL*, m.clock);

accept m;
else)
add m to M?*;
accept m;
fi
else

if m.flag = True
if m.ck #1 and m.cl; < gl
discard m;
else
checkpoint,
add m.sender to W*;
GL' maz(GL:, m.clock);

accept m;
fi
else
accept m;

fi

5.3 Rollback recovery

If a process p; fails, a rollback recovery proce-
dure is executed. The procedure is finished if the
rollback-class C of p; becomes empty. This is re-
alized by using the message diffusion protocol [3].
If p; receives the request » for rollback recovery
from p;, p; sends r to all the processes in W?.
On receiving r from all the processes in W*, p; re-
stores the state information recorded at the active
checkpoint ¢* taken by p; and is restarted from c'.
Thus, p; can be restarted as soon as p; is rolled
back to the checkpoint while p; has to wait for
rollback recoveries of other processes in the other
algorithms [4,5, 7-10].

When p; is restarted, gii is incremented by one.
If p; receives a message m from a process in W af-
ter p; receives the request r for the rollback recov-
ery and before p; is restarted, m is discarded. This
is because the message-sending events at which m
is sent is eventually canceled by the rollback re-
covery. If p; receives a message m from a process
p € N' — W' after p; receives r and before p; is
restarted, m is recorded in M® and is accepted
when p; is restarted.

The procedure Rollback() is executed when a
process p; is recovered or p; receives a request mes-
sage 7 for a rollback recovery.

Rollback())
foreach p € W* do send r to p; od
do
if receive m from some p € W*
discard m;
else if receive m from some p € N* — W*
add m to M,)
else if receive r from some p € W'
discard r;
fi
until receive 7 from every p € W*
restart;

6 Evaluation

First, we would like to show the logical proper-
ties of the algorithm presented in this paper.

Theorem The rollback algorithm is terminated
in finite time. O

Next, we would like to evaluate the algorithm
by comparing with the conventional one [5]. The
following kinds of distributed systems S = (v, L)
are considered where V = {p,,...,p.}:

1) Linear system:
L= {[Pi,PHrl]li =1l,...,n- 1}
2) Star system: L = {[py,pi]li = 2,...,n}.
3) Binary-tree system:
L= {[Pi,Pﬁ], b’i,?zi-)-l“i =1,..., (n_ 1)/2}'

Let ¢t be the time when p, fails and #* be the
time when p; is restarted from the checkpoint. It
takes t* —¢ to roll back p;. Figures 4, 5 and 6 show
T = 37,(t* ~ t) for the three systems. The shorter
T is, the more highly available the system is. Fol-

1500

line_koo
fine_our f

1200

E om0
i
3 600
*

300

2 16 32

4 8
ol processes (n)

Figure 4: Overhead in linear-network.

1500 —
star_koo —
star_our -
1200
E o0}
i
k]
- 600 /
200 // .‘,w”'
. "

2 4 8 168 32 B4 128 256 512
of processas (n)

Figure 5: Overhead in star-network.

lowing the figures, these systems are made more
highly available than the conventional algorithm
by using the proposed algorithm.

The view W(p;) of p; includes only the neigh-
bor processes with which p; exchanges messages.
If each message from p; to p; contains the informa-
tion W(p;), p; can get a larger W(p;) by adding
W(p;) to W(p;). By using the method, the roll-
back time can be reduced. We would like to dis-
cuss the optimization methods in another paper.

7 Concluding Remarks

This paper has proposed the new algorithm for
taking checkpoints and rolling back processes in
asynchronous distributed systems. The minimum
number of processes take checkpoints. The pro-
cesses are rolled back asynchronously. The algo-
rithm realizes the more highly available system
than the conventional one. Therefore, the algo-
rithm will play an important role to develop the
reliable and available large-scale distributed sys-
tems.

References

[1] Bernstein, P.A., Hadzilacos, V. and Good-
man, N., “Concurrency Control and Recov-
ery in Database Systems,” Addison- Wesley,
pp. 222-261 (1987).

[2] Chandy, K.M. and Lamport L., “Distributed
Snapshots: Determining Global States of
Distributed Systems,” ACM Trans. on Com-

1500

1ree_koo l
trea_our
1200 |
? 900
B - 800
*
/g
300) // !”p“
M’w
0
2 1 32 64 128

8 6
of processes (n)

Figure 6: Overhead in binary-tree-network.

puter Systems, Vol. 3, No. 1, pp. 63-75
(1985).

Dijkstra, E.W. and Scholten, C.S., “Termina-
tion Detection for Diffusing Computation,”
Information Processing Letters, Vol. 11, No.
1, pp. 14 (1980).

Juang, T.T.Y. and Venkatesan, S., “Effi-
cient Algorithms for Crash Recovery in Dis-
tributed Systems,” Proc. of the 10th Confer-
ence on Foundations of Software Technology
and Theoretical Computer Science (LNCS),
pp. 349-361 (1990).

[3

st

f4

Pl

[5] Koo, R. and Toueg, S., “Checkpointing and
Rollback-Recovery for Distributed Systems,”
IEEE Trans. on Software Engineering, Vol.
SE-13, No. 1, pp. 23-31 (1987).

6

=

Lamport, L., “Time, Clocks, and the Order-
ing of Events in a Distributed System,” Com-
munications of the ACM, Vol. 21, No. 7, pp.
558-565 (1978).

{7] Randell, B., “System Structure for Software
Fault Tolerance,” IEEE Trans. on Software
Engineering, Vol. SE-1, No. 2, pp. 220-232
(1975).

Tong, Z., Kain, R.Y. and Tsai, W.T., “Roll-
back Recovery in Distributed Systems Using
Loosely Synchronized Clocks,” IEEE Trans.
on Parallel and Distributed Systems, Vol. 3,
No. 2, pp. 246-251 (1992).

[9] Venkatesh, K., Radhakrishnan, T. and Li,
H.F., “Optimal Checkpointing and Local
Recording for Domino-Free Rollback Recov-
ery,” Information Processing Letters, Vol. 25,
pp. 295-303 (1987).

—
oo
et

[10] Wood, W.G., “A Decentralized Recovery
Protocol,” Proc. of the 11th International
Symposium on Fault Tolerant Computing
Systems, pp. 159-164 (1981).

